Skip to main content

Advertisement

Log in

Long-term effects of canagliflozin treatment on the skeleton of aged UM-HET3 mice

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Sodium glucose cotransporter-2 inhibitors (SGLT2is) promote urinary glucose excretion and decrease plasma glucose levels independent of insulin. Canagliflozin (CANA) is an SGLT2i, which is widely prescribed, to reduce cardiovascular complications, and as a second-line therapy after metformin in the treatment of type 2 diabetes mellitus. Despite the robust metabolic benefits, reductions in bone mineral density (BMD) and cortical fractures were reported for CANA-treated subjects. In collaboration with the National Institute on Aging (NIA)–sponsored Interventions Testing Program (ITP), we tested skeletal integrity of UM-HET3 mice fed control (137 mice) or CANA-containing diet (180 ppm, 156 mice) from 7 to 22 months of age. Micro-computed tomography (micro-CT) revealed that CANA treatment caused significant thinning of the femur mid-diaphyseal cortex in both male and female mice, did not affect trabecular bone architecture in the distal femur or the lumbar vertebra-5 in male mice, but was associated with thinning of the trabeculae at the distal femur in CANA-treated female mice. In male mice, CANA treatment is associated with significant reductions in cortical bone volumetric BMD by micro-CT, and by quantitative backscattered scanning electron microscopy. Raman microspectroscopy, taken at the femur mid-diaphyseal posterior cortex, showed significant reductions in the mineral/matrix ratio and an increased carbonate/phosphate ratio in CANA-treated male mice. These data were supported by thermogravimetric assay (TGA) showing significantly decreased mineral and increased carbonate content in CANA-treated male mice. Finally, the sintered remains of TGA were subjected to X-ray diffraction and showed significantly higher fraction of whitlockite, a calcium orthophosphate mineral, which has higher resorbability than hydroxyapatite. Overall, long-term CANA treatment compromised bone morphology and mineral composition of bones, which likely contribute to increased fracture risk seen with this drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available upon request. Our studies do not include the use of custom code or mathematical algorithms. We have included citations for available data in the references section.

References

  1. Zhao FQ, et al. Cloning and expression of bovine sodium/glucose cotransporter SGLT2. J Dairy Sci. 2005;88(8):2738–48.

    Article  CAS  PubMed  Google Scholar 

  2. Vrhovac I, et al. Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch. 2015;467(9):1881–98.

    Article  CAS  PubMed  Google Scholar 

  3. Sabolic I, et al. Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am J Physiol Cell Physiol. 2012;302(8):C1174–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perkovic V, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  5. Wiviott SD, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.

    Article  CAS  PubMed  Google Scholar 

  6. Watts NB, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2016;101(1):157–66.

    Article  CAS  PubMed  Google Scholar 

  7. Zinman B, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  8. Fralick M, et al. Fracture risk after initiation of use of canagliflozin: a cohort study. Ann Intern Med. 2019;170(3):155–63.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol. 2015;3(1):8–10.

    Article  CAS  PubMed  Google Scholar 

  10. Kohan DE, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85(4):962–71.

    Article  CAS  PubMed  Google Scholar 

  11. Bilezikian JP, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol Metab. 2016;101(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Z, et al. Canagliflozin and fracture risk in individuals with type 2 diabetes: results from the CANVAS Program. Diabetologia. 2019;62(10):1854–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mamidi RN, et al. Metabolism and excretion of canagliflozin in mice, rats, dogs, and humans. Drug Metab Dispos. 2014;42(5):903–16.

    Article  PubMed  Google Scholar 

  14. Londzin P, et al. Unfavorable effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on the skeletal system of nondiabetic rats. Biomed Pharmacother. 2022;155: 113679.

    Article  CAS  PubMed  Google Scholar 

  15. FDA, U.S., U.S. Food and Drug Administration, Center for Drug Evaluation and Research. Pharmacology/Toxicology Review(s) of Canagliflozin NDA 204042 for the treatment of type 2 diabetes submitted by Janssen Pharmaceuticals Inc. on 31 May 2014, Pharmacology/Toxicology NDA Review and Evaluation. 264 pgs. 2014.

