Skip to main content

Advertisement

Log in

PAH biodegradation by telluric saprotrophic fungi isolated from aged PAH-contaminated soils in mineral medium and historically contaminated soil microcosms

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Remediation of contaminated soils is of high relevance considering losses of this limited resource in most countries through erosion or through destruction for societal purposes. Most physicochemical remediation techniques lead to soil destruction avoiding reuse of the sites and loss of soil functions including ecological services like water retention/filtration, plant needs, carbon sequestration, or atmosphere restoration. This study aims to find out efficient telluric PAH-degrading fungi to both remediate soils and preserve their functioning.

Materials and methods

Fifty telluric saprotrophic fungi were thus isolated from different aged PAH-contaminated soils sampled from four brownfields in the North of France. Thirty of these isolates were screened in a mineral medium for their ability to degrade benzo[a]pyrene (BaP) used as a model of HMW PAH. After 9 days of incubation, the remaining BaP was quantified through HPLC analysis. Then, a set of microcosms was performed with an aged PAH-contaminated non-sterile soil encompassing different approaches with bioaugmentation using mycelia of three strains pre-established on expanded clay particles and, for one of these strains, biostimulation strategies including nitrogen or nitrogen/phosphorous supplementations or aeration by stirring. After an incubation time of 30 days, remaining PAH were quantified through GC-MS and evolution of fungal populations evaluated through qPCR.

Results and discussion

Isolated Penicillium canescens, Cladosporium cladosporioides, Fusarium solani, and Talaromyces helicus degraded more than 30% of the initial 500 μg of BaP after 9 days of incubation. The three latest strains were thus inoculated in aged PAH-contaminated soil microcosms. After 30 days, PAH quantitative analyses showed that the highest degradation was obtained by bioaugmentation with T. helicus (26% of the initial total PAH content: 321.7 mg kg−1), which seems high considering an aged industrial contamination. Biostimulation approaches coupled to the inoculation of this strain did not improve the degradation. DNA quantification of the inoculated species confirmed their enrichment in the soil revealing the interest of the used inoculation strategy. We discuss bioaugmentation and biostimulation approaches in the case of the considered pollutants and soil.

Conclusions

A strain identified as T. helicus appears interesting for its HMW PAH degradation capacities both in mineral medium with pure BaP and in industrial non-sterile soil microcosms contaminated with a hydrocarbon complex mixture. This study also confirms the efficiency of a well-studied BaP-degrading strain of F. solani. These results indicate the potentialities of the used bioaugmentation approach and underline the necessity of scale-up strategies to apply this kind of technique on site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aspray T, Gluszek A, Carvalho D (2008) Effect of nitrogen amendment on respiration and respiratory quotient (RQ) in three hydrocarbon contaminated soils of different type. Chemosphere 72:947–951

    Article  CAS  Google Scholar 

  • Atagana H, Haynes R, Wallis F (2006) Fungal bioremediation of creosote-contaminated soil: a laboratory scale bioremediation study using indigenous soil fungi. Water Air Soil Pollut 172:201–219

    Article  CAS  Google Scholar 

  • Balba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32:155–164

    Article  CAS  Google Scholar 

  • Barclay CD, Farquhar GF, Legge RL (1995) Biodegradation and sorption of polyaromatic hydrocarbons by Phanerochaete chrysosporium. Appl Microbiol Biotechnol 42:958–963

    Article  CAS  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  CAS  Google Scholar 

  • Chesters CGC, Thornton RH (1956) A comparison of techniques for isolating soil fungi. Trans Br Mycol Soc 39:301–313

    Article  Google Scholar 

  • Colombo JC, Cabello M, Arambarri AM (1996) Biodegradation of aliphatic and aromatic hydrocarbons by soil microflora and pure cultures of imperfect and lignolitic fungi. Environ Pollut 94:335–362

    Article  Google Scholar 

  • Covino S, Muzikár M, Svobodová K, D’annibale A, Petruccioli M, Federici F, Kresinová Z, Cajthaml T (2010a) An efficient PAH-degrading Lentinus (Panus) tigrinus strain: effect of inoculum formulation and pollutant bioavailability in solid matrices. J Hazar Mater 183:669–676

