Skip to main content

Advertisement

Log in

Mapping of urban environmentally sensitive areas in Bratislava city

  • SUITMA+20
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Environmentally sensitive areas within urban environment (U-ESA) play an essential role in maintaining urban ecological balance and ecological safety. The aims of our study were to analyse and evaluate the U-ESA spatial distribution in Bratislava city, in terms of the impact of sealed area, soil quality and urban green areas infrastructure as well as the occurrence of urban heat island in the summer months. These phenomena significantly reduce the ecological functions and ecosystem services of urban soils and can result in negative affect of the living standard and health condition of urban population.

Methods

The methodology for assessing U-ESA is based on a multi-criteria process in which the following parameters have been identified and synthesized: pedo-urban complexes and their quality, urban heat island (UHI) areas and spatial distribution of urban vegetation types. Pedo-urban complexes (soil units including sealing areas, land use and soil degradation forms) were classified according to WRB.

Results

Georeferenced databases and maps became the basis for the identification of parameters involved within identification of U-ESA. Several partial products were compiled: vectorized land cover/land use categorized according to the Extended Nomenclature Urban Atlas 2012, database of pedo-urban complexes, modelled urban heat island map and map of urban vegetation types. Overlaying and synthesis of these partial results confirm thesis that sealed surfaces are one of the main causes of the increased incidence urban heat islands, but not entirely. The resulting U-ESA, designed areas in Bratislava, which are under increased risk in terms of quality of living standards.

Conclusion

The key point of the research in the future is to find assessment of the soil quality in urbanized areas. We assume that the assessment should be based on ecosystem functions of pedo-urban complexes, i.e. anthropogenic soils. The identification of the U-ESA can be used for solving of housing comfort and quality of living standards in the frame of urban development and balanced spatial urban planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhikari K, Hartemink AE (2016) Linking soils to ecosystem services – a global review. Geoderma 262:101–111. https://doi.org/10.1016/j.geoderma.2015.08.009

    Article  CAS  Google Scholar 

  • Arsenović D, Savić S, Lužanin Z, Radić I, Milošević D, Arsić M (2019) Heat-related mortality as an indicator of population vulnerability in a mid-sized Central European city (Novi Sad, Serbia, summer 2015). Geographica Pannonica 23(4):204–215. https://doi.org/10.5937/gp23-22680

    Article  Google Scholar 

  • Bazan-Krzywoszanska A, Mrowczynska M, Skiba M, Sztubecka M (2017) Sustainable urban development on the example of the housing development of Zielona Góra (Poland), as a response to the climate policy of the European Union. 11th International conference “Environmental Engineering”

  • Blumlein P, Kircholtes HJ, Schweiker M, Wolf G, Schug B, Wieshofer I, Huber S, Parolin M, Villa F, Zelioli A, Biasioli M, Medved P, Vernik T, Vrsčaj B, Siebielec G, Kozák J, Galušková I, Fulajtár E, Sobocká J, Jaensch S. (2012) Soil in the city. Urban soil management strategy. Edited by City of Stuttgart – Department for environmental protection

  • Bokwa A, Geletič J, Lehnert M, Žuvela-Aloise M, Hollósi B, Gál T, Skarbit N, Dobrovolný P, Hajto MJ, Kielar R, Walawender JP, Šťastný P, Holec J, Ostapowicz K, Burianová J, Garaj M (2019) Heat load assessment in Central European cities using an urban climate model and observational monitoring data. Energy Build 201:53–69. https://doi.org/10.1016/j.enbuild.2019.07.023

    Article  Google Scholar 

  • Breuste J, Feldman O, Uhlman O et al (1998) Urban ecology. Springer-Verlag, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Breuste J, Schnellinger J, Qureshi S, Faggi A (2013) Urban ecosystem services on the local level: urban green spaces as providers. Ekológia (Bratislava) 32(3):290–309. https://doi.org/10.2478/eko-2013-0026

    Article  Google Scholar 

  • Burghardt W (1994) Soils in urban and industrial environments. Zeitschtift für Pflanzenernährung und Bodenkunde 157(3):205–214. https://doi.org/10.1002/jpln.19941570308

    Article  CAS  Google Scholar 

  • Burghardt W, Morel JL, Zhang GL (2015) Development of the research about urban, industrial, traffic, mining and military areas (SUITMA). Soil Sci Plant Nutr 61:3–21. https://doi.org/10.1080/00380768.2015.1046136

    Article  CAS  Google Scholar 

  • Charzyński P, Hulisz P (2017) The case of Toruń, Poland. In: Levin MJ, HHJ K, Morel JL, Burghardt W, Charzyński P, Shaw RK (eds) Soils within cities. Global approaches to their sustainable management – composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher, pp 123–128

  • Charzyński P, Bednarek R, Greinert A, Hulisz P, Uzarowicz L (2013) Classification of technogenic soils according to WRB system in the light of Polish experiences. Soil Sci Annu 64(4):145–150. https://doi.org/10.2478/ssa-2013-0023

