Skip to main content

Advertisement

Log in

Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Biological nitrogen fixation (BNF) plays an important role in nitrogen cycling by transferring atmospheric dinitrogen to the soil. BNF is performed by symbiotic and asymbiotic nitrogen-fixing microorganisms. However, the abundance, activity, and community structure of diazotrophs under different nitrogen fertilizer application rates and how root exudates influence diazotrophs remain unclear.

Materials and methods

15N-N2 and 13C-CO2 labeling, DNA-based stable isotope probing (SIP), and molecular biological techniques were used in this study. The abundance, activity, and structure of symbiotic and asymbiotic diazotrophs under different nitrogen fertilizer applications in paddy soil were investigated.

Results and discussion

We found that the nitrogen fixation capacity in milk vetch (Astragalus sinicus L.) and nifH gene abundance in the root nodules were significantly higher in the low-nitrogen treatment than in the control (zero) and high-nitrogen treatments. Nitrogen-fixing bacteria were abundant in the soils with a high biodiversity. Soil nifH gene sequences were dominated by α-, β-, and δ-proteobacteria, as well as by Cyanobacteria. The relative abundance of α-proteobacteria was lower, and the relative abundance of Cyanobacteria was higher under high nitrogen. Incubation of soil with 13CO2 and subsequent DNA-SIP analysis demonstrated that OTU65 from α-proteobacteria was relatively more abundant in heavy fractions of the 13C-labeled soils than that in the unlabeled soils, indicating that α-proteobacteria may prefer rhizodeposition carbon to other organic carbon. However, OTU24 and OTU73 from δ-proteobacteria had relatively high abundances in light fractions both in the 13C-labeled and unlabeled samples, indicating that δ-proteobacteria may prefer other soil organic carbon to rhizodeposition carbon.

Conclusions

The results suggested that soil N availability and rhizodeposition strongly modified the microbial communities of nitrogen-fixing bacteria. Moderate nitrogen application increased the symbiotic biological N fixing activity in the Astragalus sinicus L. rhizosphere. The BNF activity in the legume-rhizobia system is regulated by the exchange of organic C and N nutrient between the host plant and N-fixing bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Funding

This work was supported by the National Natural Science Foundation of China (41525002, 41877051, 41761134085), the National Key R & D Program of China (2017YFD0200102), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDB15020301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiying Yao.

Additional information

Responsible editor: Yuan Ge

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Pan, F. & Yao, H. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. J Soils Sediments 19, 1948–1958 (2019). https://doi.org/10.1007/s11368-018-2192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2192-z

Keywords

Navigation