Skip to main content
Log in

Changes in soil bacterial communities in an evergreen broad-leaved forest in east China following 4 years of nitrogen addition

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Evergreen broad-leaved forest ecosystems are common in east China, where they are both ecologically and economically important. However, nitrogen (N) addition over many years has had a detrimental effect on these ecosystems. The objective of this research was to evaluate the effect of 4 years of N addition on microbial communities in an evergreen broad-leaved forest in southern Anhui, China.

Materials and methods

Allochthonous N in the form of aqueous NH4NO3 and phosphorus (P) in the form of Ca(H2PO4)2·H2O were applied at three doses with a control (CK, stream water only without fertilizer): low-N (50 kg N ha−1 year−1), high-N (100 kg N ha−1 year−1) and high-N+P (100 kg N ha−1 year−1 + 50 kg P ha−1 year−1). Quantitative PCR analysis of microbial community size and Illumina platform-based sequencing analysis of the V3-V4 16S rRNA gene region were performed to characterize soil bacterial community abundance, structure, and diversity.

Results and discussion

Bacterial diversity was increased in low-N and high-N treatments and decreased in the high-N+P treatment, but α-diversity indices were not significantly affected by N additions. Proteobacteria, Acidobacteria, and Actinobacteria were the predominant phyla in all treatments, and the relative abundance of different genera varied among treatments. Only soil pH (P = 0.051) showed a weak correlation with the bacterial community in CK and low-N treatment.

Conclusions

The composition of the bacterial community and the abundance of different phyla were significantly altered by N addition. The results of the present study indicate that soil bacterial communities in subtropical evergreen broad-leaved forest are, to a certain extent, resilient to changes derived from N additions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–386

    Article  Google Scholar 

  • Bardhan S, Jose S, Jenkins MA, Webster CR, Udawatta RP, Stehn SE (2012) Microbial community diversity and composition across a gradient of soil acidity in spruce–fir forests of the southern Appalachian Mountains. Appl Soil Ecol 61:60–68

    Article  Google Scholar 

  • Boxman AW, Blanck K, Brandrud TE (1998) Vegetation and soil biota response to experimentally changed nitrogen inputs in coniferous forest ecosystems of the NITREX project. Forest Ecol Manag 101:65–79

    Article  Google Scholar 

  • Brookes PC, Landman A (1985) Chloroform fumigation and the release of soil N: a rapid direct extraction method to measure microbial biomass in soil. Soil Biol Biochem 17:837–842

  • Brons JK, van Elsas JD (2008) Analysis of bacterial communities in soil by use of denaturing gradient gel electrophoresis and clone libraries, as influenced by different reverse primers. Appl Environ Microbiol 74:2717–2727

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  • Carson JK, Campbell L, Rooney D, Clipson N, Gleeson DB (2009) Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol Ecol 67:381–388

    Article  CAS  Google Scholar 

  • Chao A (1984) Non-parametric estimation of the classes in a population. Scand J Stat 11:265–270

  • Coleman DC, Whitman WB (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia 49:479–497

    Article  CAS  Google Scholar 

  • Ding JL, Jiang X, Ma MC, Zhou BK, Guan DW, Zhao BS, Zhou J, Cao FM, Li L, Li J (2016) Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Appl Soil Ecol 105:187–195

    Article  Google Scholar 

  • Dion P (2008) Extreme views on prokaryote evolution. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin, pp 45–70

    Chapter  Google Scholar 

  • Drenovsky RE, Vo D, Graham KJ, Scow KM (2004) Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb Ecol 48:424–430

    Article  CAS  Google Scholar 

  • Du E, Liu X (2014) High rates of wet nitrogen deposition in China: a synthesis. In: Sutton MA, Mason KE, Sheppard LJ, Sverdrup H, Haeuber R, Kevin HW (eds) Nitrogen deposition, critical loads and biodiversity. Proceedings of the International Nitrogen Initiative Workshop, linking experts of the Convention on Long-range Transboundary AirPollution and the Convention on Biological diversity. Springer, Netherlands, pp 48–56

