Skip to main content
Log in

Exploring sensitive area in the tropical Indian Ocean for El Niño prediction: implication for targeted observation

  • Special Section on Indo-Pac Project
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Based on initial errors of sea temperature in the tropical Indian Ocean that are most likely to induce spring predictability barrier (SPB) for the El Niño prediction, the sensitive area of sea temperature in the tropical Indian Ocean for El Niño prediction starting from January is identified using the CESM1.0.3 (Community Earth System Model), a fully coupled global climate model. The sensitive area locates mainly in the subsurface of eastern Indian Ocean. The effectiveness of applying targeted observation in the sensitive area is also evaluated in an attempt to improve the El Niño prediction skill. The results of sensitivity experiments indicate that if initial errors exist only in the tropical Indian Ocean, applying targeted observation in the sensitive area in the Indian Ocean can significantly improve the El Niño prediction. In particular, for SPB-related El Niño events, when initial errors of sea temperature exist both in the tropical Indian Ocean and the Pacific Ocean, which is much closer to the realistic predictions, if targeted observations are conducted in the sensitive area of tropical Pacific, the prediction skills of SPB-related El Niño events can be improved by 20.3% in general. Moreover, if targeted observations are conducted in the sensitive area of tropical Indian Ocean in addition, the improvement of prediction skill can be increased by 25.2%. Considering the volume of sensitive area in the tropical Indian Ocean is about 1/3 of that in the tropical Pacific Ocean, the prediction skill improvement per cubic kilometer in the sensitive area of tropical Indian Ocean is competitive to that of the tropical Pacific Ocean. Additional to the sensitive area of the tropical Pacific Ocean, sensitive area of the tropical Indian Ocean is also a very effective and cost-saving area for the application of targeted observations to improve El Niño forecast skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander M, Bladé I, Newman M, Lanzante J R, Lau N C, Scott J D. 2002. The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. Journal of Climate, 15(16): 2 205–2 231, https://doi.org/10.1175/1520-0442(2002)015<2205:tabtio>2.0.co;2.

    Google Scholar 

  • Chen D K, Cane M A. 2008. El Niño prediction and predictability. Journal of Computational Physics, 227(7): 3 625–3 640}, https://doi.org/10.1016/j.jcp.2007.05.014.

    Google Scholar 

  • Chen D K, Smith N, Kessler W. 2018. The evolving ENSO observing system. National Science Review, 5(6): 805–807}, {rs https://doi.org/10.1093/nsr/nwy137 DOI}.

    Google Scholar 

  • Chen D K, Zebiak S E, Busalacchi A J, Cane M A. 1995. An improved procedure for EI Niño forecasting: implications for predictability. Science, 269(5231): 1 699–1 702}, https://doi.org/10.1126/science.269.5231.1699.

    Google Scholar 

  • Duan W S, Hu J Y. 2016. The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: results from an earth system model. Climate Dynamics, 46(11-12): 3 599–3 615}, https://doi.org/10.1007/s00382-015-2789-5.

    Google Scholar 

  • Duan W S, Li X Q, Tian B. 2018. Towards optimal observational array for dealing with challenges of El Niño-Southern Oscillation predictions due to diversities of El Niño. Climate Dynamics, 51(9-10): 3 351–3 368}, https://doi.org/10.1007/s00382-018-4082-x.

    Google Scholar 

  • Henderson D S, Kummerow C D, Berg W. 2018. ENSO Influence on TRMM tropical oceanic precipitation characteristics and rain rates. Journal of Climate, 31(10): 3 979–3 998}, https://doi.org/10.1175/jcli-d-17-0276.1.

    Google Scholar 

  • Hurrell J W, Holland M M, Gent P R, Ghan S, Kay J E, Kushner P J, Lamarque J F, Large W G, Lawrence D, Lindsay K, Lipscomb W H, Long M C, Mahowald N, Marsh D R, Neale R B, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins W D, Hack J J, Kiehl J, Marshall S. 2013. The community earth system model: a framework for collaborative research. Bulletin of the American Meteorological Society, 94(9): 1 339–1 360}, https://doi.org/10.1175/BAMS-D-12-00121.1.

    Google Scholar 

  • Izumo T, Lengaigne M, Vialard J, Luo J J, Yamagata T, Madec G. 2014. Influence of Indian Ocean dipole and Pacific recharge on following year’s El Niño: interdecadal robustness. Climate Dynamics, 42(1-2): 291–310}, https://doi.org/10.1007/s00382-012-1628-1.

    Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, Montegut C D B, Behera S K, Luo J J, Cravatte S, Masson S, Yamagata T. 2010. Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nature Geoscience, 3(3): 168–172}, https://doi.org/10.1038/ngeo760.

