Skip to main content
Log in

A walking and climbing quadruped robot capable of ground-wall transition: design, mobility analysis and gait planning

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

We present WCQR-III, an untethered bioinspired climbing robot capable of versatile locomotion, including ground walking, wall climbing and ground-to-wall transition. Inspired by gecko lizards, WCQR-III features a structure comprising four feet and one tail. The foot design incorporates a switching mechanism to seamlessly transition between walking and climbing modes. A spiny claw provides wall adhesion, while a rubber pad offers friction and cushioning for ground walking. Leveraging the screw theory, we establish a kinematic model to analyze the robot's mobility and transition ability. In the walking mode, a trotting gait is adopted, while the climbing mode introduces a detaching angle, pause, and backswing movement of spiny toes, facilitating easy detachment from surfaces. An offline search algorithm optimizes the motion trajectory. Mobility analysis of different configurations confirms that a crouched posture is necessary for successful ground-to-wall transition. Experimental verification on WCQR-III demonstrates a maximum speed of 0.46 m/s on horizontal ground, 0.23 m/s on vertical walls, and successful achievement of ground-to-wall transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bogue R (2019) Climbing robots: recent research and emerging applications. Ind Rob 46:721–727. https://doi.org/10.1108/IR-08-2019-0154

    Article  Google Scholar 

  2. Fang Y, Wang S, Bi Q et al (2022) Design and technical development of wall-climbing robots: a review. J Bionic Eng 19:877–901. https://doi.org/10.1007/s42235-022-00189-x

    Article  Google Scholar 

  3. Ge D, Tang Y, Ma S et al (2020) A pressing attachment approach for a wall-climbing robot utilizing passive suction cups. Robotics 9:26. https://doi.org/10.3390/robotics9020026

    Article  Google Scholar 

  4. Wu X, Wang C, Hua S (2019) Adaptive extended state observer-based nonsingular terminal sliding mode control for the aircraft skin inspection robot. J Intell Robot Syst 98:721–732. https://doi.org/10.1007/s10846-019-01067-1

    Article  Google Scholar 

  5. Villalpando-Hernandez R, Melendez J and Vargas-Rosales C (2021) Klinbot: low power glass climbing robot. In: Proceedings of the Latin American congress on automation and robotics, pp 208–216. https://doi.org/10.1007/978-3-030-90033-5_23

  6. Tâche F, Fischer W, Caprari G et al (2009) Magnebike: a magnetic wheeled robot with high mobility for inspecting complex-shaped structures. J Field Robot 26:453–476. https://doi.org/10.1002/rob.20296

    Article  Google Scholar 

  7. Nguyen ST, La HM (2021) A climbing robot for steel bridge inspection. J Intell Robot Syst 102:1–21. https://doi.org/10.1007/s10846-020-01266-1

    Article  Google Scholar 

  8. Hong S, Um Y, Park J et al (2022) Agile and versatile climbing on ferromagnetic surfaces with a quadrupedal robot. Sci Robot 7:eadd1017. https://doi.org/10.1126/scirobotics.add1017

    Article  Google Scholar 

  9. Kim S, Asbeck A T, Cutkosky M R, et al (2005) SpinybotII: climbing hard walls with compliant microspines. In: Proceedings of the 12th international conference on advanced robotics, pp 601–606. https://doi.org/10.1109/ICAR.2005.1507470

  10. Xu F, Wang X, Jiang G (2012) Design and analysis of a wall-climbing robot based on a mechanism utilizing hook-like claws. Int J Adv Robot Syst 9:261. https://doi.org/10.5772/53895

    Article  Google Scholar 

  11. Liu Y, Wang L, Niu F et al (2020) A track-type inverted climbing robot with bio-inspired spiny grippers. J Bionic Eng 17:920–931. https://doi.org/10.1007/s42235-020-0093-5

