Skip to main content

Advertisement

Log in

Role of Biochar and Fungi on PAH Sorption to Soil Rich in Organic Matter

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The use of biochar (BC) has been suggested for remediation of contaminated soils. This study aims to investigate the role of microorganisms in sorption of PAH to BC-amended soils. Fungi, especially the wood and litter-degrading fungi, have shown the ability for humification and to degrade recalcitrant molecules, and are thus suitable model organisms. Haplic Arenosol with high organic matter content was chosen to highlight the importance of soil organic matter (SOM) in PAH sorption, possibly to form non-extractable residue. Basidiomycetous fungi Agrocybe praecox and Phanerochaete velutina grown on pine bark were inoculated in organic matter (OM)-rich Haplic Arenosol and OM-poor sandy loam with either BC or chemically activated BC (ABC) and 14C-labelled pyrene for 60 days. Fungi did not mineralize pyrene, but increased sorption up to 47–56% in BC-amended Haplic Arenosol in comparison with controls (13–25%) without a fungus irrespective of the presence of an adsorbent. In OM-poor sandy loam, only 9–12% of pyrene was sorbed to amended soil in the presence of fungus and adsorbent. The results suggest that BC and fungal amendment increased sorption of pyrene, especially to Haplic Arenosol more than by either BC or fungi alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abujabhah, I. S., Bound, S. A., Doyle, R., & Bowman, J. P. (2016). Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Applied Soil Ecology, 98, 243–253.

    Article  Google Scholar 

  • Al Marzooqi, F., & Yousef, L. F. (2017). Biological response of a sandy soil treated with biochar derived from a halophyte (Salicornia bigelovii). Applied Soil Ecology, 114, 9–15.

    Article  Google Scholar 

  • Anasonye F., Winquist E., Kluczek-Turpeinen B., Räsänen M., Salonen K., Steffen K.T., Tuomela M. (2014) Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil. Chemosphere 110:85-90. https://doi.org/10.1016/j.chemosphere.2014.03.079

  • Anasonye, F., Winquist, E., Räsänen, M., Kontro, J., Björklöf, K., Vasilyeva, G., Jørgensen, K. S., Steffen, K. T., & Tuomela, M. (2015). Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale conditions. International Biodeterioration & Biodegradation, 105, 7–12.

    Article  CAS  Google Scholar 

  • Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A., & Sherlock, R. R. (2011). Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54, 309–320.

    Article  CAS  Google Scholar 

  • Angst, T. E., Patterson, C. J., Reay, D. S., Anderson, P., Peshkur, T. A., & Sohi, S. P. (2013). Biochar diminishes nitrous oxide and nitrate leaching from diverse nutrient sources. Journal of Environmental Quality, 42, 672–682.

    Article  CAS  Google Scholar 

  • Anyika, C., Majid, Z. A., Ibrahim, Z., Zakaria, M. P., & Yahya, A. (2015). The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils—a review. Environmental Science and Pollution Research, 22, 3314–3341. https://doi.org/10.1007/s11356-014-3719-5

  • Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269–3282.

    Article  CAS  Google Scholar 

  • Berry, D. F., & Boyd, S. A. (1984). Oxidative coupling of phenols and anilines by peroxidase: structure-activity relationships. Soil Science Society of America Journal, 48, 565–569.

    Article  CAS  Google Scholar 

  • Bollag, J. M. (1992). Decontaminating soil with enzymes. Environmental Science & Technology, 26, 1876–1881.

    Article  CAS  Google Scholar 

  • Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B Methodological, 211–252.

  • Case, S. D., McNamara, N. P., Reay, D. S., & Whitaker, J. (2012). The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil–the role of soil aeration. Soil Biology and Biochemistry, 51, 125–134.

    Article  CAS  Google Scholar 

  • Chen, S., & Liao, C. (2006). Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Science of the Total Environment, 366, 112–123.

    Article  CAS  Google Scholar 

  • Chen, B., & Yuan, M. (2011). Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. Journal of Soils and Sediments, 11, 62–71.

    Article  Google Scholar 

  • Cheng, C., & Lehmann, J. (2009). Ageing of black carbon along a temperature gradient. Chemosphere, 75, 1021–1027.