  16. De Jonghe S, et al. Carcinogenicity in rats of the SGLT2 inhibitor canagliflozin. Chem Biol Interact. 2014;224:1–12.

    Article  PubMed  Google Scholar 

  17. Thrailkill KM, et al. The impact of SGLT2 inhibitors, compared with insulin, on diabetic bone disease in a mouse model of type 1 diabetes. Bone. 2017;94:141–51.

    Article  CAS  PubMed  Google Scholar 

  18. Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet. 2005;20(6):452–77.

    Article  CAS  PubMed  Google Scholar 

  19. Miller RA, et al. Preservation of femoral bone thickness in middle age predicts survival in genetically heterogeneous mice. Aging Cell. 2011;10(3):383–91.

    Article  CAS  PubMed  Google Scholar 

  20. Reeves GM, et al. Quantitative trait loci modulate vertebral morphology and mechanical properties in a population of 18-month-old genetically heterogeneous mice. Bone. 2007;40(2):433–43.

    Article  CAS  PubMed  Google Scholar 

  21. Volkman SK, et al. Quantitative trait loci that modulate femoral mechanical properties in a genetically heterogeneous mouse population. J Bone Miner Res. 2004;19(9):1497–505.

    Article  CAS  PubMed  Google Scholar 

  22. Volkman SK, et al. Quantitative trait loci for femoral size and shape in a genetically heterogeneous mouse population. J Bone Miner Res. 2003;18(8):1497–505.

    Article  CAS  PubMed  Google Scholar 

  23. Miller RA, et al. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight. 2020;5(21):e140019. https://doi.org/10.1172/jci.insight.140019.

  24. Snyder JM, et al. Canagliflozin retards age-related lesions in heart, kidney, liver, and adrenal gland in genetically heterogenous male mice. Geroscience. 2023;45(1):385–97.

    Article  CAS  PubMed  Google Scholar 

  25. Boyde A, et al. Mineral density quantitation of the human cortical iliac crest by backscattered electron image analysis: variations with age, sex, and degree of osteoarthritis. Bone. 1995;16(6):619–27.

    Article  CAS  PubMed  Google Scholar 

  26. Vanleene M, et al. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone. 2012;50(6):1317–23.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Morris MD, Mandair GS. Raman assessment of bone quality. Clin Orthop Relat Res. 2011;469(8):2160–9.

    Article  PubMed  Google Scholar 

  28. Liao S, et al. The preparation and characteristics of a carbonated hydroxyapatite/collagen composite at room temperature. J Biomed Mater Res B Appl Biomater. 2005;74(2):817–21.

    Article  PubMed  Google Scholar 

  29. Meneghini C, et al. Rietveld refinement on x-ray diffraction patterns of bioapatite in human fetal bones. Biophys J. 2003;84(3):2021–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silva MJ, et al. Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6. J Biomech. 2004;37(11):1639–46.

    Article  PubMed  Google Scholar 

  31. Chen Q, et al. Congenital lack of COX-2 affects mechanical and geometric properties of bone in mice. Calcif Tissue Int. 2003;73(4):387–92.

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez-Florez N, et al. An investigation of the mineral in ductile and brittle cortical mouse bone. J Bone Miner Res. 2015;30(5):786–95.

    Article  CAS  PubMed  Google Scholar 

  33. Sarraju A, et al. Effects of canagliflozin on cardiovascular, renal, and safety outcomes in participants with type 2 diabetes and chronic kidney disease according to history of heart failure: Results from the CREDENCE trial. Am Heart J. 2021;233:141–8.

    Article  CAS  PubMed  Google Scholar 

  34. Bakris G, et al. Effects of canagliflozin in patients with baseline eGFR <30 ml/min per 1.73 m(2): subgroup analysis of the randomized CREDENCE trial. Clin J Am Soc Nephrol. 2020;15(12):1705–1714.

  35. Jardine MJ, et al. Renal, cardiovascular, and safety outcomes of canagliflozin by baseline kidney function: a secondary analysis of the CREDENCE randomized trial. J Am Soc Nephrol. 2020;31(5):1128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lou Y, et al. Sodium-glucose cotransporter 2 inhibitors and fracture risk in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Ther Adv Chronic Dis. 2020;11:2040622320961599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jayarathne HSM, et al. Neuroprotective effects of canagliflozin: lessons from aged genetically diverse UM-HET3 mice. Aging Cell. 2022;21(7): e13653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Inc., J.P.U.S.F.a.D.A., Center for Drug Evaluation and Research. Pharmacology/Toxicology Review(s) of Canagliflozin NDA 204042 for the treatment of type 2 diabetes submitted by Janssen Pharmaceuticals Inc., Pharmacology/Toxicology NDA Review and Evaluation. 264 pgs. 2014.