    Google Scholar 

  • Jin E K, Kinter III J L, Wang B, Park C K, Kang I S, Kirtman B P, KUG J S, Kumar A, LUO J J, Schemm J, Shukla J, Yamagata T. 2008. Current status of ENSO prediction skill in coupled ocean—atmosphere models. Climate Dynamics, 31(6): 647–664}, https://doi.org/10.1007/s00382-008-0397-3.

    Google Scholar 

  • Kirtman B P, Shukla J, Balmaseda M, Graham N, Penland C, Xue Y, Zebiak S. 2002. Current status of ENSO forecast skill: A report to the Climate Variability and Predictability (CLsIVAR) Numerical Experimentation Group (NEG). CLIVAR Working Group on Seasonal to Interannual Prediction.

  • Latif M, Barnett T P, Cane M A, Flugel M, Graham N E, Von Storch H, Xu J S, Zebiak S E. 1994. A review of ENSO prediction studies. Climate Dynamics, 9(4-5): 167–179}, https://doi.org/10.1007/bf00208250.

    Google Scholar 

  • Liu L, Xie S P, Zheng X T, Li T, Du Y, Huang G, Yu W D. 2014. Indian Ocean variability in the CMIP5 multi-model ensemble: the zonal dipole mode. Climate Dynamics, 43(5-6): 1 715–1 730}, https://doi.org/10.1007/s00382-013-2000-9.

    Google Scholar 

  • Luo J J, Masson S, Behera S K, Yamagata T. 2008. Extended ENSO predictions using a fully coupled ocean—atmosphere model. Journal of Climate, 21(1): 84–93}, https://doi.org/10.1175/2007JCLI1412.1.

    Google Scholar 

  • Luo J J, Masson S, Behera S, Shingu S, Yamagata T. 2005. Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. Journal of Climate, 18(21): 4 474–4 497}, https://doi.org/10.1175/JCLI3526.1.

    Google Scholar 

  • Luo J J, Zhang R C, Behera S K, Masumoto Y, F Jin F F, Lukas R, Yamagata T. 2010. Interaction between El Niño and extreme Indian Ocean dipole. Journal of Climate, 23(3): 726–742}, https://doi.org/10.1175/2009jcli3104.1.

    Google Scholar 

  • McPhaden M J, Busalacchi A J, Cheney R, Donguy J R, Gage K S, Halpern D, Ji M, Julian P, Meyers G, Mitchum G T, Niiler P P, Picaut J, Reynolds R W, Smith N, Takeuchi K. 1998. The tropical ocean-global atmosphere observing system: a decade of progress. Journal of Geophysical Research: Oceans, 103(C7): 14 169–14 240}, https://doi.org/10.1029/97JC02906.

    Google Scholar 

  • Moore A M, Kleeman R. 1996. The dynamics of error growth and predictability in a coupled model of ENSO. Quarterly Journal of the Royal Meteorological Society, 122(534): 1 405–1 446}, https://doi.org/10.1002/qj.49712253409.

    Google Scholar 

  • Morss R E, Battisti D S. 2004. Evaluating observing requirements for ENSO prediction: experiments with an intermediate coupled model. Journal of Climate, 17(16): 3 057–3 073, https://doi.org/10.1175/1520-0442(2004)017<3057:EORFEP>2.0.CO;2.

    Google Scholar 

  • Mu M, Duan W S, Chen D K, Yu W D. 2015. Target observations for improving initialization of high-impact ocean-atmospheric environmental events forecasting. National Science Review, 2(2): 226–236}, https://doi.org/10.1093/nsr/nwv021.

    Google Scholar 

  • Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlinear Process in Geophysics, 10(6): 493–501.

    Google Scholar 

  • Mu M, Wang Q, Duan W S, Jiang Z N. 2014. Application of conditional nonlinear optimal perturbation to targeted observation studies of the atmosphere and ocean. Journal of Meteorological Research, 28(5): 923–933, https://doi.org/10.1007/s13351-014-4057-8.

    Google Scholar 

  • Mu M, Xu H, Duan W S. 2007. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-cane model. Geophysical Research Letters, 34} (3): L03709}, https://doi.org/10.1029/2006GL027412.

  • Mu M. 2013. Methods, current status, and prospect of targeted observation. Science China Earth Sciences, 56(12): 1 997–2 005, https://doi.org/10.1007/s11430-013-4727-x.

    Google Scholar 

  • Philander S G H. 1983. El Niño southern oscillation phenomena. Nature, 302(5906): 295–301.

    Google Scholar 

  • Saji N H, Goswami B N, Vinayachandran P N, Yamagata T. 1999. A dipole mode in the tropical Indian Ocean. Nature, 401(6751): 360–363, https://doi.org/10.1038/43854.

    Google Scholar 

  • Snyder C. 1996. Summary of an informal workshop on adaptive observations and FASTEX. Bulletin of the American Meteorological Society, 77(5): 953–961.