    Article  CAS  Google Scholar 

  • Cornelissen, G., Breedveld, G. D., Kalaitzidis, S., Christanis, K., Kibsgaard, A., & Oen, A. M. (2006). Strong sorption of native PAHs to pyrogenic and unburned carbonaceous geosorbents in sediments. Environmental Science & Technology, 40, 1197–1203.

    Article  CAS  Google Scholar 

  • Dai, Z., Hu, J., Zhang, L., Brookes, P. C., He, Y., & Xu, J. (2016). Sensitive responders among bacterial and fungal microbiome to pyrogenic organic matter (biochar) addition differed greatly between rhizosphere and bulk soils. Scientific Reports, 6, 36101.

    Article  CAS  Google Scholar 

  • Dai, Z., Hu, J., Barberan, A., Li, Y., Brookes, P. C., He, Y., & Xu, J. (2017). Bacterial community composition associated with pyrogenic organic matter (biochar) varies with pyrolysis temperature and colonization environment. Applied and Environmental Science, 2(2), e00085–e00017.

    Google Scholar 

  • de Andrés, J. M., Orjales, L., Narros, A., de la Fuente Mdel, M., & Rodríguez, M. E. (2013). Carbon dioxide adsorption in chemically activated carbon from sewage sludge. Journal of the Air & Waste Management Association, 63, 557–564.

    Article  Google Scholar 

  • Dec, J., Haider, K., & Bollag, J. (2001). Decarboxylation and demethoxylation of naturally occurring phenols during coupling reactions and polymerization. Soil Science, 166, 660–671.

    Article  CAS  Google Scholar 

  • Deng, S., & Zeng, D. (2017). Removal of phenanthrene in contaminated soil by combination of alfalfa, white-rot fungus and earthworm. Environmental Science and Pollution Research, 24, 7565–7571.

    Article  CAS  Google Scholar 

  • Ding, Y., Liu, Y., Liu, S., Zhongwu, L., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. Agronomy for Sustainable Development, 36, 1–18.

    Article  Google Scholar 

  • EBC. (2012). European biochar Certificate—guidelines for a sustainable production of biochar. European biochar Foundation (EBC), Arbaz, Switzerland. http://www.european biochar.org/en/download. Version 6.2E of 04th February 2016. https://doi.org/10.13140/RG.2.1.4658.7043.

  • FAO-UNESCO. (1997). Soil map of the world. Revised legend, with corrections and updates. World Soil Resources Report 60, Reprinted with updates as Technical paper 20, International Soil Reference and Information Centre, Wageningen, 140 p.

  • Farrell, M., Kuhn, T. K., Macdonald, L. M., Maddern, T. M., Murphy, D. V., Hall, P. A., Singh, B. P., Baumann, K., Krull, E. S., & Baldock, J. A. (2013). Microbial utilisation of biochar-derived carbon. Science of the Total Environment, 465, 288–297.

    Article  CAS  Google Scholar 

  • García-Delgado, C., Alfano-Barta, I., & Eymar, E. (2015). Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil. Journal of Hazardous Materials, 285, 259–266.

    Article  Google Scholar 

  • Gibson, C., Berry, T. D., Wang, R., Spencer, J. A., Johnston, C. T., Jiang, Y., Bird, J. A., & Filley, T. R. (2016). Weathering of pyrogenic organic matter induces fungal oxidative enzyme response in single culture inoculation experiments. Organic Geochemistry, 92, 32–41.

    Article  CAS  Google Scholar 

  • Grossman, J. M., O’Neill, B. E., Tsai, S. M., Liang, B., Neves, E., Lehmann, J., & Thies, J. E. (2010). Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microbial Ecology, 60, 192–205.

    Article  CAS  Google Scholar 

  • Hale, S., Hanley, K., Lehmann, J., Zimmerman, A., & Cornelissen, G. (2011). Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environmental Science & Technology, 45, 10445–10453.

    Article  CAS  Google Scholar 

  • Held, T., Draude, G., Schmidt, F., Brokamp, A., & Reis, K. (1997). Enhanced humification as an in-situ bioremediation technique for 2, 4, 6-trinitrotoluene (TNT) contaminated soils. Environmental Science & Technology, 18, 479–487.

    Article  CAS  Google Scholar 

  • Hilber, I., Blum, F., Leifeld, J., Schmidt, H. P., & Bucheli, T. (2012). Quantitative determination of PAHs in biochar: a prerequisite to ensure its quality and safe application. Journal of Agricultural and Food Chemistry, 60, 3042–3050.

