Skip to main content
Log in

Effect of biochar incorporation on phosphorus supplementation and availability in soil: a review

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Phosphorus (P) retrieval from crop residues has attracted significant attention in sustainable management of P resources. Biochar has the potential to enhance soil P availability and enlarge P pools. However, only few reviews have been reported on the factors and mechanisms of the effect of biochar on replenishing soil P and improving P availability.

Materials and methods

The current studies on biochar effects on improving soil P level, as well as the underlying factors and mechanisms were reviewed.

Results and discussion

Biomass (especially livestock manure and municipal sewage) derived biochar contains abundant nutrients and, hence, can directly increase soil available P levels. Most of the amended biochar could change soil physical and chemical properties, such as soil porous structure, pH, cation exchange capacity, and adsorption potential toward P. These variations are associated with P forms and availability in soil matrix. Moreover, soil biota and phosphatase, which increased in the presence of biochar, could solubilize insoluble inorganic P and mineralize organic P, thus enhancing P availability. However, the efficiency of biochar is governed by the properties of biochar and amended soil, and cultivation strategies.

Conclusions

Studies illustrating the available P sources in biochar-amended soil, quantifying the contribution of biochar-amended soil microorganisms in improving P level, enhancing the slow-release potential of biochar formulations, and inspecting the effects against comprehensive long-term field analyses are considered to expand our knowledge on the effect of biochar amendment on P supplementation and availability in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdala DB, Ghosh AK, da Silva IR, de Novais RF, Alvarez Venegas VH (2012) Phosphorus saturation of a tropical soil and related P leaching caused by poultry litter addition. Agr Ecosyst Environ 162:15–23

    Article  CAS  Google Scholar 

  • Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202–203:183–191

    Article  Google Scholar 

  • Akter J, Islam MA, Kibria KQ, Islam MA (2021) Adsorption of phosphate ions on chicken feather hydrochar and hydrochar-soil mixtures. Water Air Soil Poll 232(10):413

    Article  CAS  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  Google Scholar 

  • Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman ARA (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131:374–379

    Article  CAS  Google Scholar 

  • Amonette JE, Joseph S (2012) Characteristics of biochar: microchemical properties. Biochar for environmental management. Routledge, pp 65–84

  • An N, Zhang L, Liu YX, Shen S, Li N, Wu ZC, Yang JF, Han W, Han XR (2022) Biochar application with reduced chemical fertilizers improves soil pore structure and rice productivity. Chemosphere 298:134304

    Article  CAS  Google Scholar 

  • Antelo J, Avena M, Fiol S, Lopez R, Arce F (2005) Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface. J Colloid Interf Sci 285(2):476–486

    Article  CAS  Google Scholar 

  • Bailey VL, Fansler SJ, Smith JL, Bolton H (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol Biochem 43(2):296–301

    Article  CAS  Google Scholar 

  • Baronti S, Alberti G, Vedove GD, Gennaro FD, Fellet G, Genesio L, Miglietta F, Peressotti A, Vaccari FP (2010) The biochar option to improve plant yields: first results from some field and pot experiments in Italy. Ital J Agron 5(1):3–12

    Article  Google Scholar 

  • Bruun S, Harmer SL, Bekiaris G, Christel W, Zuin L, Hu Y, Jensen LS, Lombi E (2017) The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure. Chemosphere 169:377–386

    Article  CAS  Google Scholar 

  • Cao D, Chen W, Yang P, Lan Y, Sun D (2020) Spatio-temporal variabilities of soil phosphorus pool and phosphorus uptake with maize stover biochar amendment for 5 years of maize. Environ Sci Pollut R Int 27(29):36350–36361

    Article  CAS  Google Scholar 

  • Cao D, Lan Y, Sun Q, Yang X, Chen W, Meng J, Wang D, Li N (2021) Maize straw and its biochar affect phosphorus distribution in soil aggregates and are beneficial for improving phosphorus availability along the soil profile. Eur J Soil Sci 2165–2179

  • Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technol 101(14):5222–52288

    Article  CAS  Google Scholar 

  • Ch'ng HY, Ahmed OH, Ab Majid NM (2014) Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. Sci World J 6

  • Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technol 102(2):716–723

    Article  CAS  Google Scholar 

  • Chen J, van Groenigen KJ, Hungate BA, Terrer C, van Groenigen JW, Maestre FT, Ying SC, Luo YQ, Jorgensen U, Sinsabaugh RL, Olesen JE, Elsgaard L (2020) Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Glob Change Biol 26(9):5077–5086

    Article  Google Scholar 

  • Chintala R, Schumacher TE, McDonald LM, Clay DE, Malo DD, Papiernik SK, Clay SA, Julson JL (2014) Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean-Soil, Air, Water 42(5):626–634

    Article  CAS  Google Scholar 

  • Colvan SR, Syers JK, O’Donnell AG (2001) Effect of long-term fertiliser use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland. Biol Fert Soils 34(4):258–263

    Article  CAS  Google Scholar 

  • Cui HJ, Wang MK, Fu ML, Ci E (2011) Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J Soil Sediment 11(7):1135–1141

    Article  CAS  Google Scholar 

  • Dawson CJ, Hilton J (2011) Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy 36:14–22

    Article  Google Scholar 

  • de Jager M, Giani L (2021) An investigation of the effects of hydrochar application rate on soil amelioration and plant growth in three diverse soils. Biochar 3(3):349–365

    Article  Google Scholar 

  • DeLuca TH, Gundale MJ, MacKenzie MD, Jones DL (2015) Biochar effects on soil nutrient transformations. Biochar for Environmental Management. Routledge

  • Dong Y, Wang H, Chang E, Zhao ZJ, Wang RH, Xu RK, Jiang J (2019) Alleviation of aluminum phytotoxicity by canola straw biochars varied with their cultivating soils through an investigation of wheat seedling root elongation. Chemosphere 218:907–914

    Article  CAS  Google Scholar 

  • Dong Y, Yu YC, Wang RH, Chang E, Hong ZN, Hua H, Liu H, Jiang J, Xu RK (2022) Insights on mechanisms of aluminum phytotoxicity mitigation by canola straw biochars from different regions. Biochar. https://doi.org/10.1007/s42773-022-00179-6

    Article  Google Scholar 

  • Eduah JO, Nartey EK, Abekoe MK, Breuning-Madsen H, Andersen MN (2019) Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures. Geoderma 341:10–17

    Article  CAS  Google Scholar 

  • Foster EJ, Hansen N, Wallenstein M, Cotrufo MF (2016) Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agr Ecosyst Environ 233:404–414

    Article  Google Scholar 

  • Gaskin JW, Steiner C, Harris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans Asabe 51:2061–2069

    Article  Google Scholar 

  • Gerdelidani AF, Hosseini HM (2018) Effects of sugar cane bagasse biochar and spent mushroom compost on phosphorus fractionation in calcareous soils. Soil Res 56(2):136–144

    Article  CAS  Google Scholar 

  • Glaser B, Lehr VI (2019) Biochar effects on phosphorus availability in agricultural soils: a meta-analysis. Sci Rep-UK 9:9338

    Article  Google Scholar 

  • Gonzaga MIS, Santos JCD, de Almeida AQ, da Ros K, Santos WM (2022) Nitrogen and phosphorus availability in the rhizosphere of maize plants cultivated in biochar amended soil. Arch Agron Soil Sci 68(8):1062–1074

    Article  CAS  Google Scholar 

  • Hammer EC, Balogh-Brunstad Z, Jakobsen I, Olsson PA, Stipp SLS, Rillig MC (2014) A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol Biochem 77:252–260

    Article  CAS  Google Scholar 

  • Han F, Ren L, Zhang XC (2016) Effect of biochar on the soil nutrients about different grasslands in the Loess Plateau. CATENA 137:554–562

    Article  CAS  Google Scholar 

  • Han Y, Choi B, Chen XW (2018) Adsorption and desorption of phosphorus in biochar-amended black soil as affected by freeze-thaw cycles in northeast China. Sustainability 10:1574

    Article  Google Scholar 

  • He J, Jin Y, Du YL, Wang T, Turner NC, Yang RP, Siddique KHM, Li FM (2017) Genotypic variation in yield, yield components, root morphology and architecture, in soybean in relation to water and phosphorus supply. Front Plant Sci 8:1499

    Article  Google Scholar 

  • Hong C, Lu S (2018) Does biochar affect the availability and chemical fractionation of phosphate in soils? Environ Sci Pollut R Int 25(9):8725–8734