  39. Ye Y, et al. Effect of sodium-glucose co-transporter 2 inhibitors on bone metabolism and fracture risk. Front Pharmacol. 2018;9:1517.

    Article  CAS  PubMed  Google Scholar 

  40. Zibellini J, et al. Does diet-induced weight loss lead to bone loss in overweight or obese adults? A systematic review and meta-analysis of clinical trials. J Bone Miner Res. 2015;30(12):2168–78.

    Article  CAS  PubMed  Google Scholar 

  41. Williams GA, et al. In vitro and in vivo effects of adiponectin on bone. Endocrinology. 2009;150(8):3603–10.

    Article  CAS  PubMed  Google Scholar 

  42. Tamura T, et al. Serum leptin and adiponectin are positively associated with bone mineral density at the distal radius in patients with type 2 diabetes mellitus. Metabolism. 2007;56(5):623–8.

    Article  CAS  PubMed  Google Scholar 

  43. Jansson JO, et al. Body weight homeostat that regulates fat mass independently of leptin in rats and mice. Proc Natl Acad Sci U S A. 2018;115(2):427–32.

    Article  CAS  PubMed  Google Scholar 

  44. Thrailkill KM, et al. SGLT2 inhibitor therapy improves blood glucose but does not prevent diabetic bone disease in diabetic DBA/2J male mice. Bone. 2016;82:101–7.

    Article  CAS  PubMed  Google Scholar 

  45. Thrailkill KM, et al. Canagliflozin, an SGLT2 inhibitor, corrects glycemic dysregulation in TallyHO model of T2D but only partially prevents bone deficits. Bone. 2020;141: 115625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kawarasaki S, et al. Comparative analysis of the preventive effects of canagliflozin, a sodium-glucose co-transporter-2 inhibitor, on body weight gain between oral gavage and dietary administration by focusing on fatty acid metabolism. Diabetes Metab Syndr Obes. 2020;13:4353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang X, et al. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1alpha signalling pathway. Adipocyte. 2020;9(1):484–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Naznin F, et al. Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice. Eur J Pharmacol. 2017;794:37–44.

    Article  CAS  PubMed  Google Scholar 

  49. Hollander P, et al. Coadministration of canagliflozin and phentermine for weight management in overweight and obese individuals without diabetes: a randomized clinical trial. Diabetes Care. 2017;40(5):632–9.

    Article  CAS  PubMed  Google Scholar 

  50. Cefalu WT, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet. 2013;382(9896):941–50.

    Article  CAS  PubMed  Google Scholar 

  51. Merovci A, et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest. 2014;124(2):509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu L, et al. SGLT2 Inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–49.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hawley SA, et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular aMP levels. Diabetes. 2016;65(9):2784–94.

    Article  CAS  PubMed  Google Scholar 

  54. Ferrannini E, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124(2):499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferrannini E, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5):1190–5.

    Article  CAS  PubMed  Google Scholar 

  56. Blau JE, et al. Canagliflozin triggers the FGF23/1,25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight. 2018;3(8):e99123. https://doi.org/10.1172/jci.insight.99123.

  57. Bays HE, et al. Canagliflozin: effects in overweight and obese subjects without diabetes mellitus. Obesity (Silver Spring). 2014;22(4):1042–9.

    Article  CAS  PubMed  Google Scholar 

  58. Creecy A, et al. Changes in the fracture resistance of bone with the progression of type 2 diabetes in the ZDSD rat. Calcif Tissue Int. 2016;99(3):289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fu X, et al. Effects of ovariectomy on rat mandibular cortical bone: a study using Raman spectroscopy and multivariate analysis. Anal Chem. 2012;84(7):3318–23.

    Article  CAS  PubMed  Google Scholar 

  60. Iwasaki Y, et al. Changes in chemical composition of cortical bone associated with bone fragility in rat model with chronic kidney disease. Bone. 2011;48(6):1260–7.