    Article  CAS  Google Scholar 

  • IBI. (2015). Standardized product definition and product testing guidelines for biochar that is used in soil. International biochar Initiative, p.15 http://www.biocharinternational.org/sites/default/files/IBI_Biochar_Standards_V2.1.pdf. Accessed 18 Dec 2016.

  • Ilvesniemi, H., Giesle, R., van Hees, P., Magnussson, T., & Melkerud, P. A. (2000). General description of the sampling techniques and the sites investigated in the Fennoscandinavian podzolization project. Geoderma, 94, 109–123.

    Article  Google Scholar 

  • Impellitteri, C. A., Lu, Y., Saxe, J. K., Allen, H. E., & Peijnenburg, W. J. (2002). Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environment International, 28, 401–410.

    Article  CAS  Google Scholar 

  • Jin, H. (2010.) Characterization of microbial life colonizing biochar and biochar-amended soils. PhD Dissertation, Cornell University, Ithaca.

  • Jones, D., Rousk, J., Edwards-Jones, G., DeLuca, T., & Murphy, D. (2012). Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology and Biochemistry, 45, 113–124.

    Article  CAS  Google Scholar 

  • Kästner, M., Nowak, K. M., Miltner, A., Stefan, T., & Schäffer, A. (2014). Classification and modelling of nonextractable residue (NER) formation of xenobiotics in soil—a synthesis. Critical Reviews in Environmental Science and Technology, 44, 2107–2171.

    Article  Google Scholar 

  • Khadem, A., & Raiesi, F. (2017). Responses of microbial performance and community to corn biochar in calcareous sandy and clayey soils. Applied Soil Ecology, 114, 16–27.

    Article  Google Scholar 

  • Khan, S. (1978). The interaction of organic matter with pesticides. In M. Schnitzer (Ed.), Soil organic matter: development in soil science (pp. 137–171). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Kolton, M., Meller, H. Y., Pasternak, Z., Graber, E. R., Elad, Y., & Cytryn, E. (2011). Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied Environmental Microbiology, 77, 4924–4930.

    Article  CAS  Google Scholar 

  • Kumari, K., Moldrup, P., Paradelo, M., & de Jonge, L. W. (2014). Phenanthrene sorption on biochar-amended soils: application rate, aging, and physicochemical properties of soil. Water, Air, & Soil Pollution, 225, 1–13.

    Article  CAS  Google Scholar 

  • Kurth, V., MacKenzie, M., & DeLuca, T. (2006). Estimating charcoal content in forest mineral soils. Geoderma, 137, 135–139.

    Article  CAS  Google Scholar 

  • Lalhruaitluanga, H., Prasad, M., & Radha, K. (2011). Potential of chemically activated and raw charcoals of Melocanna baccifera for removal of Ni (II) and Zn (II) from aqueous solutions. Desalination, 271, 301–308.

    Article  CAS  Google Scholar 

  • Lamichhane, S., Krishna, K., & Sarukkalige. (2016). Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere, 148, 336–353.

    Article  CAS  Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—a review. Soil Biology and Biochemistry, 43, 1812–1836.

    Article  CAS  Google Scholar 

  • Lian, F., Sun, B., Chen, X., Zhu, L., Liu, Z., & Xing, B. (2015). Effect of humic acid (HA) on sulfonamide sorption by biochars. Environmental Pollution, 204, 306–312.

    Article  CAS  Google Scholar 

  • Liedekerke, M., Prokop, G., Rabl-Berger, S., Kibblewhite, Louwagie, G. (2014). Progress in the management of contaminated sites in Europe. JRC Reference Reports, Joint Research Centre, Report EUR 26376 EN, European Commission. http://www.eea.europa.eu/data-and-maps/indicators/progress-in-management-of-contaminated-sites-3/joint-research-centre-2014-progress. Accessed 06 Sept 2016.

  • Liu, P., Liu, W., Jiang, H., Chen, J., Li, W., & Yu, H. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121, 235–240.

    Article  CAS  Google Scholar 

  • Macleod, C. J., & Semple, K. T. (2002). The adaptation of two similar soils to pyrene catabolism. Environmental Pollution, 119, 357–364.

