Skip to main content

Advertisement

Log in

Glucose metabolism patterns: A potential index to characterize brain ageing and predict high conversion risk into cognitive impairment

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Exploring individual hallmarks of brain ageing is important. Here, we propose the age-related glucose metabolism pattern (ARGMP) as a potential index to characterize brain ageing in cognitively normal (CN) elderly people. We collected 18F-fluorodeoxyglucose (18F-FDG) PET brain images from two independent cohorts: the Alzheimer’s Disease Neuroimaging Initiative (ADNI, N = 127) and the Xuanwu Hospital of Capital Medical University, Beijing, China (N = 84). During follow-up (mean 80.60 months), 23 participants in the ADNI cohort converted to cognitive impairment. ARGMPs were identified using the scaled subprofile model/principal component analysis method, and cross-validations were conducted in both independent cohorts. A survival analysis was further conducted to calculate the predictive effect of conversion risk by using ARGMPs. The results showed that ARGMPs were characterized by hypometabolism with increasing age primarily in the bilateral medial superior frontal gyrus, anterior cingulate and paracingulate gyri, caudate nucleus, and left supplementary motor area and hypermetabolism in part of the left inferior cerebellum. The expression network scores of ARGMPs were significantly associated with chronological age (R = 0.808, p < 0.001), which was validated in both the ADNI and Xuanwu cohorts. Individuals with higher network scores exhibited a better predictive effect (HR: 0.30, 95% CI: 0.1340 ~ 0.6904, p = 0.0068). These findings indicate that ARGMPs derived from CN participants may represent a novel index for characterizing brain ageing and predicting high conversion risk into cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data are available upon request from the authors.

References

  1. Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol. 2014;117:20–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Toepper M. Dissociating Normal Aging from Alzheimer’s Disease: A View from Cognitive Neuroscience. J Alzheimer’s Dis. 2017;57:331–52.

    Article  Google Scholar 

  3. Mattson MP, Arumugam TV. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab. 2018;27:1176–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grimm A, Friedland K, Eckert A. Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer’s disease. Biogerontology. 2016;17:281–96.

    Article  CAS  PubMed  Google Scholar 

  5. Błaszczyk JW. Energy metabolism decline in the aging brain-pathogenesis of neurodegenerative disorders. Metabolites. 2020;10(11):450.

  6. Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition. 2011;27:3–20.

    Article  CAS  PubMed  Google Scholar 

  7. Pardo JV, Lee JT, Sheikh SA, Surerus-Johnson C, Shah H, Munch KR, et al. Where the brain grows old: decline in anterior cingulate and medial prefrontal function with normal aging. Neuroimage. 2007;35:1231–7.

    Article  PubMed  Google Scholar 

  8. Bi Q, Wang W, Niu N, Li H, Wang Y, Huang W, et al. Relationship between the disrupted topological efficiency of the structural brain connectome and glucose hypometabolism in normal aging. Neuroimage. 2021;226: 117591.

    Article  CAS  PubMed  Google Scholar 

  9. Habeck C, Risacher S, Lee G, et al. Relationship between baseline brain metabolism measured using [18F]FDG PET and memory and executive function in prodromal and early Alzheimer’s disease. Brain Imaging Behav. 2012;6(4):568–83.

  10. Chételat G, Landeau B, Salmon E, Yakushev I, Bahri MA, Mézenge F, et al. Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity. Neuroimage. 2013;76:167–77.

    Article  PubMed  Google Scholar 

  11. Adams JN, Lockhart SN, Li L, Jagust WJ. Relationships Between Tau and Glucose Metabolism Reflect Alzheimer’s Disease Pathology in Cognitively Normal Older Adults. Cereb Cortex. 2019;29:1997–2009.

    Article  PubMed  Google Scholar 

  12. Inoue K, Ito H, Uchida S, Taki Y, Kinomura S, Tsuji I, et al. Decrease in glucose metabolism in frontal cortex associated with deterioration of microstructure of corpus callosum measured by diffusion tensor imaging in healthy elderly. Hum Brain Mapp. 2008;29:375–84.

