Skip to main content
Log in

Fuzzy-backstepping control of quadruped robots

  • Original Research
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

In this paper, fuzzy-backstepping control method is utilized to control quadruped robots. The backstepping control method is inherently a stable control method since its design procedure is based on the Lyapunov stability theory. However, for an acceptable performance of this controller, the feedback gains must be appropriately selected. Using fuzzy systems, these gains are adaptively tuned for best performance of the robot against uncertainties in system parameters, external disturbances, and measurement noises. Next, the stability of the robot is investigated using the Poincaré map stability criterion. This is because the Lyapunov method does not guarantee stability for the periodic systems such as legged robots. The proposed method is simulated on the highly nonlinear equations of a quadruped robot. The performance of the proposed method is compared with the backstepping control to show the importance of fine-tuning the parameters using fuzzy system. The simulating results for a nine-degree-of-freedom quadruped robot show very good performance of the proposed control method, especially against uncertainties in system parameters, external disturbances, and measurement noises, which are common in robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hoffmann M, Simanek J (2017) The merits of passive compliant joints in legged locomotion: fast learning, superior energy efficiency and versatile sensing in a quadruped robot. J Bionic Eng 14(1):1–14

    Article  Google Scholar 

  2. Bououdenand S, Abdessemed F (2014) Walking control for a planar biped robot using 0-flat normal form. Robot Auton Syst 62(1):68–80

    Article  Google Scholar 

  3. Karydis K, Poulakakis I, Tanner HG (2017) A navigation and control strategy for miniature legged robots. IEEE Trans Robot 33(1):214–219

    Article  Google Scholar 

  4. Koo IM, Lee TD, Moon YH, Koo J, Park S, Choi HR (2015) Biologically inspired gait transition control for a quadruped walking robot. Auton Robots 39(2):169–182

    Article  Google Scholar 

  5. Na B, Choi H, Kong K (2015) Design of a direct- driven linear actuator for high-speed quadruped robot, Cheetaroid-I. IEEE/ASME Trans Mechatron 20(2):924–933

    Article  Google Scholar 

  6. Shakourzadeh Sh, Farrokhi M (2016) Optimal gait generation for quadruped robots using mesh adaptive direct search. Int J Math Model Numer Optim 7(1):66–82

    Google Scholar 

  7. Tran DT, Koo IM, Lee YH, Moon H, Park S, Koo JC, Choi HR (2014) Central pattern generator based reflexive control of quadruped walking robots using a recurrect neural network. Robot Auton Syst 62(10):1497–1516

    Article  Google Scholar 

  8. Santos PGD, Garcia E, Estremera J (2008) Quadruped locomotion, 1st edn. Springer, Madrid

    Google Scholar 

  9. Zhou J, Wen C (2008) Adaptive backstepping control of uncertain systems, 1st edn. Springer, Berlin

    MATH  Google Scholar 

  10. Ibari B, Benchikh L, Reda A, Ahmed-Foitih Z (2016) Backstepping approach for autonomous mobile robot trajectory tracking. Indones J Electr Eng Comput Sci IAES 3:478–485

    Google Scholar 

  11. Wu H, Karkoub M, Hwang C (2015) Mixed fuzzy sliding-mode tracking with backstepping formation control for multi-nonholonomic mobile robots subject to uncertainties. J Intell Robot Syst 79(1):73–86

    Article  Google Scholar 

  12. Nikdel N, Badamchizadeh MA, Azimirad V (2017) Adaptive backstepping control for an n-degree of freedom robotic manipulator based combined state augmentation. Robot Comput Integr Manuf 44:129–143

    Article  Google Scholar 

  13. Wang LJ, Chao W, Tong G (2014) Central pattern generator based gait control for planar quadruped robots. J Shanghai Jiaotong Univ (Sci) 19(1):1–10

    Article  Google Scholar 

  14. Chen X, Watanabe K, Kiguchi K, Izumi K (2002) An art-based fuzzy controller for the adaptive navigation of a quadruped robot. IEEE/ASME Trans Mechatron 7(3):318–328

    Article  Google Scholar 

  15. Marhefka DW, Orin DE, Schmiedeler JP, Waldron KJ (2003) Intelligent control of quadruped gallops. IEEE Trans Mechatron 8(4):446–456

    Article  Google Scholar 

  16. Kazemi H, Majd V, Moghaddam M (2013) Modeling and robust backstepping control of an underactuated quadruped robot in bounding motion. Robatica 31(3):423–439

    Article  Google Scholar 

  17. Shaocheng T, Changying L, Yongming L (2009) Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Sets Syst 160(19):2755–2775

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen MY, Lin CS (1995) Measurement of robustness for biped locomotion using linearized Poincaré map. In: IEEE international conference on system, man, and cybernetics: intelligent systems for the 21th century, Vancouver, Canada

