Skip to main content
Log in

Influence of biochar on the soil-water retention behavior of compacted loess in man-made earth structures in loess regions

  • Soils, Sec 2 • Global Change, Environmental Risk Assessment, Sustainable Land Use • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to investigate the influence of apple tree biochar on the soil water retention curve (SWRC) of compacted loess, which is increasingly used in man-made earth structures in loess regions. Additionally, we aimed to elucidate the underlying mechanisms from both physicochemical and microstructural perspectives and propose potential directions for future research.

Materials and method

Compacted biochar-amended loess (BAL) specimens with different biochar contents, dry densities or molding water contents were prepared, and their SWRCs were determined. Besides, the hydrophilicity, minerals, functional groups, structure and pore-size distribution (PSD) of loess, biochar and BALs were characterized for exploring the mechanisms by which biochar modifies the SWRC of loess.

Results and discussion

The addition of biochar significantly improves the water retention capacity of compacted loess. With the increase of biochar content, both the saturated water content and air-entry value (AEV) increase, and the desaturation rate slightly increases. The influence of molding water content and dry density on the SWRC of BAL is similar to that on the SWRC of compacted loess.

Conclusions

On the one hand, the apple tree biochar studied is highly hydrophilic due to the presence of abundant oxygen-containing functional groups and negative charges on its surfaces, thus significantly enhancing the soil wettability. On the other hand, the biochar addition increases the volume of inter-aggregate pores and changes the type and size of aggregates, aggregates with a wide range of sizes are arranged more closely in BAL. Therefore, the soil water retention capacity and drainage capacity are improved. This study provides a theoretical basis for the applications of biochar in geotechnical or geo-environmental engineering in loess regions, however, further investigations are imperative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, PL, upon reasonable request.

References

  • Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202:183–191

    Article  ADS  Google Scholar 

  • Al-Wabel MI, Al-Omran E, El-Naggar AH, Nadeem M, Usman ARA (2013) Pyrolysis temperature induced changes in characteristic and chemical composition of biochar produced from conocarpus wastes. Bioresource Technol 131:374–379

    Article  CAS  Google Scholar 

  • Alghamdi AG, Alkhasha A, Ibrahim HM (2020) Effect of biochar particle size on water retention and availability in a sandy loam soil. J Saudi Chem Soc 24(12):1042–1050

    Article  CAS  Google Scholar 

  • Anand A, Kumar V, Kaushal P (2022) Biochar and its twin benefits: Crop residue management and climate change mitigation in India. Renew Sust Energ Rev 156:111959

    Article  CAS  Google Scholar 

  • Andrenelli MC, Maienza A, Genesio L, Miglietta F, Pellegrini S, Vaccari FP, Vignozzi N (2016) Field application of pelletized biochar: short term effect on the hydrological properties of a silty clay loam soil. Agr Water Manage 163:190–196

    Article  Google Scholar 

  • ASTM D698-12 (2012) Standard test methods for laboratory compaction characteristics of soil using standard effort. Annu B ASTM Stand

  • ASTM (2013) Annual book of ASTM standards. ASTM International, West Conshohocken, Pa

  • Bansal RC, Donnet JB, Stoeckli F (1988) Active Carbon. Marcel Decker. Inc., New York, p 482

    Google Scholar 

  • Bordoloi S, Garg A, Sreedeep S, Lin P, Mei G (2018) Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth. Bioresource Technol 263:665–677

    Article  CAS  Google Scholar 

  • Castellini M, Giglio L, Niedda M, Palumbo AD, Ventrella D (2015) Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil till Res 154:1–13

    Article  Google Scholar 

  • Chen W, Meng J, Han X, Lan Y, Zhang W (2019) Past, present, and future of biochar. Biochar 1:75–87

    Article  ADS  Google Scholar 

  • Chen X, Duan M, Zhou B, Cui L (2022a) Effects of biochar nanoparticles as a soil amendment on the structure and hydraulic characteristics of a sandy loam soil. Soil Use Manage 38(1):836–849