  • Covino S, Svobodová K, Cvancarová M, D'Annibale A, Petruccioli M, Federici F, Kresinová Z, Galli E, Cajthaml T (2010b). Inoculum carrier and contaminant bioavailability affect fungal degradation performances of PAH-contaminated solid matrices from a wood preservation plant. Chemosphere 79:855–864

  • Covino S, Svobodová K, D'Annibale A, Cvancarová M, Petruccioli M, Federici F (2010c) Effect of inoculum formulation and contaminant bioavailability on PAH degradation performances of Lentinus tigrinus on contaminated solid matrices. J Biotechnol 150:225–225

  • Czaplicki LM, Cooper E, Ferguson PL, Stapleton HM, Vilgalys R, Gunsch CK (2016) A new perspective on sustainable soil remediation—case study suggests novel fungal genera could facilitate in situ biodegradation of hazardous contaminants. Remed J 26:59–72

    Article  CAS  Google Scholar 

  • da Silva M, Cerniglia CE, Pothuluri JV, Canhos VP, Esposito E (2003) Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons. World J Microb Biot 19:399–405

    Article  Google Scholar 

  • Davies JS, Westlake DWS (1979) Crude oil utilization by fungi. Can J Microbiol 25:146–156

    Article  CAS  Google Scholar 

  • Fayeulle A, Veignie E, Slomianny C, Dewailly E, Munch JC, Rafin C (2014) Energy-dependent uptake of benzo[a]pyrene and its cytoskeleton-dependent intracellular transport by the telluric fungus Fusarium solani. Environ Sci Pollut Res 21:3515–3523

    Article  CAS  Google Scholar 

  • Fungorum http://www.indexfungorum.org/Names/Names.asp. Accessed 13 December 2018

  • Garon D, Sage L, Seigle-Murandi Fo (2004) Effects of fungal bioaugmentation and cyclodextrin amendment on fluorene degradation in soil slurry. Biodegradation 15:1–8

  • Giraud F, Guiraud P, Kadri M, Blake G, Steiman R (2001) Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment. Water Res 35:4126–4136

    Article  CAS  Google Scholar 

  • Grundmann S, Fuß R, Schmid M, Laschinger M, Ruth B, Schulin R, Munch JC, Schroll R (2007) Application of microbial hot spots enhances pesticide degradation in soils. Chemosphere 68:511–517

    Article  CAS  Google Scholar 

  • Guiraud P, Villemain D, Kadri M, Bordjiba O, Steiman R (2003) Biodegradation capability of Absidia fusca Linnemann towards environmental pollutants. Chemosphere 52:663–671

    Article  CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  Google Scholar 

  • Harmsen J, Rietra RPJJ (2018) 25 years monitoring of PAHs and petroleum hydrocarbons biodegradation in soil. Chemosphere 207:229–238

    Article  CAS  Google Scholar 

  • Hughes KA, Bridge P, Clark MS (2007) Tolerance of Antarctic soil fungi to hydrocarbons. Sci Total Environ 372:539–548

    Article  CAS  Google Scholar 

  • Lim MW, Lau EV, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil — present works and future directions. Mar Pollut Bull 109:14–45

    Article  CAS  Google Scholar 

  • Lladó S, Solanas AM, de Lapuente J, Borràs M, Viñas M (2012) A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil. Sci Total Environ 435–436:262–269

    Article  CAS  Google Scholar 

  • Lladó S, Covino S, Solanas AM, Viñas M, Petruccioli M, D’annibale A (2013) Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil. J Hazar Mater 248-249:407–414

    Article  CAS  Google Scholar 

  • Mahmood SK, Rama Rao P (1993) Microbial abundance and degradation of polycyclic aromatic hydrocarbons in soil. B Environ Contam Tox 50:486–491

    Article  CAS  Google Scholar 

  • Mancera-López ME, Esparza-García F, Chávez-Gómez B, Rodríguez-Vázquez R, Saucedo-Castañeda G, Barrera-Cortés J (2008) Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Int Biodeter Biodegr 61:151–160

    Article  CAS  Google Scholar 

  • Marco-Urrea E, García-Romera I, Aranda E (2015) Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. European Congress of Biotechnology (ECB 16) 32:620–628

    CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  Google Scholar 

  • Mihelcic JR, Lueking DR, Mitzell RJ, Stapleton JM (1993) Bioavailability of sorbed and separate phase chemicals. Biodegradation 4:141–153