    Article  PubMed  Google Scholar 

  13. Cole JH, Poudel RPK, Tsagkrasoulis D, Caan MWA, Steves C, Spector TD, et al. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage. 2017;163:115–24.

    Article  PubMed  Google Scholar 

  14. de Lange AG, Anatürk M, Suri S, Kaufmann T, Cole JH, Griffanti L, et al. Multimodal brain-age prediction and cardiovascular risk: The Whitehall II MRI sub-study. Neuroimage. 2020;222: 117292.

    Article  PubMed  Google Scholar 

  15. Beheshti I, Mishra S, Sone D, Khanna P, Matsuda H. T1-weighted MRI-driven Brain Age Estimation in Alzheimer’s Disease and Parkinson’s Disease. Aging Dis. 2020;11:618–28.

    Article  PubMed  Google Scholar 

  16. Bergfield KL, Hanson KD, Chen K, Teipel SJ, Hampel H, Rapoport SI, et al. Age-related networks of regional covariance in MRI gray matter: Reproducible multivariate patterns in healthy aging. Neuroimage. 2010;49:1750–9.

    Article  PubMed  Google Scholar 

  17. Li TR, Dong QY, Jiang XY, Kang GX, Li X, Xie YY, et al. Exploring brain glucose metabolic patterns in cognitively normal adults at risk of Alzheimer’s disease: A cross-validation study with Chinese and ADNI cohorts. Neuroimage Clin. 2022;33: 102900.

    Article  PubMed  Google Scholar 

  18. Spetsieris PG, Ma Y, Dhawan V, Eidelberg D. Differential diagnosis of parkinsonian syndromes using PCA-based functional imaging features. Neuroimage. 2009;45:1241–52.

    Article  PubMed  Google Scholar 

  19. Eidelberg D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci. 2009;32:548–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nan Z, Gordon ML, Yilong M, Bradley C, Gomar JJ, Shichun P, et al. The Age-Related Perfusion Pattern Measured With Arterial Spin Labeling MRI in Healthy Subjects. Front Aging Neurosci. 2018;10:214.

    Article  Google Scholar 

  21. Teune LK, Strijkert F, Renken RJ, Izaks GJ, de Vries JJ, Segbers M, et al. The Alzheimer’s disease-related glucose metabolic brain pattern. Curr Alzheimer Res. 2014;11:725–32.

    Article  CAS  PubMed  Google Scholar 

  22. Wu T, Ma Y, Zheng Z, Peng S, Wu X, Eidelberg D, et al. Parkinson’s disease-related spatial covariance pattern identified with resting-state functional MRI. J Cereb Blood Flow Metab. 2015;35:1764–70.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mudali D, Teune LK, Renken RJ, Leenders KL, Roerdink JB. Classification of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features. Comput Math Methods Med. 2015;2015: 136921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen K, Roontiva A, Thiyyagura P, Lee W, Liu X, Ayutyanont N, et al. Improved power for characterizing longitudinal amyloid-β PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region. J Nucl Med. 2015;56:560.

    Article  CAS  PubMed  Google Scholar 

  25. Iizuka T, Kameyama M. Spatial metabolic profiles to discriminate dementia with Lewy bodies from Alzheimer disease. J Neurol. 2020;267:1960–9.

    Article  PubMed  Google Scholar 

  26. Habeck C, Foster NL, Perneczky R, Kurz A, Alexopoulos P, Koeppe RA, et al. Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. Neuroimage. 2008;40:1503–15.

    Article  PubMed  Google Scholar 

  27. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dementia. 2018;14:535–62.

    Article  PubMed  Google Scholar 

  28. Wilson RS, Yu L, Lamar M, Schneider JA, Boyle PA, Bennett DA. Education and cognitive reserve in old age. Neurology. 2019;92:e1041–50.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, Belleville S, Cantilon M, Chetelat G, et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s Dementia. 2020;16:1305–11.