    Article  CAS  Google Scholar 

  • Hosseini SH, Liang X, Niyungeko C, Miaomiao H, Li F, Khan S, Eltohamy KM (2019) Effect of sheep manure-derived biochar on colloidal phosphorus release in soils from various land uses. Environ Sci Pollut R Int 26(36):36367–36379

    Article  CAS  Google Scholar 

  • Hu YL, Chen J, Hui DF, Wang YP, Li JL, Chen JW, Chen GY, Zhu YR, Zhang LY, Zhang DQ, Deng Q (2022) Mycorrhizal fungi alleviate acidification-induced phosphorus limitation: evidence from a decade-long field experiment of simulated acid deposition in a tropical forest in south China. Glob Change Biol 28(11):3605–3619

    Article  CAS  Google Scholar 

  • Jiang BS, Shen JL, Sun MH, Hu YJ, Jiang WQ, Wang J, Li Y, Wu JS (2021) Soil phosphorus availability and rice phosphorus uptake in paddy fields under various agronomic practices. Pedosphere 31(1):103–115

    Article  CAS  Google Scholar 

  • Jiang J, Xu RK, Jiang TY, Li Z (2012) Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater 229:145–150

    Article  Google Scholar 

  • Jiang J, Yuan M, Xu RK, Bish DL (2015) Mobilization of phosphate in variable-charge soils amended with biochars derived from crop straws. Soil till Res 146:139–147

    Article  Google Scholar 

  • Jin Y, Liang X, He M, Liu Y, Tian G, Shi J (2016) Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: a microcosm incubation study. Chemosphere 142:128–135

    Article  CAS  Google Scholar 

  • Johnston AE, Poulton PR, Fixen PE, Curtin D (2014) Phosphorus: its efficient use in agriculture. Adv Agron 123:177–228

    Article  CAS  Google Scholar 

  • Kercher AK, Nagle DC (2003) Microstructural evolution during charcoal carbonization by X-ray diffraction analysis. Carbon 41(1):15–27

    Article  CAS  Google Scholar 

  • Khan S, Chao C, Waqas M, Arp HPH, Zhu YG (2013) Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol 47(15):8624

    Article  CAS  Google Scholar 

  • Kong FX, Ling X, Iqbal B, Zhou ZG, Meng YL (2021) Soil phosphorus availability and cotton growth affected by biochar addition under two phosphorus fertilizer levels. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.03652021.01955355

    Article  Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158(3–4):436–442

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. Routledge, London and New York

    Book  Google Scholar 

  • Li FY, Liang XQ, Niyungeko C, Sun T, Liu F, Arai Y (2019) Effects of biochar amendments on soil phosphorus transformation in agricultural soils. Adv Agron 158:131–172

    Article  Google Scholar 

  • Li H, Li Y, Xu Y, Lu X (2020) Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244:125471

    Article  CAS  Google Scholar 

  • Li Y, Feng H, Chen J, Lu JS, Wu WJ, Liu XZ, Li C, Dong QE, Siddique KHM (2022) Biochar incorporation increases winter wheat (Triticum aestivum L.) production with significantly improving soil enzyme activities at jointing stage. Catena 211:105979

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730

    Article  CAS  Google Scholar 

  • Liang XQ, Jin Y, He MM, Niyungeko C, Zhang J, Liu CL, Tian GM, Arai Y (2018) Phosphorus speciation and release kinetics of swine manure biochar under various pyrolysis temperatures. Environ Sci Pollut R 25:25780–25788

    Article  CAS  Google Scholar 

  • Liang Y, Cao X, Zhao L, Xu X, Harris W (2014) Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: effects of phosphorus nature and soil property. J Environ Qual 43(4):1504–1509

    Article  Google Scholar 

  • Liu J, Ma Q, Hui X, Ran J, Ma Q, Wang X, Wang Z (2020a) Long-term high-P fertilizer input decreased the total bacterial diversity but not phoD-harboring bacteria in wheat rhizosphere soil with available-P deficiency. Soil Biol Biochem 149:107918

    Article  CAS  Google Scholar 

  • Liu S, Meng J, Jiang L, Yang X, Lan Y, Cheng X, Chen W (2017) Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Appl Soil Ecol 116:12–22

