Akinyemi RO, Salami A, Akinyemi J, Ojagbemi A, et al. Brain banking in low and middle-income countries: Raison D’être for the Ibadan Brain Ageing, Dementia And Neurodegeneration (IBADAN) Brain Bank Project. Brain Res Bull. 2019;145:136–41.
PubMed
Article
Google Scholar
Kretzschmar H. Brain banking: opportunities, challenges and meaning for the future. Nat Rev Neurosci. 2009;10:70–8.
CAS
PubMed
Article
Google Scholar
Wang L, Xia Y, Chen Y, Dai R, Qiu W, Meng Q, et al. Brain banks spur new frontiers in neuropsychiatric research and strategies for analysis and validation. Genomics Proteomics Bioinforma. 2019;17:402–14.
Palmer-Aronsten B, Sheedy D, McCrossin T, Kril J. An international survey of brain banking operation and characterization practices. Biopreserv Biobank. 2016;14:464–9.
PubMed
PubMed Central
Article
Google Scholar
Yuille M, van Ommen G-J, Bréchot C, Cambon-Thomsen A, et al. Biobanking for Europe. Brief Bioinform. 2007;9:14–24.
PubMed
Article
Google Scholar
Deep-Soboslay A, Benes FM, Haroutunian V, Ellis JK, Kleinman JE, Hyde TM. Psychiatric brain banking: three perspectives on current trends and future directions. Biol Psychiatry. 2011;69:104–12.
PubMed
Article
Google Scholar
Tourtellotte WW, Rosario IP, Conrad A, Syndulko K. Human neuro-specimen banking 1961-1992. The National Neurological Research Specimen Bank (a donor program of pre- and post-mortem tissues and cerebrospinal fluid/blood; and a collection of cryopreserved human neurological specimens for neuroscientists). J Neural Transm Suppl. 1993;39:5–15.
CAS
PubMed
Google Scholar
Samarasekera N, Salman RA-S, Huitinga I, Klioueva N, McLean CA, Kretzschmar H, et al. Brain banking for neurological disorders. Lancet Neurol. 2013;12:1096–105.
Dorsey ER, George BP, Leff B, Willis AW. The coming crisis: obtaining care for the growing burden of neurodegenerative conditions. Neurology. 2013;80:1989–96.
CAS
PubMed
PubMed Central
Article
Google Scholar
Xu J, Zhang Y, Qiu C, Cheng F. Global and regional economic costs of dementia: a systematic review. Lancet. 2017;390:S47.
Article
Google Scholar
DeKosky ST, Marek K. Looking backward to move forward: early detection of neurodegenerative disorders. Science. 2003;80(302):830–4.
Article
CAS
Google Scholar
Berg D. Biomarkers for the early detection of Parkinson’s and Alzheimer’s disease. Neurodegener Dis. 2008;5:133–6.
PubMed
Article
Google Scholar
Olazarán J, Reisberg B, Clare L, Cruz I, Peña-Casanova J, del Ser T, et al. Nonpharmacological therapies in Alzheimer’s disease: a systematic review of efficacy. Dement Geriatr Cogn Disord. 2010;30:161–78.
Poste G. Bring on the biomarkers. Nature. 2011;469:156–7.
CAS
PubMed
Article
Google Scholar
Grasso M, Piscopo P, Confaloni A, Denti M. Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules. 2014;19:6891–910.
PubMed
PubMed Central
Article
CAS
Google Scholar
Hohenfeld C, Werner CJ, Reetz K. Resting-state connectivity in neurodegenerative disorders: is there potential for an imaging biomarker? Neuroimage Clin. 2018;18:849–70.
PubMed
PubMed Central
Article
Google Scholar
Agrawal M, Biswas A. Molecular diagnostics of neurodegenerative disorders. Front Mol Biosci. 2015;2:54.
PubMed
PubMed Central
Article
CAS
Google Scholar
Htike TT, Mishra S, Kumar S, Padmanabhan P, Gulyás B. Peripheral biomarkers for early detection of Alzheimer’s and Parkinson’s diseases. Mol Neurobiol. 2019;56:2256–77.
CAS
PubMed
Article
Google Scholar
Schütt T, Pedersen JT, Berendt M. The domestic dog as a model for human brain aging and Alzheimer’s disease. Conn’s Handbook of Models for Human Aging. Elsevier. 2018:177–94.
Cummings BJ, Head E, Ruehl W, Milgram NW, Cotman CW. The canine as an animal model of human aging and dementia. Neurobiol Aging. 1996;17:259–68.
CAS
PubMed
Article
Google Scholar
Araujo JA, Baulk J, de Rivera C. The aged dog as a natural model of Alzheimer’s disease progression. In: Landsberg G, Maďari A, Žilka N (eds) Canine and Feline Dementia. Springer, Cham. 2017. https://doi.org/10.1007/978-3-319-53219-6_4.
Miao B, Wang Z, Li Y. Genomic analysis reveals hypoxia adaptation in the Tibetan mastiff by introgression of the gray wolf from the Tibetan Plateau. Mol Biol Evol. 2017;34:734–43.