    Article  PubMed  Google Scholar 

  30. Pettigrew C, Soldan A, Zhu Y, Cai Q, Wang MC, Moghekar A, et al. Cognitive reserve and rate of change in Alzheimer’s and cerebrovascular disease biomarkers among cognitively normal individuals. Neurobiol Aging. 2020;88:33–41.

    Article  CAS  PubMed  Google Scholar 

  31. Sotoudeh N, Namavar MR, Zarifkar A, Heidarzadegan AR. Age-dependent changes in the medial prefrontal cortex and medial amygdala structure, and elevated plus-maze performance in the healthy male Wistar rats. IBRO Rep. 2020;9:183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bennett IJ, Rivera HG, Rypma B. Isolating age-group differences in working memory load-related neural activity: assessing the contribution of working memory capacity using a partial-trial fMRI method. Neuroimage. 2013;72:20–32.

    Article  PubMed  Google Scholar 

  33. Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Mandel F, Alexander GE, et al. The metabolic topography of normal aging. J Cereb Blood Flow Metab. 1996;16:385–98.

    Article  CAS  PubMed  Google Scholar 

  34. Liu D, Gu X, Zhu J, Zhang X, Han Z, Yan W, et al. Medial prefrontal activity during delay period contributes to learning of a working memory task. Science. 2014;346:458–63.

    Article  CAS  PubMed  Google Scholar 

  35. Günseli E, Aly M. Preparation for upcoming attentional states in the hippocampus and medial prefrontal cortex. Elife. 2020;9:e53191.

  36. Kakimoto A, Ito S, Okada H, Nishizawa S, Minoshima S, Ouchi Y. Age-Related Sex-Specific Changes in Brain Metabolism and Morphology. J Nucl Med. 2016;57:221–5.

    Article  CAS  PubMed  Google Scholar 

  37. Rojkova K, Volle E, Urbanski M, Humbert F, Dell’Acqua F, Thiebaut de Schotten M. Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study. Brain Struct Funct. 2016;221:1751–66.

  38. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, et al. Thinning of the cerebral cortex in aging. Cereb Cortex. 2004;14:721–30.

    Article  PubMed  Google Scholar 

  39. Sullivan EV, Rohlfing T, Pfefferbaum A. Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiol Aging. 2010;31:464–81.

    Article  PubMed  Google Scholar 

  40. Sakurai R, Fujiwara Y, Yasunaga M, Suzuki H, Kanosue K, Montero-Odasso M, et al. Association between Hypometabolism in the Supplementary Motor Area and Fear of Falling in Older Adults. Front Aging Neurosci. 2017;9:251.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Green PE, Ridding MC, Hill KD, Semmler JG, Drummond PD, Vallence AM. Supplementary motor area-primary motor cortex facilitation in younger but not older adults. Neurobiol Aging. 2018;64:85–91.

    Article  PubMed  Google Scholar 

  42. Sodums DJ, Bohbot VD. Negative correlation between grey matter in the hippocampus and caudate nucleus in healthy aging. Hippocampus. 2020;30:892–908.

    Article  PubMed  Google Scholar 

  43. Lithfous S, Dufour A, Després O. Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Res Rev. 2013;12:201–13.

    Article  PubMed  Google Scholar 

  44. Chen JJ, Rosas HD, Salat DH. Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage. 2011;55:468–78.

    Article  PubMed  Google Scholar 

  45. Galiano A, Mengual E, García de Eulate R, Galdeano I, Vidorreta M, Recio M, et al. Coupling of cerebral blood flow and functional connectivity is decreased in healthy aging. Brain Imaging Behav. 2020;14:436–50.

    Article  PubMed  Google Scholar 

  46. An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O, et al. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimer’s Dementia. 2018;14:318–29.

    Article  PubMed  Google Scholar 

  47. Chételat G, Arbizu J, Barthel H, Garibotto V, Law I, Morbelli S, et al. Amyloid-PET and (18)F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol. 2020;19:951–62.

    Article  PubMed  Google Scholar 

  48. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia. 2011;7:280–92.

    Article  PubMed  Google Scholar 

  49. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577–90.