    Google Scholar 

  • Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microb 68:3035–3045

    Article  CAS  Google Scholar 

  • Fazi S, Amalfitano S, Pernthaler J, Puddu A (2005) Bacterial communities associated with benthic organic matter in headwater stream microhabitats. Environ Microbiol 7:1633–1640

    Article  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  Google Scholar 

  • Fierer N, Lauber LC, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017

    Article  CAS  Google Scholar 

  • Frey SD, Ollinger S, Nadelhoffer K, Bowden R, Brzostek E, Burton A, Caldwell BA, Crow S, Goodale CL, Grandy AS, Finzi AC, Kramer MG, Lajtha K, LeMoine J, Martin M, McDowell WH, Minocha R, Sadowsky JJ, Templer PH, Wickings K (2014) Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry 121:305–316

    Article  CAS  Google Scholar 

  • Galloway JN, Schlesinger WH, Levy H, Michaels A, Schnoor JL (1995) Nitrogen fixation: Anthropogenic enhancement-enviromental response. Global Biogeochem Cy 9:235–252

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  • Hartman WH, Richardson CJ, Vilgalys R, Bruland GL (2008) Environmental and anthropogenic controls over bacterial communities in wetland soils. P Natl Acad Sci USA 105:17842

    Article  CAS  Google Scholar 

  • Holland EA, Braswell BH, Sulzman J, Lamarque JF (2005) Nitrogen deposition onto the United States and Western Europe: synthesis of observation and models. Ecol Appl 15:38–57

    Article  Google Scholar 

  • Huang W, Liu J, Wang YP, Zhou G, Han T, Li Y (2012) Increasing phosphorus limitation along three successional forests in southern China. Plant Soil 364:181–191

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiang Y, Chen C, Xu Z, Liu Y (2011) Effects of single and mixed species forest ecosystems on diversity and function of soil microbial community in subtropical China. J Soils Sediments 12:228–240

    Article  Google Scholar 

  • Jones D, Willett V (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Li P, Han W, Zhang C, Tian D, Xu XN, Fang JY (2015) Nutrient resorption of Castanopsiseyrei varies at the defoliation peaks in spring and autumn in a subtropical forest, Anhui, China. Ecol Res 30:111–118

    Article  Google Scholar 

  • Lin YT, Jangid K, Whitman WB, Coleman DC, Chiu CY (2011) Soil bacterial communities in native and regenerated perhumid montane forests. Appl Soil Ecol 47:111–118

    Article  Google Scholar 

  • Lu XK, Mao QG, Gilliam F, Mo JM (2014) Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob Chang Biol 20:3790–3801

    Article  Google Scholar 

  • McCaig AE, Glover LA, Prosser JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65:1721–1730

    CAS  Google Scholar 

  • Meng H, Li K, Nie M, Wan JR, Quan ZX, Fang CM, Chen JK, Gu JD, Li B (2013) Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China. Appl Microbial Biot 97:2219–2230

    Article  CAS  Google Scholar 

  • Pei Z, Eichenberg D, Bruelheide H, Kröber W, Kühn P, Li Y, von Oheimb G, Purschke O, Scholten T, François Buscot F, Gutknecht JLM (2016) Soil and tree species traits both shape soil microbial communities during early growth of Chinese subtropical forests. Soil Biol Biochem 96:180–190

    Article  CAS  Google Scholar 

  • Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–529

    Article  CAS  Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  Google Scholar 

  • Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224

    Article  CAS  Google Scholar 

  • Song YC (1995) On the global position of the evergreen broad-leaved forests of China. In: Box EO, Peet RK, Masuzawa T, Yamada I, Fujiwara K, Maycock PF (eds) Vegetation science in forestry: global perspective based on Forest ecosystems of east and South-East Asia. Springer, Berlin, pp 69–84