    Article  Google Scholar 

  12. Unver O, Uneri A, Aydemir A et al (2006) Geckobot: a gecko inspired climbing robot using elastomer adhesives. In: Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006, pp 2329–2335. https://doi.org/10.1109/ROBOT.2006.1642050

  13. Kim S, Spenko M, Trujillo S, et al (2007) Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot. In: Proceedings 2007 IEEE international conference on robotics and automation, pp1268–1273. https://doi.org/10.1109/ROBOT.2007.363159

  14. Yu Z, Fu J, Ji Y et al (2022) Design of a variable stiffness gecko-inspired foot and adhesion performance test on flexible surface. Biomimetics 7:125. https://doi.org/10.3390/biomimetics7030125

    Article  Google Scholar 

  15. Zani (2000) The comparative evolution of lizard claw and toe morphology and clinging performance. J Evol Biol 13:316–325. https://doi.org/10.1046/j.1420-9101.2000.00166.x

    Article  Google Scholar 

  16. Russell AP, Stark AY, Higham TE (2019) The integrative biology of gecko adhesion: historical review, current understanding, and grand challenges. Integr Comp Biol 59:101–116. https://doi.org/10.1093/icb/icz032

    Article  Google Scholar 

  17. Thomson TJ, Motani R (2021) Functional morphology of vertebrate claws investigated using functionally based categories and multiple morphological metrics. J Morphol 282:449–471. https://doi.org/10.1002/jmor.21317

    Article  Google Scholar 

  18. Autumn K, Buehler M, Cutkosky M, et al (2005) Robotics in scansorial environments. Unmanned ground vehicle technology VII 5804:291–302. https://doi.org/10.1117/12.606157

  19. Spenko MJ, Haynes GC, Saunders JA et al (2008) Biologically inspired climbing with a hexapedal robot. J Field Robot 25:223–242. https://doi.org/10.1002/rob.20238

    Article  Google Scholar 

  20. Ito K, Ninomiya Y (2020) TAOYAKA V: a multi-legged robot, successfully combining walking and climbing mechanisms. Artif Life Robot 26:97–102. https://doi.org/10.1007/s10015-020-00621-7

    Article  Google Scholar 

  21. Holmes P, Full RJ, Koditschek D et al (2006) The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev 48:207–304. https://doi.org/10.1137/s0036144504445133

    Article  MathSciNet  MATH  Google Scholar 

  22. Haynes G C, Khripin A, Lynch G, et al (2009) Rapid pole climbing with a quadrupedal robot. In: 2009 IEEE international conference on robotics and automation, pp 2767–2772. https://doi.org/10.1109/ROBOT.2009.5152830

  23. Zhu P, Wang W, Wu S, et al (2016) Configuration and trajectory optimization for a Gecko Inspired climbing robot with a Pendular waist. In: 2016 IEEE international conference on robotics and biomimetics (ROBIO), pp1870–1875. https://doi.org/10.1109/ROBIO.2016.7866601

  24. Wang W, Li X, Wu S et al (2017) Effects of pendular waist on gecko’s climbing: dynamic gait, analytical model and bio-inspired robot. J Bionic Eng 14:191–201. https://doi.org/10.1016/s1672-6529(16)60390-6

    Article  Google Scholar 

  25. Ji A, Zhao Z, Manoonpong P et al (2018) A bio-inspired climbing robot with flexible pads and claws. J Bio Eng 15:368–378. https://doi.org/10.1007/s42235-018-0028-6

    Article  Google Scholar 

  26. Goldman DI, Chen TS, Dudek DM et al (2006) Dynamics of rapid vertical climbing in cockroaches reveals a template. J Exp Biol 209:2990–3000. https://doi.org/10.1242/jeb.02322

    Article  Google Scholar 

  27. Schmitt J, Holmes P (2000) Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory Biol Cybern 83:501–515. https://doi.org/10.1007/s004220000181

    Article  MATH  Google Scholar 

  28. Miller B, Clark J, Darnell A (2013) Running in the horizontal plane with a multi-modal dynamical robot. IEEE Int Conf Robot Autom 2013:3335–3341. https://doi.org/10.1109/ICRA.2013.6631042