  50. Guo T, Landau SM, Jagust WJ. Detecting earlier stages of amyloid deposition using PET in cognitively normal elderly adults. Neurology. 2020;94:e1512–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vila-Castelar C, Tariot PN, Sink KM, Clayton D, Langbaum JB, Thomas RG, et al. Sex differences in cognitive resilience in preclinical autosomal-dominant Alzheimer’s disease carriers and non-carriers: Baseline findings from the API ADAD Colombia Trial. Alzheimer’s Dement. 2022;10.1002/alz.12552.

  52. Buckley RF, Mormino EC, Rabin JS, Hohman TJ, Landau S, Hanseeuw BJ, et al. Sex Differences in the Association of Global Amyloid and Regional Tau Deposition Measured by Positron Emission Tomography in Clinically Normal Older Adults. JAMA Neurol. 2019;76:542–51.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hohman TJ, Dumitrescu L, Barnes LL, Thambisetty M, Beecham G, Kunkle B, et al. Sex-Specific Association of Apolipoprotein E With Cerebrospinal Fluid Levels of Tau. JAMA Neurol. 2018;75:989–98.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Oveisgharan S, Arvanitakis Z, Yu L, Farfel J, Schneider JA, Bennett DA. Sex differences in Alzheimer’s disease and common neuropathologies of aging. Acta Neuropathol. 2018;136:887–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Data collection and dissemination for this project were funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI): the National Institutes of Health (grant number U01 AG024904), and the Department of Defense (award numberW81XWH-12-2-0012). ADNI is funded by the National Institute of Aging and the National Institute of Biomedical Imaging and Bioengineering as well as through generous contributions from the following organizations: AbbVie, Alzheimer’s Association, Alzheimer’s Drug Discovery Foundation, Araclon Biotech, BioClinica Inc., Biogen, Bristol-Myers Squibb Company, CereSpir Inc., Eisai Inc., Elan Pharmaceuticals Inc., Eli Lilly and Company, EuroImmun, F. Hoffmann-La Roche Ltd. and its affiliated company Genentech Inc., Fujirebio, GE Healthcare, IXICO Ltd., Janssen Alzheimer Immunotherapy Research & Development LLC., Johnson & Johnson Pharmaceutical Research &Development LLC., Lumosity, Lundbeck, Merck & Co. Inc., Meso Scale Diagnostics LLC., NeuroRx Research, Neurotrack Technologies, Novartis Pharmaceuticals Corporation, Pfizer Inc., Piramal Imaging, Servier, Takeda Pharmaceutical Company, and Transition Therapeutics. The Canadian Institutes of Health Research are providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego, CA, USA. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California, CA, USA.