    Google Scholar 

  • Sun H, Terhonen E, Koskinen K, Paulin L, Kasanen R, Asiegbu FO (2014) Bacterial diversity and community structure along different peat soils in boreal forest. Appl Soil Ecol 74:37–45

    Article  Google Scholar 

  • Tang J, Ding X, Wang L, Xu Q, Yang Z, Zhao J, Sun Q, Feng S, Zhang J (2012) Effects of wetland degradation on bacterial community in the Zoige Wetland of Qinghai-Tibetan Plateau (China). World J Microb Biot 28:649–657

    Article  Google Scholar 

  • Turlapati SA, Minocha R, Bhiravarasa PS, Tisa LS, Thomas WK, Minocha SC (2013) Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. FEMS Microbiol Ecol 83:478–493

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, MAston PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 20:5–15

    Article  Google Scholar 

  • Wallenstein MD, McMahon S, Schimel J (2007) Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. Microb Ecol 59:428–435

    Article  CAS  Google Scholar 

  • Wang X, Wang XL, Zhang WX, Shao YH, Zou XM, Liu T, Zhou LX, Wan SZ, Rao XQ, Li ZA, Fu SL (2016) Invariant community structure of soil bacteria in subtropical coniferous and broadleaved forests. Sci Rep 6:19071

    Article  CAS  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Wu YT, Gutknecht J, Nadrowski K, Geißler C, Kühn P, Scholten T, Both S, Erfmeier A, Böhnke M, Bruelheide H, Wubet T, Buscot F (2012) Relationships between soil microorganisms, plant communities, and soil characteristics in Chinese subtropical forests. Ecosystems 15:624–636

    Article  CAS  Google Scholar 

  • Yang J, Ke L, Cui J, Xu XN (2014) Responses of soil dissolved organic carbon and microbial biomass carbon to N and P addition in a subtropical evergreen broad-leaved forest. Chin J Soil Sci 45:902–909 (in Chinese with English abstract)

    Google Scholar 

  • Zeng J, Liu X, Song L, Lin X, Zhang H, Shen C, Chu H (2016) Nitrogen fertilization directly affects soil bacterial diversity andindirectly affects bacterial community composition. Soil Biol Biochem 92:41–49

    Article  CAS  Google Scholar 

  • Zhang C, Zhang L, Li P, Shi WT, Xu XN (2014a) Effect of elevated N deposition on litterfall productionand seasonality in a subtropical evergreen broad-leaved forest. Chin J Ecol 33:1205–1210 (in Chinese with English abstract)

    Google Scholar 

  • Zhang X, Wei H, Chen Q, Han X (2014b) The counteractive effects of nitrogen addition and watering on soil bacterial communities in asteppe ecosystem. Soil Biol Biochem 72:26–34

    Article  CAS  Google Scholar 

  • Zhou LL, Addo-Danso SD, Wu PF, Li SB, Zou XH, Zhang Y, Ma XQ (2016) Leaf resorption efficiency in relation to foliar and soil nutrient concentrations and stoichiometry of Cunninghamia lanceolata with stand development in southern China. J Soils Sediments 5:1448–1459

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (NSFC, No. 31370626) and the National Basic Research Program of China (973 Program, No. 2010CB950602). We gratefully acknowledge field assistance from C. Zhang, X. Yu, D. Tian, L. Ke, Z. F. Wang, and W. Fan. In the laboratory, we gratefully acknowledge C. Shi and Y. L. Wang for assistance with molecular biology experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoniu Xu.

Additional information

Responsible editor: Jizheng He

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Wang, J., Xu, J. et al. Changes in soil bacterial communities in an evergreen broad-leaved forest in east China following 4 years of nitrogen addition. J Soils Sediments 17, 2156–2164 (2017). https://doi.org/10.1007/s11368-017-1671-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-017-1671-y

Keywords

Navigation