    Article  CAS  Google Scholar 

  • Chen XW, Wong JTF, Ng CWW, Wong MH (2016) Feasibility of biochar application on a landfill final cover—a review on balancing ecology and shallow slope stability. Environ Sci Pollut R 23:7111–7125

    Article  CAS  Google Scholar 

  • Chen XW, Wong JTF, Chen ZT, Tang TWL, Guo HW, Leung AOW et al (2018) Effects of biochar on the ecological performance of a subtropical landfill. Sci Total Environ 644:963–975

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chen Z, Kamchoom V, Apriyono A, Chen R, Chen C (2022b) Laboratory study of water infiltration and evaporation in biochar-amended landfill covers under extreme climate. Waste Manage 153:323–334

    Article  CAS  Google Scholar 

  • China Statistical Yearbook (2020) National Bureau of Statistics of China Online Database. http://www.stats.gov.cn/tjsj/ndsj/2020/indexch.htm

  • Chintala R, Mollinedo J, Schumacher TE, Malo DD, Julson JL (2014) Effect of biochar on chemical properties of acidic soil. Arch Agron Soil Sci 60(3):393–404

    Article  CAS  Google Scholar 

  • Das O, Sarmah AK (2015) The love–hate relationship of pyrolysis biochar and water: a perspective. Sci Total Environ 512:682–685

    Article  ADS  PubMed  Google Scholar 

  • Edeh IG, Mašek O, Buss W (2020) A meta-analysis on biochar’s effects on soil water properties–New insights and future research challenges. Sci Total Environ 714:136857

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fan M, Li C, Shao Y, Zhang S, Gholizadeh M, Hu X (2022) Pyrolysis of cellulose: Correlation of hydrophilicity with evolution of functionality of biochar. Sci Total Environ 825:153959

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fredlund DG, Rahardjo H, Fredlund MD (2012) Unsaturated soil mechanics in engineering practice. John Wiley Sons. Hoboken, United States

  • Garg A, Huang H, Cai WL, Reddy NG, Chen PN, Han YF, Kamchoom V, Gaurav S, Zhu HH (2021) Influence of soil density on gas permeability and water retention in soils amended with in-house produced biochar. J Rock Mech Geotech 13(3):593–602

    Article  Google Scholar 

  • Gluba Ł, Rafalska-Przysucha A, Szewczak K, Łukowski M, Szlązak R, Vitková J, Kobyłecki R et al (2021) Effect of fine size-fractionated sunflower husk biochar on water retention properties of arable sandy soil. Materials 14(6):1335

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agr Ecosyst Environ 206:46–59

    Article  CAS  Google Scholar 

  • Guo H, Zhang Q, Chen Y, Lu H (2023) Effects of biochar on plant growth and hydro-chemical properties of recycled concrete aggregate. Sci Total Environ 882:163557

    Article  ADS  CAS  PubMed  Google Scholar 

  • Han F, Ren L, Zhang XC (2016) Effect of biochar on the soil nutrients about different grasslands in the Loess Plateau. Catena 137:554–562

  • Han JL, Zhang AF, Kang YH, Han JQ, Yang B, Hussain Q, Wang XD, Zhang M, Khan MA (2022) Biochar promotes soil organic carbon sequestration and reduces net global warming potential in apple orchard: A two-year study in the Loess Plateau of China. Sci Total Environ 803:150035

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hardie M, Clothier B, Bound S, Oliver G, Close D (2014) Does biochar influence soil physical properties and soil water availability? Plant Soil 376:347–361

    Article  CAS  Google Scholar 

  • He Z, Cao H, Liang J, Hu Q, Zhang Y, Nan X, Zhijun L (2022) Effects of biochar particle size on sorption and desorption behavior of NH4+-N. Ind Crop Prod 189:115837

    Article  CAS  Google Scholar 

  • Hewage SA, Roksana K, Tang CS, Zhuo Z, Zhu C (2023) Evaluation of cracking in biochar-amended clayey soil under freeze–thaw cycles. Transport Res Rec 2677(9):683–699