    Article  CAS  Google Scholar 

  • Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Science, 333, 117–128.

    CAS  Google Scholar 

  • Martin, S. M., Kookana, R. S., Van Zwieten, L., & Krull, E. (2012). Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. Journal of Hazardous Materials, 231, 70–78.

    Article  Google Scholar 

  • Mitchell, P. J., Dalley, T. S., & Helleur, R. J. (2013). Preliminary laboratory production and characterization of biochars from lignocellulosic municipal waste. Journal of Analytical and Applied Pyrolysis, 99, 71–78.

    Article  CAS  Google Scholar 

  • Mitchell, P. J., Simpson, A. J., Soong, R., Schurman, J. C., Thomas, S. C., & Simpson, M. J. (2016). Biochar amendment and phosphorus altered forest soil microbial community and native soil organic matter molecular composition. Biogeochemistry, 130, 227–245.

    Article  CAS  Google Scholar 

  • Murphy, B. L., & Brown, J. (2005). Environmental forensics aspects of PAHs from wood treatment with creosote compounds. Environmental Forensics, 6, 151–159.

    Article  CAS  Google Scholar 

  • Nielsen, S., Minchin, T., Kimber, S., van Zwieten, L., Gilbert, J., Munroe, P., Joseph, S., & Thomas, T. (2014). Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agriculture, Ecosystems & Environment, 191, 73–82.

    Article  Google Scholar 

  • Noyce, G. L., Winsborough, C., Fulthorpe, R., & Basiliko, N. (2016). The microbiomes and metagenomes of forest biochars. Scientific Reports, 6, 26425.

    Article  CAS  Google Scholar 

  • O’Neill, B., Grossman, J., Tsai, M., Gomes, J., Lehmann, J., Peterson, J., Neves, E., & Thies, J. E. (2009). Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification. Microbial Ecology, 58, 23–35.

    Article  Google Scholar 

  • Ogbonnaya, U., Oyelami, A., Matthews, J., Adebisi, O., & Semple, K. T. (2014). Influence of wood biochar on phenanthrene catabolism in soils. Environments, 1, 60–74.

    Article  Google Scholar 

  • Olivella, Costa, À., Fernández, I., Cano, L., Jové, P., & Oliveras, A. (2013). Role of chemical components of cork on sorption of aqueous polycyclic aromatic hydrocarbons. International Journal of Environmental Research, 1, 225–234.

    Google Scholar 

  • Pan, F., Li, Y., Chapman, S. T., Khan, S., & Yao, H. (2016). Microbial utilization of rice straw and its derived biochar in a paddy soil. Science of the Total Environment, 559, 15–23.

    Article  CAS  Google Scholar 

  • Park, J., Hung, I., Gan, Z., Rojas, O. J., Lim, K. H., & Park, S. (2013). Activated carbon from biochar: influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresource Technology, 149, 383–389.

    Article  CAS  Google Scholar 

  • Pietikäinen, J., Kiikkilä, O., & Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89, 231–242.

    Article  Google Scholar 

  • Pignatello, J. J., Kwon, S., & Lu, Y. (2006). Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environmental Science & Technology, 40, 7757–7763.

    Article  CAS  Google Scholar 

  • Prayogo, C., Jones, J. E., & Bending, G. D. (2013). Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biology and Fertility of Soils, 50, 695–702.

    Article  Google Scholar 

  • Quilliam, R. S., Glanville, H. C., Wade, S. C., & Jones, D. L. (2013a). Life in the charosphere—does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biology and Biochemistry, 69, 287–293.

    Article  Google Scholar 

  • Quilliam, R. S., Rangecroft, S., Emmett, B. A., Deluca, T. H., & Jones, D. L. (2013b). Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? GCB Bioenergy, 5, 96–103.

    Article  CAS  Google Scholar 

  • Rhodes, A., Carlin, A., & Semple, K. T. (2008). Impact of black carbon in the extraction and mineralization of phenanthrene in soil. Science of the Total Environment, 42, 740–745.

    Article  CAS  Google Scholar 

  • Rumpel, C., Alexis, M., Chabbi, A., Chaplot, V., Rasse, D. P., Valentin, C., & Mariotti, A. (2006). Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma, 130, 35–46.

    Article  CAS  Google Scholar 

  • Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 22, 1315–1324.