    Article  CAS  Google Scholar 

  • Mycobank http://www.mycobank.org/Biolomics.aspx?Table=Mycobank. Accessed 13 December 2018

  • Oldeman LR, Hakkeling RTA, Sombroek WG (1991) World map of the status of human-induced soil degradation: an explanatory note, 2nd. rev. ed

  • Oudot J, Fusey P, Abdelouahid DE, Haloui S, Roquebert MF (1987) Capacités dégradatives de bactéries et de champignons isolés d'un sol contaminé par un fuel. Can J Microbiol 33:232–243

    Article  CAS  Google Scholar 

  • Panagos P, Van Liedekerke M, Yigini Y, Montanarella L (2013) Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Public Health, Article ID 158764, 11 pp https://doi.org/10.1155/2013/158764

  • Park K, Sims R, Dupont R (1990) Transformation of PAHs in soil systems. J Environ Eng 116:632–640

    Article  CAS  Google Scholar 

  • Passarini MRZ, Rodrigues MVN, da Silva M, Sette LD (2011) Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Pollut Bull 62:364–370

    Article  CAS  Google Scholar 

  • Potin O, Rafin C, Veignie E (2004a) Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int. Biodeter Biodegr 54:45–52

  • Potin O, Veignie E, Rafin C (2004b) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiol Ecol 51:71–78

    Article  CAS  Google Scholar 

  • Rafin C, Potin O, Veignie E, Lounes-Hadj Sahraoui A, Sancholle M (2000) Degradation of benzo[a]pyrene as sole carbon source by a non white rot fungus, Fusarium solani. Polycyl Aromat Comp 21:311–329

    Article  CAS  Google Scholar 

  • Rafin C, Veignie E, Woisel P, Cazier F, Surpateanu G (2006) New potential of a Deuteromycete fungus Fusarium solani in benzo[a]pyrene degradation: an eco-physiological hypothesis? In: Glazer MP (ed) New frontiers in environmental research. Nova Science Publishers, Inc., New York, pp 165–179

    Google Scholar 

  • Rafin C, de Foucault B, Veignie E (2013) Exploring micromycetes biodiversity for screening benzo[a]pyrene degrading potential. Environ Sci Pollut Res 20:3280–3289

    Article  CAS  Google Scholar 

  • Ravelet C, Krivobok S, Sage L, Steiman R (2000) Biodegradation of pyrene by sediment fungi. Chemosphere 40:557–563

    Article  CAS  Google Scholar 

  • Rodriguez-Campos J, Perales-Garcia A, Hernandez-Carballo J, Martinez-Rabelo F, Hernández-Castellanos B, Barois I, Contreras-Ramos SM (2018) Bioremediation of soil contaminated by hydrocarbons with the combination of three technologies: bioaugmentation, phytoremediation, and vermiremediation. J Soils Sediments. https://doi.org/10.1007/s11368-018-2213-y

  • Romero M, Hammer E, Hanschke R, Arambarri A, Schauer F (2005) Biotransformation of biphenyl by the filamentous fungus Talaromyces helicus. World J Microb Biot 21:101–106

    Article  CAS  Google Scholar 

  • Romero MC, Reinoso EH, Urrutia MI, Moreno Kiernan A (2006) Biosorption of heavy metals by Talaromyces helicus: a trained fungus for copper and biphenyl detoxification. Electron J Biotechnol 9:221–226

    CAS  Google Scholar 

  • Salvo VS, Gallizia I, Moreno M, Fabiano M (2005) Fungal communities in PAH-impacted sediments of Genoa-Voltri Harbour (NW Mediterranean, Italy). Mar Pollut Bull 50:553–559

    Article  CAS  Google Scholar 

  • Saponaro S, Bonomo L, Petruzzelli G, Romele L, Barbafieri M (2002) Polycyclic aromatic hydrocarbons (PAHs) slurry phase bioremediation of a manufacturing gas plant (MGP) site aged soil. Water Air Soil Pollut 135:219–236

    Article  CAS  Google Scholar 

  • Saraswathy A, Hallberg R (2002) Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiol Lett 210:227–232

    Article  CAS  Google Scholar 

  • Schauer F, Borriss R (2004) Biocatalysis and biotransformation. In: Tkacz JS, Lange L (eds) Advances in fungal biotechnology for industry, agriculture and medicine. Kluwer Academic/Plenum Publishers, New York, United States of America, pp 237–306

