Skip to main content
Log in

Adaptive fuzzy backstepping controller design for uncertain underactuated robotic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the control problem of underactuated systems with mismatched and matched uncertainties is addressed. Adaptive fuzzy backstepping controller is proposed to solve the problem, ensuring the robustness against uncertainties and disturbances. Taking a general class of underactuated robotic systems into account, the nonlinear dynamical equations are first transformed to the so-called cascade form and then, an adaptive-based controller is constructed using the capability of fuzzy logic to tackle the perturbations. From the analytic point of view, the closed loop stability is ensured using the Lyapunov stability theorem. To demonstrate the effectiveness of the method, the proposed controller has been applied to a two-wheeled self-balancing robot with three degrees of freedom, and also to a pendubot with two degrees of freedom. In order to highlight the superiority of the proposed algorithm, the performance is compared with that of an existing robust strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Olfati-Saber, R.: Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles. Massachusetts Institute of Technology, Cambridge (2000)

    Google Scholar 

  2. Spong, M.: Underactuated mechanical systems. Control Probl. Robot. Autom. 230, 135–150 (1998)

  3. Sankaranarayanan, V., Mahindrakar, A.D.: Control of a class of underactuated mechanical systems using sliding modes. IEEE Trans. Robot. 25(2), 459–467 (2009)

    Article  Google Scholar 

  4. Wang, W., Yi, J., Zhao, D., Liu, D.: Design of a stable sliding-mode controller for a class of second-order underactuated systems. In: IEE Proceedings on Control Theory and Applications, pp. 683–690 (2004)

  5. Xu, R., Ozguner, U.: Sliding mode control of a class of underactuated systems. Automatica 44(1), 233–241 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Olfati-Saber, R.: Global configuration stabilization for the VTOL aircraft with strong input coupling. IEEE Trans. Autom. Control 47(11), 1949–1952 (2002)

    Article  MathSciNet  Google Scholar 

  7. Olfati-Saber, R.: Normal forms for underactuated mechanical systems with symmetry. IEEE Trans. Autom. Control 47(2), 305–308 (2002)

    Article  MathSciNet  Google Scholar 

  8. Chen, Y.F., Huang, A.C.: Controller design for a class of underactuated mechanical systems. Control Theory Appl. IET 6(1), 103–110 (2012)

    Article  Google Scholar 

  9. Aloui, S., Pages, O., EL HAJJAJI, A., Chaari, A., Koubaa, Y.: Robust adaptive fuzzy sliding mode control design for a class of MIMO underactuated system. In: IFAC World Congress, Milano, Italy, pp. 11127–11132 (2011)

  10. Ravichandran, M.T., Mahindrakar, A.D.: Robust stabilization of a class of underactuated mechanical systems using time scaling and Lyapunov redesign. IEEE Trans. Ind. Electron. 58(9), 4299–4313 (2011)

    Article  Google Scholar 

  11. Grasser, F., D’Arrigo, A., Colombi, S., Rufer, A.C.: JOE: a mobile, inverted pendulum. IEEE Trans. Ind. Electron. 49(1), 107–114 (2002)

    Article  Google Scholar 

  12. Kulkarni, A., Kumar, A.: Adaptive backstepping control for uncertain underactuated systems with input constraints. Proced. Eng. 38, 1001–1010 (2012)

    Article  Google Scholar 

  13. Tsai, C.C., Huang, H.C., Lin, S.C.: Adaptive neural network control of a self-balancing two-wheeled scooter. IEEE Trans. Ind. Electron. 57(4), 1420–1428 (2010)

    Article  Google Scholar 

  14. Ichida, K., Izumi, K., Watanabe, K., Uchida, N.: Control of three-link underactuated manipulators using a switching method of fuzzy energy regions. Artif. Life Robot. 12(1–2), 258–263 (2008)

    Article  Google Scholar 

  15. Aguilar-Ibez, C., Suarez-Castanon, M.S., Cruz-Corts, N.: Output feedback stabilization of the inverted pendulum system: a Lyapunov approach. Nonlinear Dyn. 70(1), 767–777 (2012)

  16. Ibanez, C.A., Frias, O.G.: Controlling the inverted pendulum by means of a nested saturation function. Nonlinear Dyn. 53(4), 273–280 (2008)

    Article  MATH  Google Scholar 

  17. Chiu, C.H., Peng, Y.F., Lin, Y.W.: Intelligent backstepping control for wheeled inverted pendulum. Expert Syst. Appl. 38(4), 3364–3371 (2011)

    Article  Google Scholar 

  18. Martinez, R., Alvarez, J.: A controller for 2-DOF underactuated mechanical systems with discontinuous friction. Nonlinear Dyn. 53(3), 191–200 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Albahkali, T., Mukherjee, R., Das, T.: Swing-up control of the pendubot: an impulse–momentum approach. IEEE Trans. Robot. 25(4), 975–982 (2009)

    Article  Google Scholar 

  20. Santiesteban, R., Floquet, T., Orlov, Y., Riachy, S., Richard, J.P.: Second-order sliding mode control of underactuated mechanical systems II: Orbital stabilization of an inverted pendulum with application to swing up/balancing control. Int. J. Robust Nonlinear Control 18(4–5), 544–556 (2008)

  21. Wang, J., Rad, A., Chan, P.: Indirect adaptive fuzzy sliding mode control: part I: fuzzy switching. Fuzzy Sets Syst. 122(1), 21–30 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and adaptive control design, vol. 8. Wiley, New York (1995)

    Google Scholar 

  23. Spong, M.W., Block, D.J.: The pendubot: a mechatronic system for control research and education. In Proceedings of 34th IEEE Conference on Decision and Control, pp. 555–556 (1995)

  24. Fantoni, I., Lozano, R., Spong, M.W.: Energy based control of the Pendubot. IEEE Trans. Autom. Control 45(4), 725–729 (2000)

  25. Wang, Z., Guo, Y.: Unified control for Pendubot at four equilibrium points. Control Theory Appl. IET 5(1), 155–163 (2011)

  26. Zhang, M., Tarn, T.-J.: Hybrid control of the Pendubot. IEEE/ASME Trans. Mechatron. 7(1), 79–86 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Koofigar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi, M.M., Koofigar, H.R. Adaptive fuzzy backstepping controller design for uncertain underactuated robotic systems. Nonlinear Dyn 79, 1457–1468 (2015). https://doi.org/10.1007/s11071-014-1753-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1753-y

Keywords

Navigation