    Article  Google Scholar 

  • Cugnon G, Caluwaerts S, Duchene F, Hamdi R, Termonia P, Top S, Vergauwe T, Van Schaeybroeck B (2019) Climate sensitivity to land use over the city of Brussels. Geographica Pannonica 23(4):269–276. https://doi.org/10.5937/gp23-24214

    Article  Google Scholar 

  • Džatko M, Sobocká J et al (2009) Handbook for the use of land evaluation units. Innovated handbook for bonitation and evaluation of agricultural soils in Slovakia. Soil Science and Research Institute, Bratislava (in Slovak)

  • Edmondson J, Stott I, Davies Z et al (2016) Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs. Sci Rep 6:33708. https://doi.org/10.1038/srep33708

    Article  CAS  Google Scholar 

  • EEA (2016) Soil resource efficiency in urbanised areas. Analytical framework and implication for governance. EEA Report No 7/2016. Available on: https://www.eea.europa.eu/publications/soil-resource-efficiency

  • EEA (2019) Land take in Europe. Available on: https://www.eea.europa.eu/data-and-maps/indicators/land-take-3/assessment

  • European Commission (2011) Report on best practices for limiting soil sealing and mitigating its effects. Available on: https://ec.europa.eu/environment/archives/soil/pdf/sealing/Soil%20sealing%20-%20Final%20Report.pdf

  • European Commission (2012) Science for Environment Policy. DG Environment News Alert Service. In-depth report, soil sealing, March 2012. Available on: https://ec.europa.eu/environment/archives/soil/pdf/sealing/Soil%20Sealing%20Indepth%20Report%20March%20version_final.pdf

  • Feranec J, Holec J, Šťastný P, Szatmári D, Kopecká M (2019a) Visualising a comparison of simulated urban heat islands: a case study of two Slovakian cities. Advances in Cartography and GIScience of the International Cartographic Association, 1, 2019. 29th International Cartographic Conference (ICC), 15–20 July, Tokyo

  • Feranec J, Kopecká M, Szatmári D, Holec J, Šťastný P, Pazúr R, Bobáľová H (2019b) A review of studies involving the effect of land cover and land use on urban heat island phenomenon, assessed by means of the MUKLIMO model. Geografie 124(1):383–101

    Article  Google Scholar 

  • Gál T, Skarbit N (2017) Applying local climate zones as land use classes in MUKLIMO_3 for modelling urban heat load in the case of Szeged, Hungary. In: Buchholz S, Noppel H, Žuvela-Aloise M, Hollósi B (eds) 1st MUKLIMO_3 Users Workshop Programme and Book of abstracts

    Google Scholar 

  • Geletič J, Lehnert M, Savić S, Milošević D (2018) Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Sci Total Environ 624:385–395. https://doi.org/10.1016/j.scitotenv.2017.12.076

    Article  CAS  Google Scholar 

  • Greinert A (2015) The heterogeneity of urban soils in the light of their properties. J Soils Sediments 15:1725. https://doi.org/10.1007/s11368-014-1054-6

    Article  CAS  Google Scholar 

  • Hazelton PA, Murphy B (2011) Understanding soils in urban environments. Environ Sci. https://doi.org/10.1071/9780643101432

  • Holec J, Šťastný P (2017) Modelling of urban heat island in Bratislava using MUKLIMO model. Meteorol J 20:65–72

    Google Scholar 

  • Hulisz P, Charzyński P, Greinert A (2018) Urban soil resources of medium-sized cities in Poland: a comparative case study of Toruń and Zielona Góra. J Soils Sediments 18:358–372. https://doi.org/10.1007/s11368-016-1596-x

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

  • Lehmann A, Stahr K (2007) Nature and significance of anthropogenic urban soils. J Soils Sediments 7:247–260. https://doi.org/10.1065/jss2007.06.235

    Article  CAS  Google Scholar 

  • Levin MJ, Kim HHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK (eds) (2017) Soil within cities. Global approaches to their sustainable management – composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher

  • Makowsky L, Schneider J (2017) The case of Germany. In: Levin MJ, Kim HHJ, Morel JL, Burghardt W, Charzyński P, Shaw RK (eds) Soils within cities. Global approaches to their sustainable management – composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher

  • Meuser H (2010) Contaminated urban soils. Springer Science Business Media. https://doi.org/10.1007/978-90-481-9328-8

  • Mirzaei PA (2015) Recent challenges in modelling of urban heat islands. Sustain Cities Soc 19:200–206. https://doi.org/10.1016/j.scs.2015.04.001

    Article  Google Scholar 

  • Morel L, Chenu C, Lorenz K (2014) Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMA). J Soils Sediments (2015) 15:1659–1666. https://doi.org/10.1007/s11368-014-0926-0

    Article  Google Scholar 

  • Nehls T, Sokolowska Z, Hajnos M, Jozefaciuk G, Wessolek G (2008) Filter properties of seam material of paved urban soils. Hydrol Earth Syst Sci 12:691–702. https://doi.org/10.5194/hess-12-691-2008

    Article  Google Scholar 

  • Niu Q, Yu L, Jie Q, Li X et al (2018) An urban eco-environmental sensitive areas assessment methods based on variable weights combination. Environ Dev Sustain 2018:2069–2085. https://doi.org/10.1007/s10668-018-0277-x