  19. Mu X (2004) Dynamics and motion regulation of a five-link biped robot walking in the sagittal plane. Ph.D. thesis, The University of Manitoba, Department of Mechanical and Manufacturing Engineering, Canada

  20. Lewis FL, Abdallah CT, Dawson DN (2004) Control of robot manipulators: theory and practice. Marcel Dekker Inc, New York

    Google Scholar 

  21. Kokotovic PV (1992) The joy of feedback: nonlinear and adaptive. IEEE Control Syst Mag 12(3):7–17

    Article  Google Scholar 

  22. Wang LX (1996) A course in fuzzy systems and control, 2nd edn. Wiley, Hoboken

    Google Scholar 

  23. Grizzle JW, Abba G, Plestan F (2001) Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans Autom Control 46(1):51–64

    Article  MathSciNet  MATH  Google Scholar 

  24. Morris B, Grizzle JW (2009) Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots. IEEE Trans Autom Control 54(8):1751–1764

    Article  MathSciNet  MATH  Google Scholar 

  25. Westervelt E, Grizzle J, Chevallereau C, Choi J, Morris B (2007) Feedback control of dynamic bipedal robot locomotion (control and automation). CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabnam Shakourzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The kinematic equations of the quadruped robot are given below:

$$ \begin{aligned} & x_{{C_{1} }} = d_{1} \sin \theta_{1} ,\,\,y_{{C_{1} }} = d_{1} \cos \theta_{1} \\ & x_{{C_{2} }} = l_{1} \sin \theta_{1} + d_{2} \sin \theta_{2} ,\,\,y_{{C_{2} }} = l_{1} \cos \theta_{1} + d_{2} \cos \theta_{2} \\ & x_{{C_{3} }} = l_{1} \sin \theta_{1} + l_{2} \sin \theta_{2} + (l_{3} - d_{3} )\sin \theta_{3} ,\,y_{{C_{3} }} = l_{1} \cos \theta_{1} + l_{2} \cos \theta_{2} - (l_{3} - d_{3} )\cos \theta_{3} \\ & x_{C4} = l_{1} \sin \theta_{1} + l_{2} \sin \theta_{2} + l_{3} \sin \theta_{3} + (l_{4} - d_{4} )\sin \theta_{4} ,\,y_{{C_{4} }} = l_{1} \cos \theta_{1} + l_{2} \cos \theta_{2} - l_{3} \cos \theta_{3} - (l_{4} - d_{4} )\cos \theta_{4} \\ & x_{{C_{5} }} = d_{5} \sin \theta_{5} ,\,y_{{C_{5} }} = d_{5} \cos \theta_{5} \\ \end{aligned} $$
$$ \begin{aligned} & x_{{C_{6} }} = l_{5} \sin \theta_{5} + d_{6} \sin \theta_{6} ,\,\,\,\,y_{{C_{6} }} = l_{5} \cos \theta_{5} + d_{6} \cos \theta_{6} \\ & x_{{C_{7} }} = l_{5} \sin \theta_{5} + l_{6} \sin \theta_{6} + (l_{7} - d_{7} )\sin \theta_{7} ,\,\,\,\,\,y_{{C_{7} }} = l_{5} \cos \theta_{5} + l_{6} \cos \theta_{6} - (l_{7} - d_{7} )\cos \theta_{7} \\ & x_{{C_{8} }} = l_{5} \sin \theta_{5} + l_{6} \sin \theta_{6} + l_{7} \sin \theta_{7} + (l_{8} - d_{8} )\sin \theta_{8} ,\,\,\,\,\,y_{{C_{8} }} = l_{5} \cos \theta_{5} + l_{6} \cos \theta_{6} - l_{7} \cos \theta_{7} - (l_{8} - d_{8} )\cos \theta_{8} \\ & x_{{C_{9} }} = l_{1} \sin \theta_{1} + l_{2} \sin \theta_{2} + l_{9} \cos \theta_{9} ,\,\,\,\,\,y_{{C_{9} }} = l_{1} \cos \theta_{1} + l_{2} \cos \theta_{2} + l_{9} \sin \theta_{9} \\ \end{aligned} $$

where \( l_{i} \) and \( d_{i} \)(\( i = 1, \ldots ,9 \)) are the length and the half of the length of the ith link, respectively, and \( x_{{c_{i} }} \) and \( y_{{c_{i} }} \) are the xy coordinate of the center of mass of the ith link, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakourzadeh, S., Farrokhi, M. Fuzzy-backstepping control of quadruped robots. Intel Serv Robotics 13, 191–206 (2020). https://doi.org/10.1007/s11370-019-00309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-019-00309-3

Keywords

Navigation