    Article  Google Scholar 

  • Hou X, Qi S, Li T, Guo S, Wang Y, Li Y, Zhang L (2020) Microstructure and soil-water retention behavior of compacted and intact silt loess. Eng Geol 277:105814

    Article  Google Scholar 

  • Huang H, Reddy NG, Huang XL, Chen PN, Wang PY, Zhang YT, Huang YX, Lin P, Garg A (2021) Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Sci Rep-UK 11(1):7419

    Article  ADS  CAS  Google Scholar 

  • Huovila A, Siikavirta H, Rozado CA, Rökman J, Tuominen P, Paiho S, Hedman Å, Ylén P (2022) Carbon-neutral cities: Critical review of theory and practice. J Clean Prod 341:130912

  • Hussain R, Bordoloi S, Gupta P, Garg A, Ravi K, Sreedeep S, Sahoo L (2020a) Effect of biochar type on infiltration, water retention and desiccation crack potential of a silty sand. Biochar 2:465–478

    Article  ADS  Google Scholar 

  • Hussain R, Ravi K (2022) Investigating biochar-amended soil as a potential lightweight material for embankments. Ecol Eng 180:106645

    Article  Google Scholar 

  • Hussain R, Ravi K, Garg A (2020b) Influence of biochar on the soil water retention characteristics (SWRC): Potential application in geotechnical engineering structures. Soil till Res 204:104713

    Article  Google Scholar 

  • Hyväluoma J, Kulju S, Hannula M, Wikberg H, Källi A, Rasa K (2018) Quantitative characterization of pore structure of several biochars with 3D imaging. Environ Sci Pollut R 25:25648–25658

    Article  Google Scholar 

  • IEA (2023) CO2 Emissions in 2022, IEA, Paris. https://www.iea.org/reports/co2-emissions-in-2022, License: CC BY 4.0

  • Igalavithana AD, Mandal S, Niazi NK, Vithanage M, Parikh SJ, Mukome FN et al (2017) Advances and future directions of biochar characterization methods and applications. Crit Rev Env Sci Tec 47(23):2275–2330

    Article  CAS  Google Scholar 

  • Ippolito JA, Cui L, Kammann C, Wrage-Mönnig N, Estavillo JM, Fuertes-Mendizabal T et al (2020) Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar 2:421–438

    Article  ADS  Google Scholar 

  • Jeffery S, Meinders MB, Stoof CR, Bezemer TM, van de Voorde TF, Mommer L, van Groenigen JW (2015) Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 251:47–54

    Article  ADS  Google Scholar 

  • Jiang Y, Chen W, Wang G, Sun G, Zhang F (2017) Influence of initial dry density and water content on the soil-water characteristic curve and suction stress of a reconstituted loess soil. B Eng Geol Environ 76:1085–1095

  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J et al (2010) An investigation into the reactions of biochar in soil. Soil Res 48(7):501–515

    Article  CAS  Google Scholar 

  • Kameyama K, Miyamoto T, Iwata Y, Shiono T (2016) Effects of biochar produced from sugarcane bagasse at different pyrolysis temperatures on water retention of a calcaric dark red soil. Soil Sci 181(1):20–28

    Article  ADS  CAS  Google Scholar 

  • Keiluweit M, Kleber M (2009) Molecular-level interactions in soils and sediments: the role of aromatic π-systems. Environ Sci Technol 43(10):3421–3429

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kim P, Johnson A, Edmunds CW, Radosevich M, Vogt F, Rials TG, Labbé N (2011) Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy Fuels 25(10):4693–4703

    Article  CAS  Google Scholar 

  • Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24

    Article  Google Scholar 

  • Kocsis T, Ringer M, Biró B (2022) Characteristics and applications of biochar in soil–plant systems: A short review of benefits and potential drawbacks. Appl Sci 12(8):4051

    Article  CAS  Google Scholar 

  • Lee JW, Kidder M, Evans BR, Paik S, Buchanan Iii AC, Garten CT, Brown RC (2010) Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44(20):7970–7974

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387

    Article  Google Scholar 

  • Lehmann J, Joseph S (Eds.) (2015) Biochar for environmental management: science, technology and implementation. Routledge