Michael W. Weiner7, Paul Aisen8, Ronald Petersen9, Clifford R. Jack9, William Jagust10, John Q. Trojanowski11, Arthur W. Toga12, Laurel Beckett13, Robert C. Green14, Andrew J. Saykin15, John Morris16, Leslie M. Shaw11, Zaven Khachaturian13,17, Greg Sorensen18, Lew Kuller19, Marcus Raichle16, Steven Paul20, Peter Davies21, Howard Fillit22, Franz Hefti23, David Holtzman16, Marek M. Mesulam24, William Potter25, Peter Snyder26, Adam Schwartz27, Tom Montine28, Ronald G. Thomas28, Michael Donohue28, Sarah Walter28, Devon Gessert28, Tamie Sather28, Gus Jiminez28, Danielle Harvey13, Matthew Bernstein9, Paul Thompson29, Norbert Schuff7,13, Bret Borowski9, Jeff Gunter9, Matt Senjem9, Prashanthi Vemuri9, David Jones9, Kejal Kantarci9, Chad Ward9, Robert A. Koeppe30, Norm Foster31, Eric M. Reiman32, Kewei Chen32, Chet Mathis19, Susan Landau10, Nigel J. Cairns16, Erin Householder16, Lisa Taylor-Reinwald16, Virginia Lee11, Magdalena Korecka11, Michal Figurski11, Karen Crawford12, Scott Neu12, Tatiana M. Foroud15, Steven G. Potkin33, Li Shen15, Kelley Faber15, Sungeun Kim15, Kwangsik Nho15, Leon Thal8, Neil Buckholtz34, Marylyn Albert35, Richard Frank36, John Hsiao34, Jeffrey Kaye37, Joseph Quinn37, Betty Lind37, Raina Carter37, Sara Dolen37, Lon S. Schneider12, Sonia Pawluczyk12, Mauricio Beccera12, Liberty Teodoro12, Bryan M. Spann12, James Brewer8, Helen Vanderswag8, Adam Fleisher8,32, Judith L. Heidebrink30, Joanne L. Lord30, Sara S. Mason9, Colleen S. Albers9, David Knopman9, Kris Johnson9, Rachelle S. Doody38, Javier Villanueva-Meyer38, Munir Chowdhury38, Susan Rountree38, Mimi Dang38, Yaakov Stern38, Lawrence S. Honig38, Karen L. Bell38, Beau Ances16, Maria Carroll16, Sue Leon16, Mark A. Mintun16, Stacy Schneider16, Angela Oliver16, Daniel Marson39, Randall Griffith39, David Clark39, David Geldmacher39, John Brockington39, Erik Roberson39, Hillel Grossman40, Effie Mitsis40, Leyla de Toledo-Morrell41, Raj C. Shah41, Ranjan Duara42, Daniel Varon42, Maria T. Greig42, Peggy Roberts42, Chiadi Onyike35, Daniel D’Agostino35, Stephanie Kielb35, James E. Galvin43, Brittany Cerbone43, Christina A. Michel43, Henry Rusinek43, Mony J. de Leon43, Lidia Glodzik43, Susan De Santi43, P Murali Doraiswamy44, Jeffrey R. Petrella44, Terence Z. Wong44, Steven E. Arnold11, Jason H. Karlawish11, David Wolk11, Charles D. Smith45, Greg Jicha45, Peter Hardy45, Partha Sinha45, Elizabeth Oates45, Gary Conrad45, Oscar L. Lopez19, MaryAnn Oakley19, Donna M. Simpson35, Anton P. Porsteinsson46, Bonnie S. Goldstein46, Kim Martin46, Kelly M. Makino46, M Saleem Ismail46, Connie Brand46, Ruth A. Mulnard33, Gaby Thai33, Catherine McAdams-Ortiz33, Kyle Womack47, Dana Mathews47, Mary Quiceno47, Ramon Diaz-Arrastia47, Richard King47, Myron Weiner47, Kristen