    Article  Google Scholar 

  • Liu W, Ciais P, Liu X, Yang H, Hoekstra AY, Tang Q, Wang X, Li X, Cheng L (2020b) Global phosphorus losses from croplands under future precipitation scenarios. Environ Sci Technol 54(22):14761–14771

    Article  CAS  Google Scholar 

  • Manolikaki II, Mangolis A, Diamadopoulos E (2016) The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. J Environ Manage 181:536–543

    Article  CAS  Google Scholar 

  • Marchetti R, Castelli F (2013) Biochar from swine solids and digestate influence nutrient dynamics and carbon dioxide release in soil. J Environ Qual 42(3):893–901

    Article  CAS  Google Scholar 

  • Margalef O, Sardans J, Maspons J, Molowny-Horas R, Fernandez-Martinez M, Janssens IA, Richter A, Ciais P, Obersteiner M, Penuelas J (2021) The effect of global change on soil phosphatase activity. Glob Change Biol 27(22):5989–6003

    Article  CAS  Google Scholar 

  • Masto RE, Kumar S, Rout TK, Sarkar P, George J, Ram LC (2013) Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. CATENA 111:64–71

    Article  CAS  Google Scholar 

  • Matin NH, Jalali M, Antoniadis V, Shaheen SM, Wang JX, Zhang T, Wang HL, Rinklebe J (2020) Almond and walnut shell-derived biochars affect sorption-desorption, fractionation, and release of phosphorus in two different soils. Chemosphere 241:14

    Google Scholar 

  • McDowell RW, Mahieu N, Brookes PC, Poulton PR (2003) Mechanisms of phosphorus solubilisation in a limed soil as a function of pH. Chemosphere 51(8):685–692

    Article  CAS  Google Scholar 

  • Mendes GD, Zafra DL, Vassilev NB, Silva IR, Ribeiro JI, Costa MD (2014) Biochar enhances aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity. Appl Environ Microb 80(10):3081–3085

    Article  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann EK,  Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Springer-Verlag, Berlin

  • Nelson NO, Agudelo SC, Yuan W, Gan J (2011) Nitrogen and phosphorus availability in biochar-amended soils. Soil Sci 176(5):218–226

    Article  CAS  Google Scholar 

  • Ngatia LW, Hsieh YP, Nemours D, Fu R, Taylor RW (2017) Potential phosphorus eutrophication mitigation strategy: biochar carbon composition, thermal stability and pH influence phosphorus sorption. Chemosphere 180:201–211

    Article  CAS  Google Scholar 

  • Novak JM, Johnson MG, Spokas KA (2018) Concentration and release of phosphorus and potassium from lignocellulosic- and manure-based biochars for fertilizer reuse. Front Sustain Food Syst 2:54

    Article  Google Scholar 

  • Oladele SO, Adeyemo AJ, Awodun MA (2019) Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma 336:1–11

    Article  CAS  Google Scholar 

  • Pan LB, Xu FZ, Mo HZ, Corlett RT, Sha LQ (2021) The potential for biochar application in rubber plantations in Xishuangbanna, Southwest China: a Pot Trial. Biochar 3(1):65–76

    Article  Google Scholar 

  • Qian T, Zhang X, Hu J, Jiang H (2013) Effects of environmental conditions on the release of phosphorus from biochar. Chemosphere 93(9):2069–2075

    Article  CAS  Google Scholar 

  • Ranatunga TD, Reddy SS, Taylor RW (2013) Phosphorus distribution in soil aggregate size fractions in a poultry litter applied soil and potential environmental impacts. Geoderma 192:446–452

    Article  CAS  Google Scholar 

  • Roberts TL, Johnston AE (2015) Phosphorus use efficiency and management in agriculture. Resour Conserv Recy 105:275–281

    Article  Google Scholar 

  • Rodriguez D, Goudriaan J, Oyarzabal M, Pomar MC (1996) Phosphorus nutrition and water stress tolerance in wheat plants. J Plant Nutr 19(1):29–39

    Article  CAS  Google Scholar 

  • Sachdeva V, Hussain N, Husk BR, Whalen JK (2019) Biochar-induced soil stability influences phosphorus retention in a temperate agricultural soil. Geoderma 351:71–75