  • Lei O, Zhang R (2013) Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J Soil Sediment 13:1561–1572

    Article  CAS  Google Scholar 

  • Li P, Li TL, Vanapalli SK (2018) Prediction of soil-water characteristic curve for Malan loess in Loess Plateau of China. J Cent South Univ 25(2):432–447

  • Li P, Pan Z, Xiao T, Wang J (2023) Effects of molding water content and compaction degree on the microstructure and permeability of compacted loess. Acta Geotech 18(2):921–936

    Article  CAS  Google Scholar 

  • Li P, Shao S, Vanapalli SK (2020a) Characterizing and modeling the pore-size distribution evolution of a compacted loess during consolidation and shearing. J Soil Sediment 20:2855–2867

    Article  CAS  Google Scholar 

  • Li YY, Feng G, Tewolde H, Yang M, Zhang F (2020b) Soil, biochar, and nitrogen loss to runoff from loess soil amended with biochar under simulated rainfall. J Hydrol 591:125318

    Article  CAS  Google Scholar 

  • Lian F, Huang F, Chen W, Xing B, Zhu LY (2011) Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single-and bi-solute systems. Environ Pollut 159(4):850–857

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Munroe P, Joseph S, Henderson R, Ziolkowski A (2012) Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87(2):151–157

    Article  ADS  CAS  PubMed  Google Scholar 

  • Liu C, Wang HL, Tang XY, Guan Z, Reid BJ, Rajapaksha AU et al (2016) Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China. Environ Sci Pollut R 23:995–1006

    Article  CAS  Google Scholar 

  • Liu Z, Ogunmokun FA, Wallach R (2022) Does biochar affect soil wettability and flow pattern? Geoderma 417:115826

    Article  ADS  CAS  Google Scholar 

  • Lu S, Zong Y (2018) Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions. Environ Sci Pollut R 25:30401–30409

    Article  CAS  Google Scholar 

  • Lu Y, Gu K, Shen Z, Tang CS, Shi B, Zhou Q (2023) Biochar implications for the engineering properties of soils: A review. Sci Total Environ 164185

  • Lu Y, Gu K, Zhang Y, Tang C, Shen Z, Shi B (2021) Impact of biochar on the desiccation cracking behavior of silty clay and its mechanisms. Sci Total Environ 794:148608

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y et al (2013) The plant vascular system: evolution, development and functions f. J Integr Plant Biol 55(4):294–388

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Yang J, Chen W, Han F (2020) Effect of biochar on soil properties on the Loess Plateau: Results from field experiments. Geoderma 369:114323

    Article  ADS  CAS  Google Scholar 

  • Mallapaty S (2020) How China could be carbon neutral by mid-century. Nature 586(7830):482–483

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mao J, Zhang K, Chen B (2019) Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Environ Pollut 253:779–789

    Article  CAS  PubMed  Google Scholar 

  • Mollinedo J, Schumacher TE, Chintala R (2015) Influence of feedstocks and pyrolysis on biochar’s capacity to modify soil water retention characteristics. J Anal Appl Pyrol 114:100–108

    Article  CAS  Google Scholar 

  • Ng CWW, Sadeghi H, Hossen SB, Chiu CF, Alonso EE, Baghbanrezvan S (2016) Water retention and volumetric characteristics of intact and re-compacted loess. Can Geotech J 53(8):1258–1269

    Article  Google Scholar 

  • Ng CWW, Liao JX, Bordoloi S (2022) Relationship between matric suction and leaf indices of Schefflera arboricola in biochar amended soil. Canadian Geotech J 59(2):191–202

    Article  CAS  Google Scholar 

  • Ni JJ, Chen XW, Ng CWW, Guo HW (2018) Effects of biochar on water retention and matric suction of vegetated soil. Géotech Lett 8(2):124–129

  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, Schomberg H (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:195–206

    CAS  Google Scholar 

  • Ouyang L, Wang F, Tang J, Yu L, Zhang R (2013) Effects of biochar amendment on soil aggregates and hydraulic properties. J Soil Sci Plant Nut 13(4):991–1002