Martin-Cook47, Michael DeVous47, Allan I Levey48, James J. Lah48, Janet S. Cellar48, Jeffrey M. Burns48, Heather S. Anderson49, Russell H. Swerdlow49, Liana Apostolova29, Kathleen Tingus29, Ellen Woo29, Daniel H.S. Silverman29, Po H. Lu29, George Bartzokis29, Neill R. Graff-Radford50, Francine Parfitt50, Tracy Kendall50, Heather Johnson50, Martin R. Farlow15, Ann Marie Hake15, Brandy R. Matthews15, Scott Herring15, Cynthia Hunt15, Christopher H. van Dyck51, Richard E. Carson51, Martha G. MacAvoy51, Howard Chertkow52, Howard Bergman52, Chris Hosein52, Ging-Yuek Robin Hsiung53, Howard Feldman53, Benita Mudge53, Michele Assaly53, Charles Bernick54, Donna Munic54, Andrew Kertesz55, John Rogers55, Dick Trost55, Diana Kerwin24, Kristine Lipowski24, Chuang-Kuo Wu24, Nancy Johnson24, Carl Sadowsky56, Walter Martinez56, Teresa Villena56, Raymond Scott Turner57, Kathleen Johnson57, Brigid Reynolds57, Reisa A. Sperling14, Keith A. Johnson14, Gad Marshall14, Meghan Frey14, Barton Lane14, Allyson Rosen14, Jared Tinklenberg14, Marwan N. Sabbagh58, Christine M. Belden58, Sandra A. Jacobson58, Sherye A. Sirrel58, Neil Kowall58, Ronald Killiany59, Andrew E. Budson59, Alexander Norbash59, Patricia Lynn Johnson59, Joanne Allard59, Alan Lerner61, Paula Ogrocki61, Leon Hudson61, Evan Fletcher13, Owen Carmichae23, John Olichney13, Charles DeCarli13, Smita Kittur62, Michael Borrie63, T-Y. Lee63, Rob Bartha63, Sterling Johnson64, Sanjay Asthana64, Cynthia M. Carlsson64, Adrian Preda29, Dana Nguyen29, Pierre Tariot31, Stephanie Reeder31, Vernice Bates65, Horacio Capote65, Michelle Rainka65, Douglas W. Scharre66, Maria Kataki66, Anahita Adeli66, Earl A. Zimmerman67, Dzintra Celmins67, Alice D. Brown67, Godfrey D. Pearlson68, Karen Blank68, Karen Anderson68, Robert B. Santulli69, Tamar J. Kitzmiller69, Eben S. Schwartz69, Kaycee M. Sink70, Jeff D. Williamson70, Pradeep Garg70, Franklin Watkins70, Brian R. Ott71, Henry Querfurth71, Geoffrey Tremont71, Stephen Salloway72, Paul Malloy72, Stephen Correia72, Howard J. Rosen7, Bruce L. Miller7, Jacobo Mintzer73, Kenneth Spicer73, David Bachman73, Stephen Pasternak55, Irina Rachinsky55, Dick Drost55, Nunzio Pomara74, Raymundo Hernando74, Antero Sarrael74, Susan K. Schultz75, Laura L. Boles Ponto75, Hyungsub Shim75, Karen Elizabeth Smith75, Norman Relkin20, Gloria Chaing20, Lisa Raudin17,20, Amanda Smith76, Kristin Fargher76, Balebail Ashok Raj76, Thomas Neylan7, Jordan Grafman24, Melissa Davis8, Rosemary Morrison8, Jacqueline Hayes7, Shannon Finley7, Karl Friedl77, Debra Fleischman41, Konstantinos Arfanakis41, Olga James44, Dino Massoglia73, J Jay Fruehling64, Sandra Harding64, Elaine R. Peskind28, Eric C. Petrie66, Gail Li66, Jerome A. Yesavage78, Joy L. Taylor78 & Ansgar J. Furst78