    Chapter  Google Scholar 

  • Schroll R, Becher HH, Dörfler U, Gayler S, Grundmann S, Hartmann HP, Ruoss J (2006) Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environ Sci Technol 40:3305–3312

    Article  CAS  Google Scholar 

  • Seifert K, Morgan-Jones G, Gams W, Kendrick B. (2011) The genera of Hyphomycetes. CBS Biodiversity Series no. 9:1–997. CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands

  • Semple KT, Doick KJ, Wick LY, Harms H (2007) Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environ Pollut 150:166–176

    Article  CAS  Google Scholar 

  • Silva-Castro GA, Rodelas B, Perucha C, Laguna J, González-López J, Calvo C (2013) Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents: assays in a pilot plant. Sci Total Environ 445–446:347–355

    Article  CAS  Google Scholar 

  • Smith VH, Graham DW, Cleland DD (1998) Application of resource-ratio theory to hydrocarbon biodegradation. Environ Sci Technol 32:3386–3395

    Article  CAS  Google Scholar 

  • Targulian VO, Arnold RW (2008) Pedosphere. In: Fath BD (ed) Jørgensen SE. Academic Press, Oxford, United Kingdom, Encyclopedia of Ecology. Oxford, pp 2665–2670

    Google Scholar 

  • Thion C, Cébron A, Beguiristain T, Leyval C (2012) PAH biotransformation and sorption by Fusarium solani and Arthrobacter oxydans isolated from a polluted soil in axenic cultures and mixed co-cultures. Int Biodeter Biodegr 68:28–35

    Article  CAS  Google Scholar 

  • Veignie E, Rafin C, Woisel P, Lounes-Hadj Sahraoui A, Cazier F (2002) Metabolization of the polycyclic aromatic hydrocarbon benzo(a)pyrene by a non-white rot fungus (Fusarium solani) in a batch reactor. Polycyl Aromat Comp 22:87–97

    Article  CAS  Google Scholar 

  • Veignie E, Rafin C, Woisel P, Cazier F (2004) Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani. Environ Pollut 129:1–4

    Article  CAS  Google Scholar 

  • Waksman SA (1916) Do fungi live and produce mycelium in the soil? Science 44:320–322

    Article  CAS  Google Scholar 

  • Waksman SA (1927) Principles of soil microbiology. Williams & Wilkins (eds), Baltimore, USA

  • Wammer KH, Peters CA (2005) Polycyclic Aromatic Hydrocarbon Biodegradation Rates: A Structure-Based Study. Environ Sci Technol 39:2571–2578

  • Wang H, Chen H, Hao G, Yang B, Feng Y, Wang Y, Feng L, Zhao J, Song Y, Zhang H, Chen YQ, Wang L, Chen W (2013) Role of the Phenylalanine-Hydroxylating system in aromatic substance degradation and lipid metabolism in the oleaginous fungus Mortierella alpina. Appl Environ Microbiol 79:3225–3233

    Article  CAS  Google Scholar 

  • Wu Y-R, Luo Z-H, Vrijmoed LLP (2010) Biodegradation of anthracene and benz[a]anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresour Technol 101:9666–9672

    Article  CAS  Google Scholar 

  • Zafra G, Absalón ÁE, Cuevas MDC, Cortés-Espinosa DV (2014) Isolation and selection of a highly tolerant microbial consortium with potential for PAH biodegradation from heavy crude oil-contaminated soils. Water Air Soil Pollut 225:1–18

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the PROCOPE-DAAD fellowship allowing the international cooperation with a French-German joint-supervised PhD-thesis of A. Fayeulle. A DNA-based approach used for the detection and quantification of fungi in soil has been conducted by ENOVEO, Lyon, France.

Funding

This study was financially supported by the Agency for the Environment and Energy Management (ADEME, France) and the Région Nord-Pas de Calais (France).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antoine Fayeulle or Catherine Rafin.

Additional information

Responsible editor: Jizheng He

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayeulle, A., Veignie, E., Schroll, R. et al. PAH biodegradation by telluric saprotrophic fungi isolated from aged PAH-contaminated soils in mineral medium and historically contaminated soil microcosms. J Soils Sediments 19, 3056–3067 (2019). https://doi.org/10.1007/s11368-019-02312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02312-8

Keywords

Navigation