    Article  Google Scholar 

  29. Austin M P, Brown J M, Young C A, et al (2018) Leg design to enable dynamic running and climbing on bobcat. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3799–3806. https://doi.org/10.1109/IROS.2018.8594355

  30. Zhang Y, Yang D, Yan P et al (2022) Inchworm inspired multimodal soft robots with crawling, climbing, and transitioning locomotion. IEEE Trans Robot 38:1806–1819. https://doi.org/10.1109/tro.2021.3115257

    Article  Google Scholar 

  31. Shi X, Xu L, Xu H et al (2022) A 6-DOF humanoid wall-climbing robot with flexible adsorption feet based on negative pressure suction. Mechatronics 87:102889. https://doi.org/10.1016/j.mechatronics.2022.102889

    Article  Google Scholar 

  32. Son D, Jeon D, Nam WC et al (2010) Gait planning based on kinematics for a quadruped gecko model with redundancy. Robot Auton Syst 58:648–656. https://doi.org/10.1016/j.robot.2009.11.009

    Article  Google Scholar 

  33. Qian J, Gong Z, Zhang Q (2000) Gait programming for multi-legged robot climbing on walls and ceilings. In: International design engineering technical conferences and computers and information in engineering conference, vol 35173, pp 671–679. https://doi.org/10.1115/DETC2000/MECH-14123

  34. Gao Y, Wei W, Wang X et al (2021) Feasibility, planning and control of ground-wall transition for a suctorial hexapod robot. Appl Intell. https://doi.org/10.1007/s10489-020-01955-2

    Article  Google Scholar 

  35. Fang S, Wu X, Zhou W, et al (2022) A three-dimensional force measuring platform with six-degrees of freedom motion directions. In: 2022 IEEE international conference on sensing, diagnostics, prognostics, and control (SDPC), Chongqing, China, 2022, pp 312–317. https://doi.org/10.1109/SDPC55702.2022.9915843

  36. Lynch KM, Park FC (2017) Modern robotics. Cambridge University Press, Cambridge

    Google Scholar 

  37. Kurazume R, Yoneda K, Hirose S (2002) Feedforward and feedback dynamic trot gait control for quadruped walking vehicle. Auton Robot 12:157–172. https://doi.org/10.1023/a:1014045326702

    Article  MATH  Google Scholar 

  38. Spröwitz A, Tuleu A, Vespignani M et al (2013) Towards dynamic trot gait locomotion: design, control, and experiments with Cheetah-cub, a compliant quadruped robot. Int J Robot Res 32:932–950. https://doi.org/10.1177/0278364913489205

    Article  Google Scholar 

  39. Gehring C, Bellicoso C D, Coros S et al (2015) Dynamic trotting on slopes for quadrupedal robots. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 5129–5135. https://doi.org/10.1109/IROS.2015.7354099

  40. Huang Z, Li Q (2002) General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators. Int J Robot Res 21:131–145. https://doi.org/10.1177/027836402760475342

    Article  Google Scholar 

  41. Guo S, Ye W, Qu H et al (2014) A serial of novel four degrees of freedom parallel mechanisms with large rotational workspace. Robotica 34:764–776. https://doi.org/10.1017/s0263574714001842

    Article  Google Scholar 

Download references

Funding

Special key project of technological innovation and application development in Chongqing (Grant no. CSTB2022TIAD-KPX0134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojie Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 21752 kb)

Supplementary file2 (MP4 16434 kb)

Supplementary file3 (MP4 69041 kb)

Supplementary file4 (MP4 61628 kb)

Supplementary file5 (MP4 207840 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Shi, S., Wu, X. et al. A walking and climbing quadruped robot capable of ground-wall transition: design, mobility analysis and gait planning. Intel Serv Robotics 16, 431–451 (2023). https://doi.org/10.1007/s11370-023-00475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-023-00475-5

Keywords

Navigation