    Article  Google Scholar 

  • Norm S, Weber A, Kramar U et al (2001) Mapping of trace metals in urban soils. J Soils Sediments 1:77. https://doi.org/10.1007/BF02987713

    Article  Google Scholar 

  • Pindral S, Kot R, Hulisz P, Charzyński P (2020) Landscape metrics as a toll for analysis of urban pedodiversity. Land Degrad Dev 2020:1–14. https://doi.org/10.1002/ldr.3601

    Article  Google Scholar 

  • Prokofeva TV, Martynenko IA (2017) The case of Moscow, Russia. In: Levin MJ, Kim HHJ, Morel JL, Burghardt W, Charzyński P, Shaw RK (eds) Soils within cities. Global approaches to their sustainable management – composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher

  • Prokofeva TV, Martynenko IA, Ivannikov FA (2011) Classification of Moscow soils and parent materials and its possible inclusion in the classification system of Russian soils. Eurasian Soil Sci 44:561–571. https://doi.org/10.1134/S1064229311050127

    Article  Google Scholar 

  • Prokop G, Jobstmann H, Schonbauer A (2011) Report on best practices for limiting soil sealing and mitigating its effects. Eur Commission Brussels. https://doi.org/10.2779/15146

  • Puskás I, Fansang A (2009) Diagnostic indicators for characterising urban soils of Szeged, Hungary. Geoderma 148(3):267–281. https://doi.org/10.1016/jgeoderma.2008.10.014

    Article  Google Scholar 

  • Shaw RK, Isleib JT (2017) The case of the New York City Soil Survey Program, United States. In: Levin MJ, Kim HHJ, Morel JL, Burghardt W, Charzyński P, Shaw RK (eds) Soils within cities. Global approaches to their sustainable management – composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher

  • Sievers U (1990) Dreidimensionale Simulationen in Stadtgebieten. Umwelt-meteorologie, Schriftenreihe Band 15: Sitzung des Hauptausschusses II am 7. und 8. Juni in Lahnstein (pp. 92–105). Düsseldorf: Kommission Reinhaltung der Luft im VDI und DIN (in German)

  • Sievers U (1995) Verallgemeinerung der Stromfunktionsmethode auf drei Dimensionen. Meteorol Z 4:3–15 (in German)

    Article  Google Scholar 

  • Sievers U (2012) Das kleinskalige Strömungsmodell MUKLIMO_3. Teil 1: Theoretische Grundlagen, PCBasisversion, Validierung. In Berichte des Deutschen Wetterdienstes, Band 240. Offenbach am Main, Germany: Deutscher Wetterdienst. (in German) http://nbn-resolving.de/urn:nbn:de:101:1-2014081319909

  • Sievers U (2016) Das kleinskalige Strömungsmodell MUKLIMO_3. Teil 2: Thermodynamische Erweiterungen. Offenbach am Main: Selbstverlag des Deutschen Wetterdienstes. (Berichte des Deutschen Wetterdienstes; 248) (in German) http://nbn-resolving.de/urn:nbn:de:101:1-201606173510

  • Sievers U, Zdunkowski W (1985) A numerical simulation scheme for the albedo of city street canyons. Boundary Layer Meteorol 33:245–257. https://doi.org/10.1007/BF00052058

    Article  Google Scholar 

  • Sobocká J (2010) Specifics of urban soils (Technosols) survey and mapping. Proceedings: Soil solution for a changing world. Brisbane, Australia, 1-6 August 2010

  • Sobocká J (2013) Technogenic soils in Slovakia. Chapter 3. In: Charzynski P, Markiewicz M, Switoniak M (eds) Technogenic soils atlas. Polish Society of Soil Science, Toruń

    Google Scholar 

  • Sobocká J et al (2007) Urban soils (Bratislava case study). Soil Science and Conservation Research Institute, Bratislava (in Slovak)

  • Szatmári D, Kopecká M, Feranec J, Sviček M (2018) Extended Nomenclature Urban Atlas 2012 (APVV-15-0136). Institute of Geography, Slovak Academy of Sciences, Bratislava (in Slovak). Available on: http://www.geography.sav.sk/web-data/news/monografie/2018_rozsirena_legenda_urban_atlas_2012.pdf

  • UN (2018) World Urbanization Prospects: the 2018 revision. Available on:https://population.un.org/wup/Download/

  • Žuvela-Aloise M, Koch R, Neureiter A, Böhm R, Buchholz S (2014) Reconstructing urban climate of Vienna based on historical maps dating to the early instrumental period. Urban Clim (2014) 10(3):490–508. https://doi.org/10.1016/j.uclim.2014.04.002

Download references

Funding

This article was created with the financial support of the project APVV-15-0136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Saksa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Kye-Hoon John Kim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobocká, J., Saksa, M., Feranec, J. et al. Mapping of urban environmentally sensitive areas in Bratislava city. J Soils Sediments 21, 2059–2070 (2021). https://doi.org/10.1007/s11368-020-02682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-020-02682-4

Keywords

Navigation