7UC San Francisco, San Francisco, CA 94143, USA. 8UC San Diego, San Diego, CA 92093, USA. 9Mayo Clinic, Rochester, NY 14603, USA. 10UC Berkeley, Berkeley, CA 94720, USA. 11UPenn, Philadelphia, PA 9104, USA. 12USC, Los Angeles, CA 90089, USA. 13UC Davis, Davis, CA 95616, USA. 14Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115, USA. 15Indiana University, Bloomington, IN 47405, USA. 16Washington University in St Louis, St Louis, MI 63130, USA. 17Prevent Alzheimer’s Disease 2020, Rockville, MD 20850, USA. 18Siemens, Munich 80333, Germany. 19University of Pittsburgh, Pittsburgh, PA 15260, USA. 20Weill Cornell Medical College, Cornell University, New York City, NY 10065, USA. 21Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA. 22AD Drug Discovery Foundation, New York City, NY 10019, USA. 23Acumen Pharmaceuticals, Livermore, CA 94551, USA. 24Northwestern University, Evanston and Chicago, IL 60208, USA. 25National Institute of Mental Health, Rockville, MD 20852, USA. 26Brown University, Providence, RI 02912, USA. 27Eli Lilly, Indianapolis, IN 46225, USA. 28University of Washington, Seattle, WA 98195, USA. 29UCLA, Los Angeles, CA 90095, USA. 30University of Michigan, Ann Arbor, MI 48109, USA. 31University of Utah, Salt Lake City, UT 84112, USA. 32Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA. 33UC Irvine, Irvine, CA 92697, USA. 34National Institute on Aging, Bethesda, MD 20892, USA. 35Johns Hopkins University, Baltimore, MD 21218, USA. 36Richard Frank Consulting, Washington, DC 20001, USA. 37Oregon Health and Science University, Portland, OR 97239, USA. 38Baylor College of Medicine, Houston, TX 77030, USA. 39University of Alabama, Birmingham, AL 35233, USA. 40Mount Sinai School of Medicine, New York City, NY 10029, USA. 41Rush University Medical Center, Chicago, IL 60612, USA. 42Wien Center, Miami, FL 33140, USA. 43New York University, New York City, NY 10003, USA. 44Duke University Medical Center, Durham, NC 27710, USA. 45University of Kentucky, Lexington, KY 0506, USA. 46University of Rochester Medical Center, Rochester, NY 14642, USA. 47University of Texas Southwestern Medical School, Dallas, TX 75390, USA. 48Emory University, Atlanta, GA 30322, USA. 49Medical Center, University of Kansas, Kansas City, KS 66103, USA. 50Mayo Clinic, Jacksonville, FL 32224, USA. 51Yale University School of Medicine, New Haven, CT 06510, USA. 52McGill University/Montreal-Jewish General Hospital, Montreal, QC H3T 1E2, Canada. 53University of British Columbia Clinic for AD & Related Disorders, Vancouver, BC V6T 1Z3, Canada. 54Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA. 55St Joseph’s Health Care, London, ON N6A 4V2, Canada. 56Premiere Research Institute, Palm Beach Neurology, Miami, FL 33407, USA. 57Georgetown University Medical Center, Washington, DC 20007, USA. 58Banner Sun Health Research Institute, Sun City, AZ 85351, USA. 59Boston University, Boston, MA 02215, USA. 60Howard University, Washington, DC 20059, USA. 61Case Western Reserve University, Cleveland, OH 20002, USA. 62Neurological Care of CNY, Liverpool, NY 13088, USA. 63Parkwood Hospital, London, ON N6C 0A7, Canada. 64University of Wisconsin, Madison, WI 53706, USA. 65Dent Neurologic Institute, Amherst, NY 14226, USA. 66Ohio State University, Columbus, OH 43210, USA. 67Albany Medical College, Albany, NY 12208, USA. 68Hartford Hospital, Olin Neuropsychiatry Research Center, Hartford, CT 06114, USA. 69Dartmouth- Hitchcock Medical Center, Lebanon, NH 03766, USA. 70Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA. 71Rhode Island Hospital, Providence, RI 02903, USA. 72Butler Hospital, Providence, RI 02906, USA. 73Medical University South Carolina, Charleston, SC 29425, USA. 74Nathan Kline Institute, Orangeburg, NY 10962, USA. 75University of Iowa College of Medicine, Iowa City, IA 52242, USA. 76University of South Florida: USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613, USA. 77Department of Defense, Arlington, VA 22350, USA. 78Stanford University, Stanford, CA 94305, USA

Funding

This study was supported by grants received from the National Natural Science Foundation of China (grant numbers 61633018, 82020108013, 61603236, 81830059, and 81801052); the National Key Research and Development Program of China (grant numbers 2016YFC1306300, 2018YFC1312000, and 2018YFC1707704); the 111 Project (grant number D20031); the Shanghai Municipal Science and Technology Major Project (grant number 2017SHZDZX01); and the Beijing Municipal Commission of Health and Family Planning (grant number PXM2020_026283_000002).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

JJ and YH conceived of the study. CL and XJ performed the statistical analysis. CS, GC, SJ drafted the initial manuscript. XJ and LL drew the pictures. All authors contributed to revision and editing of the manuscript.

Corresponding authors

Correspondence to Jiehui Jiang or Ying Han.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1001 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Sheng, C., Chen, G. et al. Glucose metabolism patterns: A potential index to characterize brain ageing and predict high conversion risk into cognitive impairment. GeroScience 44, 2319–2336 (2022). https://doi.org/10.1007/s11357-022-00588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00588-2

Keywords

Navigation