    Google Scholar 

  • Palansooriya KN, Wong JTF, Hashimoto Y, Huang L, Rinklebe J, Chang SX, Bolan N, Wang H, Ok YS (2019) Response of microbial communities to biochar-amended soils: a critical review. Biochar 1:3–22

    Article  ADS  Google Scholar 

  • Park SW, Kug JS (2022) A decline in atmospheric CO2 levels under negative emissions may enhance carbon retention in the terrestrial biosphere. Commun Earth Environ 3(1):289

    Article  ADS  Google Scholar 

  • Puspanathan TK, Jayawardane VS, Paul SC, Ying KS, Shukla SK, Anggraini V (2022) Effect of biochar on desiccation of marine soils under constant and cyclic temperatures. Acta Geotech 17(12):5441–5464

    Article  Google Scholar 

  • Rasa K, Heikkinen J, Hannula M, Arstila K, Kulju S, Hyväluoma J (2018) How and why does willow biochar increase a clay soil water retention capacity? Biomass Bioenerg 119:346–353

    Article  CAS  Google Scholar 

  • Reddy KR, Yaghoubi P, Yukselen-Aksoy Y (2015) Effects of biochar amendment on geotechnical properties of landfill cover soil. Waste Manage Res 33(6):524–532

    Article  CAS  Google Scholar 

  • Romero E, Gens A, Lloret A (1999) Water permeability, water retention and microstructure of unsaturated compacted Boom clay. Eng Geol 54(1–2):117–127

    Article  Google Scholar 

  • Su CC, Ma JF, Chen YP (2019) Biochar can improve the soil quality of new creation farmland on the Loess Plateau. Environ Sci Pollut R 26:2662–2670

    Article  CAS  Google Scholar 

  • Suliman W, Harsh JB, Abu-Lail NI, Fortuna AM, Dallmeyer I, Garcia-Pérez M (2017) The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci Total Environ 574:139–147

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sun F, Lu S (2014) Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J Plant Nutr Soil Sc 177(1):26–33

    Article  Google Scholar 

  • Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tan Z, Yuan S, Hong M, Zhang L, Huang Q (2020) Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd. J Hazard Mater 384:121370

    Article  CAS  PubMed  Google Scholar 

  • Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19:191–215

    Article  CAS  Google Scholar 

  • Turunen M, Hyväluoma J, Heikkinen J, Keskinen R, Kaseva J, Hannula M, Rasa K (2020) Quantifying the pore structure of different biochars and their impacts on the water retention properties of Sphagnum moss growing media. Biosyst Eng 191:96–106

    Article  Google Scholar 

  • Uzoma KC, Inoue M, Andry H, Zahoor A, Nishihara E (2011) Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J Food Agric Environ 1137–1143

  • Vander Spoel D, Van Maaren PJ, Larsson P, Timneanu N (2006) Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media. J Phys Chem B 110:4393–4398

    Article  CAS  Google Scholar 

  • Vijayaraghavan K (2021) The importance of mineral ingredients in biochar production, properties and applications. Crit Rev Env Sci Tec 51(2):113–139

    Article  CAS  Google Scholar 

  • Wang H, Garg A, Huang S, Mei G (2020) Mechanism of compacted biochar-amended expansive clay subjected to drying–wetting cycles: Simultaneous investigation of hydraulic and mechanical properties. Acta Geophys 68:737–749

    Article  ADS  Google Scholar 

  • Wang J, Wang S (2019) Preparation, modification and environmental application of biochar: A review. J Clean Prod 227:1002–1022

    Article  CAS  Google Scholar 

  • Washburn RM (1921) What is a Fair Standard for Ice Cream? J Dairy Sci 4(3):231–239

    Article  CAS  Google Scholar 

  • Williams JH, Jones RA, Haley B, Kwok G, Hargreaves J, Farbes J, Torn MS (2021) Carbon‐neutral pathways for the United States. AGU ADV 2(1):e2020AV000284

  • Wong JTF, Chow KL, Chen XW, Ng CWW, Wong MH (2022) Effects of biochar on soil water retention curves of compacted clay during wetting and drying. Biochar 4(1):1–14