CAS
PubMed
Google Scholar
Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, Perloski M, et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013;495:360–4.
Wang GD, Zhai W, Yang HC, Fan RX, et al. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nat Commun. 2013;4:1–9.
Google Scholar
Li Y, Vonholdt BM, Reynolds A, Boyko AR, et al. Artificial selection on brain-expressed genes during the domestication of dog. Mol Biol Evol. 2013;30:1867–76.
CAS
PubMed
Article
Google Scholar
Hare B, Tomasello M. Human-like social skills in dogs? Trends Cogn Sci. 2005;9:439–44.
PubMed
Article
Google Scholar
Miklósi Á, Topál J, Csányi V. Comparative social cognition: what can dogs teach us? Anim Behav. 2004;67:995–1004.
Article
Google Scholar
Miklósi Á. 2014. Dog Behaviour, Evolution, and Cognition. OUP Oxford, 2014. https://doi.org/10.1093/acprof:oso/9780199646661.001.0001.
Topál J, Miklósi Á, Gácsi M, Dóka A, Pongrácz P, Kubinyi E, Virányi Z, Csányi V. Chapter 3 The dog as a model for understanding human social behavior. In: Advances in the Study of Behavior. Academic Press, 2009. https://doi.org/10.1016/S0065-3454(09)39003-8.
Wayne RK, Ostrander EA. Lessons learned from the dog genome. Trends Genet. 2007;23:557–67.
CAS
PubMed
Article
Google Scholar
vonHoldt BM, Pollinger JP, Lohmueller KE, Han E, et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature. 2010;464:898–902.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ostrander EA, Galibert F, Patterson DF. Canine genetics comes of age. Trends Genet. 2000;16:117–24.
CAS
PubMed
Article
Google Scholar
Patterson DF. Companion animal medicine in the age of medical genetics. J Vet Intern Med. 2000;14:1–9.
CAS
PubMed
Article
Google Scholar
Rowell JL, McCarthy DO, Alvarez CE. Dog models of naturally occurring cancer. Trends Mol Med. 2011;17:380–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res. 1998;39:60–76.
CAS
PubMed
Article
Google Scholar
Tsang HG, Rashdan NA, Whitelaw CBA, Corcoran BM, Summers KM, MacRae VE. Large animal models of cardiovascular disease. Cell Biochem Funct. 2016;34:113–32.
CAS
PubMed
PubMed Central
Article
Google Scholar
Osto M, Lutz TA. Translational value of animal models of obesity —focus on dogs and cats. Eur J Pharmacol. 2015;759:240–52.
CAS
PubMed
Article
Google Scholar
Gardner HL, Fenger JM, London CA. Dogs as a model for cancer. Annu Rev Anim Biosci. 2016;4:199–222.
CAS
PubMed
Article
Google Scholar
Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, et al. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol. 2018;14:140–62.
Dow Steven. A role for dogs in advancing cancer immunotherapy research. Front immunol. 2020;10:2935. https://doi.org/10.3389/fimmu.2019.02935.
Patronek GJ, Waters DJ, Glickman LT. Comparative longevity of pet dogs and humans: implications for gerontology research. J Gerontol Ser A Biol Sci Med Sci. 1997;52A:B171–8.
Article
Google Scholar
Christa M. Studzinski, Lori-Ann Christie, Joseph A. Araujo, W. McIntyre Burnham, Elizabeth Head, Carl W. Cotman, Norton W. Milgram. Visuospatial function in the beagle dog: An early marker of cognitive decline in a model of human aging and dementia. Neurobiol Learn Mem. 2006;86/2:197–204. https://doi.org/10.1016/j.nlm.2006.02.005.
Madari A, Farbakova J, Katina S, Smolek T, Novak P, Weissova T, et al. Assessment of severity and progression of canine cognitive dysfunction syndrome using the CAnine DEmentia Scale (CADES). Appl Anim Behav Sci. 2015;171:138–45.
Yu CH, Song GS, Yhee JY, Kim JH, Im KS, Nho WG, et al. Histopathological and immunohistochemical comparison of the brain of human patients with Alzheimer’s disease and the brain of aged dogs with cognitive dysfunction. J Comp Pathol. 2011;145:45–58.
Youssef SA, Capucchio MT, Rofina JE, Chambers JK, Uchida K, Nakayama H, et al. Pathology of the aging brain in domestic and laboratory animals, and animal models of human neurodegenerative diseases. Vet Pathol. 2016;53:327–48.
Schütt T, Helboe L, Pedersen LØ, Waldemar G, Berendt M, Pedersen JT. Dogs with cognitive dysfunction as a spontaneous model for early Alzheimer’s disease: a translational study of neuropathological and inflammatory markers. J Alzheimers Dis. 2016;52:433–49.
PubMed
Article
CAS
Google Scholar
Gilmore KM, Greer KA. Why is the dog an ideal model for aging research? Exp Gerontol. 2015;71:14–20.
PubMed
Article
Google Scholar
Hoffman JM, Creevy KE, Franks A, O'Neill DG, Promislow DEL. The companion dog as a model for human aging and mortality. Aging Cell. 2018;17:e12737. https://doi.org/10.1111/acel.12737.