    Article  Google Scholar 

  • Soil Survey Staff. (1998). Keys to soil taxonomy. United States Department of Agriculture/Natural Resources Conservation Service.

  • Steffen, K., Hatakka, A., & Hofrichter, M. (2002). Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Applied Microbiology and Biotechnology, 60, 212–217.

    Article  CAS  Google Scholar 

  • Taketani, R.G., Lima, A.B., da Conceição Jesus, E., Teixeira W.G., Tiedje J.M., Tsai S/M. (2013). Bacterial community composition of anthropogenic biochar and Amazonian anthrosols assessed by 16S rRNA gene 454 pyrosequencing. Antonie van Leeuwenhoek 104:233-242. https://doi.org/10.1007/s10482-013-9942-0

  • Tammeorg, P., Parviainen, T., Nuutinen, V., Simojoki, A., Vaara, E., & Helenius, J. (2014a). Effects of biochar on earthworms in arable soil: avoidance test and field trial in boreal loamy sand. Agriculture, Ecosystems & Environment, 191, 150–157.

    Article  CAS  Google Scholar 

  • Tammeorg, P., Simojoki, A., Mäkelä, P., Stoddard, F. L., Alakukku, L., & Helenius, J. (2014b). Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand. Agriculture, Ecosystems & Environment, 191, 108–116.

    Article  CAS  Google Scholar 

  • Tuomela, M., Lyytikäinen, M., Oivanen, P., & Hatakka, A. (1999). Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungi Trametes versicolor. Soil Biology and Biochemistry, 31, 65–74.

    Article  CAS  Google Scholar 

  • Tuomela, M., Oivanen, P., & Hatakka, A. (2002). Degradation of synthetic 14C-lignin by various white-rot fungi in soil. Soil Biology and Biochemistry, 34, 1613–1620.

    Article  CAS  Google Scholar 

  • Valentín, L., Oesch-Kuisma, H., Steffen, K. T., Kähkönen, M. A., Hatakka, A., & Tuomela, M. (2013). Mycoremediation of wood and soil from an old sawmill area contaminated for decades. Journal of Hazardous Materials, 260, 668–675.

    Article  Google Scholar 

  • Warnock, D. D., Lehmann, J., Kuype, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant and Soil, 300, 9–20.

    Article  CAS  Google Scholar 

  • Watzinger, A., Feichtmair, S., Kitzler, B., Zehetner, F., Kloss, S., Wimmer, B., Zechmeister-Boltenstern, S., & Soja, G. (2014). Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: results from a short-term incubation and pot experiment. European Journal of Soil Science, 65, 40–51.

    Article  CAS  Google Scholar 

  • Winquist, E., Björklöf, K., Schultz, E., Räsänen, M., Salonen, K., Anasonye, F., Cajthaml, T., Steffen, K. T., Jørgensen, K. S., & Tuomela, M. (2014). Bioremediation of PAH-contaminated soil with fungi—from laboratory to field scale. International Biodeterioration & Biodegradation, 86, 238–247.

    Article  CAS  Google Scholar 

  • Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1, 56.

    Article  Google Scholar 

  • Zhang, H., Lin, K., Wang, H., & Gan, J. (2010). Effect of Pinus radiata derived biochar on soil sorption and desorption of phenanthrene. Environmental Pollution, 158, 2821–2825.

    Article  CAS  Google Scholar 

  • Zhang, Q., Zhou, W., Liang, G. Q., Sun, J. W., Wang, X. B., & He, P. (2015). Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment. Applied Soil Ecology, 94, 59–71.

    Article  Google Scholar 

  • Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environmental Pollution, 227, 98–115.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Jussi Heinonsalo, Kati Hakala and Kari Steffen for providing the experimental soils, and Kaj-Roger Hurme for providing the guidance in working with labelled compounds. This research was funded by Maj and Tor Nessling Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Festus Anasonye.

Electronic supplementary material

ESM 1

(DOCX 23 kb)

ESM 2

(DOCX 17 kb)

ESM 3

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anasonye, F., Tammeorg, P., Parshintsev, J. et al. Role of Biochar and Fungi on PAH Sorption to Soil Rich in Organic Matter. Water Air Soil Pollut 229, 49 (2018). https://doi.org/10.1007/s11270-018-3708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3708-2

Keywords

Navigation