    Article  ADS  CAS  Google Scholar 

  • Wong JTF, Chen Z, Chen X, Ng CWW, Wong MH (2017) Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material. J Soil Sediment 17:590–598

    Article  Google Scholar 

  • Wong JTF, Chen Z, Wong AYY, Ng CWW, Wong MH (2018) Effects of biochar on hydraulic conductivity of compacted kaolin clay. Environ Pollut 234:468–472

    Article  CAS  PubMed  Google Scholar 

  • Xiao T, Li P, Pan ZH, Hou YF, Wang JD (2022) Relationship between water retention capacity and pore-size distribution of compacted loess. J Soil Sediment 1–15

  • Xu P, Qian H, Chen J, Wang L, Abliz X, He X, Ma G, Liu Y (2023a) New insights into microstructure evolution mechanism of compacted loess and its engineering implications. Bull Eng Geol Environ 82(1):36

  • Xu P, Qian H, Li S, Li W, Chen J, Liu Y (2023b) Geochemical evidence of fluoride behavior in loess and its influence on seepage characteristics: An experimental study. Sci Total Environ 882:163564

    Article  ADS  CAS  PubMed  Google Scholar 

  • Xu X, Zhao Y, Sima J, Zhao L, Mašek O, Cao X (2017) Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresource Technol 241:887–899

    Article  CAS  Google Scholar 

  • Yang F, Zhao L, Gao B, Xu X, Cao X (2016) The interfacial behavior between biochar and soil minerals and its effect on biochar stability. Environ Sci Technol 50(5):2264–2271

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yi S, Chang NY, Imhoff PT (2020) Predicting water retention of biochar-amended soil from independent measurements of biochar and soil properties. Adv Water Resour 142:103638

    Article  CAS  Google Scholar 

  • Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technol 102(3):3488–3497

    Article  CAS  Google Scholar 

  • Zapata CE, Houston WN, Houston SL, Walsh KD (2000) Soil-water characteristic curve variability. In: Shackelford, C.D., Houston, S.L., Chang, N.-Y. (Eds.), Advances in Unsaturated Geotechnics (GSP 99), Proceedings of the GeoDenver Conference, Denver, Colo., 5–8 August 2000. American Society of Civil Engineers, Reston, Va, pp. 84–124

  • Zhang YF, Wang JM, Feng Y (2021) The effects of biochar addition on soil physicochemical properties: A review. Catena 202:105284

    Article  CAS  Google Scholar 

  • Zhang YP, Gu K, Li JW, Tang CS, Shen ZT, Shi B (2020) Effect of biochar on desiccation cracking characteristics of clayey soils. Geoderma 364:114182

    Article  ADS  CAS  Google Scholar 

  • Zhao L, Cao X, Zheng W, Wang Q, Yang F (2015) Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar. Chemosphere 136:133–139

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zong Y, Xiao Q, Lu S (2016) Acidity, water retention, and mechanical physical quality of a strongly acidic Ultisol amended with biochars derived from different feedstocks. J Soil Sediment 16:177–190

    Article  Google Scholar 

Download references

Acknowledgements

Additional thank is given to Dr. Xiao Tao and six anonymous Reviewers for their valuable comments and suggestions.

Funding

This work was funded by the National Natural Science Foundation of China (42007251, 42027806).

Author information

Authors and Affiliations

Authors

Contributions

Liang Sun: Investigation, figure preparation, and manuscript writing. Ping Li: Idea proposing, analyzing, manuscript writing & revision, supervision. Wenbin Fei: Revision, discussion. Jiading Wang: Supervision.

Corresponding author

Correspondence to Ping Li.

Ethics declarations

Competing interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible editor: Mohammad Valipour

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Li, P., Fei, W. et al. Influence of biochar on the soil-water retention behavior of compacted loess in man-made earth structures in loess regions. J Soils Sediments 24, 1103–1123 (2024). https://doi.org/10.1007/s11368-023-03701-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-023-03701-w

Keywords

Navigation