    Article  CAS  PubMed  Google Scholar 

  61. Shen J, et al. A longitudinal Raman microspectroscopic study of osteoporosis induced by spinal cord injury. Osteoporos Int. 2010;21(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  62. Kohn DH, et al. Exercise alters mineral and matrix composition in the absence of adding new bone. Cells Tissues Organs. 2009;189(1–4):33–7.

    Article  PubMed  Google Scholar 

  63. McCreadie BR, et al. Bone tissue compositional differences in women with and without osteoporotic fracture. Bone. 2006;39(6):1190–5.

    Article  CAS  PubMed  Google Scholar 

  64. Yerramshetty JS, Lind C, Akkus O. The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone. 2006;39(6):1236–43.

    Article  CAS  PubMed  Google Scholar 

  65. Akkus O, Adar F, Schaffler MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004;34(3):443–53.

    Article  CAS  PubMed  Google Scholar 

  66. Tarnowski CP, Ignelzi MA Jr, Morris MD. Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res. 2002;17(6):1118–26.

    Article  PubMed  Google Scholar 

  67. Tuncer M, et al. Capacitive behaviour of nanocrystalline octacalcium phosphate (OCP) (Ca(8)H(2)(PO(4))(6).5H(2)O) as an electrode material for supercapacitors: biosupercaps. Nanoscale. 2019;11(39):18375–81.

    Article  CAS  PubMed  Google Scholar 

  68. Jang HL, et al. In vitro and in vivo evaluation of Whitlockite biocompatibility: comparative study with hydroxyapatite and beta-tricalcium phosphate. Adv Healthc Mater. 2016;5(1):128–36.

    Article  CAS  PubMed  Google Scholar 

  69. Bouxsein ML, et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25(7):1468–86.

    Article  PubMed  Google Scholar 

  70. Goldman HM, et al. Intrapopulation variability in mineralization density at the human femoral mid-shaft. J Anat. 2003;203(2):243–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kingsmill VJ, Boyde A. Mineralisation density of human mandibular bone: quantitative backscattered electron image analysis. J Anat. 1998;192(Pt 2):245–56.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Davy KWM. Novel aromatic dimethacrylate esters as dental resins. J Mater Sci - Mater Med. 1994;5:350–2.

    Article  CAS  Google Scholar 

  73. Kaya S, et al. Lactation-induced changes in the volume of osteocyte lacunar-canalicular space alter mechanical properties in cortical bone tissue. J Bone Miner Res. 2017;32(4):688–97.

    Article  CAS  PubMed  Google Scholar 

  74. YoavBenjamini YH. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995;57(1):289–300.

    Google Scholar 

Download references

Funding

Financial support is received from the National Institutes of Health Grant R01AG056397 to SY, U54GM115516 to CJR, U01-AG022303 to RAM, UO1-AG022308 to DEH, and U01-AG013319 to RS; RS is supported by a Senior Research Career Scientist Award from the Department of Veterans Affairs Office of Research and Development, S10 OD010751-01A1 for micro-computed tomography, S10 OD026989 for Zeiss Gemini 300 FE-SEM.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Investigators of the ITP program RAM, RS, DEH, WL. Funding acquisition: SY. Formal analyses: SY, CJR. Investigation: GY, ETPB, SBP, MD, BH, DM, LW, CC, TGB. Statistical analyses: RRR. Resources: ITP centers (UM, UT, JL). Writing original draft: SY. Writing review and editing: SY, CJR.

Corresponding author

Correspondence to Shoshana Yakar.

Ethics declarations

Ethics approval

The project was reviewed and approved by the Institutional Animal Care and Use committees at the University of Michigan, University of Texas Health Science Center at San Antonio, and The Jackson Laboratory.

Conflict of interest

The authors declare no competing interests. All authors have discussed the results and approved the final version of the manuscript. SY is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All authors concur with the submission. The material submitted for publication has not been previously reported and is not under consideration for publication elsewhere.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, G., Bergamo, E.T.P., Poudel, S.B. et al. Long-term effects of canagliflozin treatment on the skeleton of aged UM-HET3 mice. GeroScience 45, 1933–1951 (2023). https://doi.org/10.1007/s11357-023-00803-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00803-8

Keywords

Navigation