    Article  CAS  Google Scholar 

  • Safian M, Motaghian H, Hosseinpur A (2020) Effects of sugarcane residue biochar and P fertilizer on P availability and its fractions in a calcareous clay loam soil. Biochar 2(3):357–367

    Article  Google Scholar 

  • Sarfraz R, Yang WH, Wang SS, Zhou BQ, Xing SH (2020) Short term effects of biochar with different particle sizes on phosphorous availability and microbial communities. Chemosphere 256:126862

    Article  CAS  Google Scholar 

  • Schneider F, Haderlein SB (2016) Potential effects of biochar on the availability of phosphorus - mechanistic insights. Geoderma 277:83–90

    Article  CAS  Google Scholar 

  • Sheng YQ, Zhu LZ (2018) Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci Total Environ 622:1391–1399

    Article  Google Scholar 

  • Soinne H, Hovi J, Tammeorg P, Turtola E (2014) Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 219–220:162–167

    Article  Google Scholar 

  • Song WP, Guo MX (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrol 94:138–145

    Article  CAS  Google Scholar 

  • Topoliantz S, Ponge JF, Ballof S (2005) Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics. Biol Fert Soils 41(1):15–21

    Article  CAS  Google Scholar 

  • Uchimiya M, Hiradate S (2014) Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. J Agr Food Chem 62(8):1802–1809

    Article  CAS  Google Scholar 

  • Uchimiya M, Hiradate S, Antal MJ (2015) Dissolved phosphorus speciation of flash carbonization, slow pyrolysis, and fast pyrolysis biochars. Acs Sustain Chem Eng 3(7):1642–1649

    Article  CAS  Google Scholar 

  • Wang CQ, Luo D, Zhang X, Huang R, Cao YJ, Liu GG, Zhang YS, Wang H (2022) Biochar-based slow-release of fertilizers for sustainable agriculture: a mini review. Environ Sci Ecot 10:100167

    CAS  Google Scholar 

  • Wang J, Liu WZ, Mu HF, Dang TH (2010) Inorganic phosphorus fractions and phosphorus availability in a calcareous soil receiving 21-year superphosphate application. Pedosphere 20(3):304–310

    Article  CAS  Google Scholar 

  • Wang T, Camps-Arbestain M, Hedley M, Bishop P (2012) Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 357:173–187

    Article  CAS  Google Scholar 

  • Wang Y, Lin YX, Chiu PC, Imhoff PT, Guo MX (2015) Phosphorus release behaviors of poultry litter biochar as a soil amendment. Sci Total Environ 512:454–463

    Article  Google Scholar 

  • Wang ZH, Tang CS, Wang HY, Zhao CJ, Yin DW, Yuan Y, Yang KJ, Li ZT (2019) Effect of different amounts of biochar on Meadow soil characteristics and maize yields over three years. BioResources 14(2):4194–4209

    Article  CAS  Google Scholar 

  • Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC (2010) Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl Soil Ecol 46(3):450–456

    Article  Google Scholar 

  • Wei W, Zhang S, Wu L, Cui D, Ding X (2020) Biochar and phosphorus fertilization improved soil quality and inorganic phosphorus fractions in saline-alkaline soils. Arch Agron Soil Sci:1–14

  • Wu L, Liu X, Ma XJAWM (2021) How biochar, horizontal ridge, and grass affect runoff phosphorus fractions and possible tradeoffs under consecutive rainstorms in loessial sloping land? Agr Water Manage 256:107121

    Article  Google Scholar 

  • Xie SY, Yu GW, Jiang RQ, Ma JL, Shang XF, Wang G, Wang Y, Yang YA, Li CX (2021) Moderate sewage sludge biochar application on alkaline soil for corn growth: a field study. Biochar 3(2):135–147

    Article  CAS  Google Scholar 

  • Xiu LQ, Zhang WM, Sun YY, Wu D, Meng J, Chen WF (2019) Effects of biochar and straw returning on the key cultivation limitations of Albic soil and soybean growth over 2 years. CATENA 173:481–493

    Article  CAS  Google Scholar 

  • Xu G, Sun J, Shao H, Chang SX (2014) Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol Eng 62:54–60

    Article  Google Scholar 

  • Xu G, Zhang Y, Sun J, Shao H (2016) Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Sci Total Environ 568:910–915