    Google Scholar 

  • Song Q, Vecchi G A, Rosati A J. 2007. Indian Ocean variability in the GFDL coupled climate model. Journal of Climate, 20(13): 2 895–2 916, https://doi.org/10.1175/jcli4159.1.

    Google Scholar 

  • Sun S W, Fang Y, Tana, Liu B C. 2014. Dynamical mechanisms for asymmetric SSTA patterns associated with some Indian Ocean Dipoles. Journal of Geophysical Research: Oceans, 119(5): 3 076–3 097, https://doi.org/10.1002/2013jc009651.

    Google Scholar 

  • Tang Y M, Zhang R H, Liu T, Duan W S, Yang D J, Zheng F, Ren H L, Lian T, Gao C, Chen D K, Wu M. 2018. Progress in ENSO prediction and predictability study. National Science Review, 5(6): 826–839, https://doi.org/10.1093/nsr/nwy105.

    Google Scholar 

  • Tippett M K, Barnston A G, Li S H. 2011. Performance of recent multimodel ENSO forecasts. Journal of Applied Meteorology and Climatology, 51(3): 637–654, https://doi.org/10.1175/JAMC-D-11-093.1.

    Google Scholar 

  • Wajsowicz R C. 2004. Climate variability over the tropical Indian Ocean sector in the NSIPP seasonal forecast system. Journal of Climate, 17(24): 4 783–4 804, https://doi.org/10.1175/jcli-3239.1.

    Google Scholar 

  • Wang B, Wu R G, Fu X H. 2000. Pacific-East Asian teleconnection: How Does ENSO affect east Asian Climate? Journal of Climate, 13(9): 1 517–1 536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    Google Scholar 

  • Wang Q, Mu M, Dijkstra H A. 2013. The similarity between optimal precursor and optimally growing initial error in prediction of Kuroshio large meander and its application to targeted observation. Journal of Geophysical Research: Oceans, 118(2): 869–884, https://doi.org/10.1002/jgrc.20084.

    Google Scholar 

  • Webster P J, S Yang. 1992. Monsoon and ENSO: selectively interactive systems. Quarterly Journal of the Royal Meteorological Society, 118(507): 877–926, https://doi.org/10.1002/qj.49711850705.

    Google Scholar 

  • Wu G X, Meng W. 1998. Gearing between the indo-monsoon circulation and the pacific-walker circulation and the ENSO Part I: data analyses. Scientia Atmospherica Sinica, 22(4): 470–480. (in Chinese with English abstract)

    Google Scholar 

  • Yu Y S, Mu M, Duan W S, Gong T T. 2012. Contribution of the location and spatial pattern of initial error to uncertainties in El Niño predictions. Journal of Geophysical Research: Oceans, 117(C6): C06018, https://doi.org/10.1029/2011jc007758.

    Google Scholar 

  • Yuan D L, Wang J, Xu T F, Xu P, Hui Z, Zhao X, Luan Y H, Zheng W P, Yu Y Q. 2011. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian throughflow. Journal of Climate, 24(14): 3 593–3 608, https://doi.org/10.1175/2011JCLI3649.1.

    Google Scholar 

  • Zebiak S E, Cane M A. 1987. A model El Niño Southern Oscillation. Monthly Weather Review, 115(10): 2 262–2 278, https://doi.org/10.1175/1520-0493(1987)115<2262:ameno>2.0.co;2.

    Google Scholar 

  • Zhou Q, Duan W S, Mu M, Feng R. 2015. Influence of positive and negative Indian Ocean dipoles on ENSO via the Indonesian Throughflow: results from sensitivity experiments. Advances in Atmospheric Sciences, 32(6): 783–793, https://doi.org/10.1007/s00376-014-4141-0.

    Google Scholar 

  • Zhou Q, Mu M, Duan W S. 2019. The initial condition errors occurring in the Indian Ocean temperature that cause “spring predictability barrier” for El Niño in the Pacific Ocean. Journal of Geophysical Research: Oceans, 124(2): 1 244–1 261.

    Google Scholar 

  • Zhu J S, Huang B H, Balmaseda M A, Kinter III J L, Peng P T, Hu Z Z, Marx L. 2013. Improved reliability of ENSO hindcasts with multi-ocean analyses ensemble initialization. Climate Dynamics, 41(9-10): 2 785–2 795, https://doi.org/10.1007/s00382-013-1965-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wansuo Duan.

Additional information

Supported by the National Program on Global Change and Air-Sea Interaction (No. GASI-IPOVAI-06), the National Public Benefit (Meteorology) Research Foundation of China (No. GYHY201306018), and the National Natural Science Foundation of China (Nos. 41525017, 41606031, 41706016)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Duan, W. & Hu, J. Exploring sensitive area in the tropical Indian Ocean for El Niño prediction: implication for targeted observation. J. Ocean. Limnol. 38, 1602–1615 (2020). https://doi.org/10.1007/s00343-019-9062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-9062-4

Key word

Navigation