    Article  CAS  Google Scholar 

  • Xu M, Wu J, Yang G, Zhang XH, Peng H, Yu XY, Xiao YL, Qi H (2019) Biochar addition to soil highly increases P retention and decreases the risk of phosphate contamination of waters. Environ Chem Lett 17(1):533–541

    Article  CAS  Google Scholar 

  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7:2049

    Article  Google Scholar 

  • Yan N, Marschner P (2013) Response of soil respiration and microbial biomass to changing EC in saline soils. Soil Biol Biochem 65:322–328

    Article  CAS  Google Scholar 

  • Yang CD, Lu SG (2021) Pyrolysis temperature affects phosphorus availability of rice straw and canola stalk biochars and biochar-amended soils. J Soil Sediment 21(8):2817–2830

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Chen J, Yang L (2013) Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environ Sci Technol 47(15):8700–8708

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Inyang M, Zimmerman AR, Cao XD, Pullammanappallil P, Yang LY (2011) Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresour Technol 102:6273–6278

    Article  CAS  Google Scholar 

  • Yin QQ, Liu MT, Ren HP (2019) Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water. J Environ Manage 249:109410

    Article  Google Scholar 

  • Yoo G, Kang H (2012) Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. J Environ Qual 41(4):1193–1202

    Article  CAS  Google Scholar 

  • Zhai L, Caiji Z, Liu J, Wang H, Ren T, Gai X, Xi B, Liu H (2015) Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biol Fert Soils 51(1):113–122

    Article  CAS  Google Scholar 

  • Zhang H, Chen C, Gray EM, Boyd SE, Yang H, Zhang D (2016) Roles of biochar in improving phosphorus availability in soils: a phosphate adsorbent and a source of available phosphorus. Geoderma 276:1–6

    Article  CAS  Google Scholar 

  • Zhang HY, Li QY, Zhang X, Chen WF, Ni JZ, Yang LM, Wei R (2020) Insight into the mechanism of low molecular weight organic acids-mediated release of phosphorus and potassium from biochars. Sci Total Environ 742:140416

    Article  CAS  Google Scholar 

  • Zhang JH, Bai ZG, Huang J, Hussain S, Zhao FT, Zhu CQ, Zhu LF, Cao XC, Jin QY (2019) Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance. Soil Till Res 195:104372

  • Zhao YM, Lin S, Liu YN, Li GY, Wang JG, Butterbach-Bahl K (2020) Application of mixed straw and biochar meets plant demand of carbon dioxide and increases soil carbon storage in sunken solar greenhouse vegetable production. Soil Use Manage 36(3):439–448

    Article  Google Scholar 

  • Zheng BX, Ding K, Yang XR, Wadaan MAM, Hozzein WN, Penuelas J, Zhu YG (2019) Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. Sci Total Environ 647:1113–1120

    Article  CAS  Google Scholar 

  • Zheng H, Wang ZY, Deng X, Zhao J, Luo Y, Novak J, Herbert S, Xing BS (2013) Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresource Technol 130:463–471

    Article  CAS  Google Scholar 

  • Zheng Q, Yang L, Song D, Zhang S, Wu H, Li S, Wang X (2020) High adsorption capacity of Mg–Al-modified biochar for phosphate and its potential for phosphate interception in soil. Chemosphere 259:127469

    Article  CAS  Google Scholar 

  • Zhou C, Heal K, Tigabu M, Xia L, Hu H, Yin D, Ma X (2020) Biochar addition to forest plantation soil enhances phosphorus availability and soil bacterial community diversity. Forest Ecol Manag 455:117635

    Article  Google Scholar 

  • Zhou K, Sui YY, Xu X, Zhang JY, Chen YM, Hou M, Jiao XG (2018) The effects of biochar addition on phosphorus transfer and water utilization efficiency in a vegetable field in Northeast China. Agr Water Manage 210:324–329

    Article  Google Scholar 

  • Zhu J, Li M, Whelan M (2018) Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci Total Environ 612:522–537

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFD1500202 and 2019YFC1803403), and the National Natural Science Foundation of China (41771275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Hailong Wang

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Yu, Y., Chang, E. et al. Effect of biochar incorporation on phosphorus supplementation and availability in soil: a review. J Soils Sediments 23, 672–686 (2023). https://doi.org/10.1007/s11368-022-03359-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-022-03359-w

Keywords

Navigation