Creevy KE, Austad SN, Hoffman JM, O’Neill DG, Promislow DEL. The companion dog as a model for the longevity dividend. Cold Spring Harb Perspect Med. 2016;6:a026633.
PubMed
PubMed Central
Article
Google Scholar
Kaeberlein M. The Biology of Aging. Vet Pathol. 2016;53:291–8.
CAS
PubMed
Article
Google Scholar
Sándor S, Kubinyi E. Genetic pathways of aging and their relevance in the dog as a natural model of human aging. Front Genet. 2019;10:948.
PubMed
PubMed Central
Article
CAS
Google Scholar
Mazzatenta A, Carluccio A, Robbe D, Di Giulio C, et al. The companion dog as a unique translational model for aging. Semin Cell Dev Biol. 2017;70:141–53.
PubMed
Article
Google Scholar
Groeneveld LF, Gregusson S, Guldbrandtsen B, Hiemstra SJ, Hveem K, Kantanen J, et al. Domesticated animal biobanking: land of opportunity. PLOS Biol. 2016;14:e1002523.
Lombardo T, Dotti S, Villa R, Cinotti S, et al. Veterinary biobank facility: development and management for diagnostic and research purposes. Methods Mol Biol. 2014;1247:43–60.
Article
Google Scholar
Abbott A. Inside the first pig biobank: elaborate array of tissue samples provides powerful animal model for studying diabetes. Nature. 2015;519:397–8.
CAS
PubMed
Article
Google Scholar
Meunier LD. Selection, acclimation, training, and preparation of dogs for the research setting. ILAR J. 2006;47:326–47.
CAS
PubMed
Article
Google Scholar
Russell WMS, Burch RL. The principles of humane experimental technique. Wheathampstead (UK): Universities Federation for Animal Welfare, 1959. (as reprinted 1992).
Studzinski CM, Araujo JA, Milgram NW. The canine model of human cognitive aging and dementia: pharmacological validity of the model for assessment of human cognitive-enhancing drugs. Prog Neuropsychopharmacology Biol Psychiatry. 2005;29:489–98.
CAS
Article
Google Scholar
Head E, Liu J, Hagen TM, Muggenburg BA, Milgram NW, Ames BN, et al. Oxidative damage increases with age in a canine model of human brain aging. J Neurochem. 2002;82:375–81.
Head E, Nukala VN, Fenoglio KA, Muggenburg BA, Cotman CW, Sullivan PG. Effects of age, dietary, and behavioral enrichment on brain mitochondria in a canine model of human aging. Exp Neurol. 2009;220:171–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Turcsán B, Tátrai K, Petró E, Topál J, Balogh L, Egyed B, et al. Comparison of behavior and genetic structure in populations of family and kenneled beagles. Front Vet Sci. 2020;7:183.
Hytönen MK, Lohi H. Canine models of human rare disorders. Rare Dis. 2016;4:e1241362.
PubMed
PubMed Central
Article
CAS
Google Scholar
Waters DJ. Aging research 2011: exploring the pet dog paradigm. ILAR J. 2011;52:97–105.
CAS
PubMed
Article
Google Scholar
Szánthó F, Miklósi Á, Kubinyi E. Is your dog empathic? Developing a dog emotional reactivity survey. PLoS One. 2017;12:e0170397.
PubMed
PubMed Central
Article
CAS
Google Scholar
The Bond We Share with our Furry Friends | I and love and you.n.d. https://www.iandloveandyou.com/blog/2019/pet-fanatics-the-bond-we-share-with-our-furry-friends (accessed: 01.27.2021).
Folk LC, Hahn AW, Patrick TB, Allen GK, Smith AB, Wilcke JR. Salvaging legacy data: Mapping an obsolete medical nomenclature to a modern one. Biomed Sci Instrum. 2002;38:405–10.
CAS
PubMed
Google Scholar
Hahn AW, Martin MK, Siegel AM, Ellis WK. Sending data to a central repository. Biomed Sci Instrum. 2004;40:475–9.
PubMed
Google Scholar
McGreevy P, Thomson P, Dhand N, Raubenheimer D, Masters S, Mansfield C, et al. VetCompass Australia: a national big data collection system for veterinary science. Animals. 2017;7:74.
Van Borm S, Belák S, Freimanis G, Fusaro A, et al. Next-generation sequencing in veterinary medicine: how can the massive amount of information arising from high-throughput technologies improve diagnosis, control, and management of infectious diseases? Methods Mol. Biology. 2014;1247:415–36.
Google Scholar
VanderWaal K, Morrison RB, Neuhauser C, Vilalta C, Perez AM. Translating big data into smart data for veterinary epidemiology. Front Vet Sci. 2017;4:110.
PubMed
PubMed Central
Article
Google Scholar
Deane-Coe PE, Chu ET, Slavney A, Boyko AR, et al. Direct-to-consumer DNA testing of 6,000 dogs reveals 98.6-kb duplication associated with blue eyes and heterochromia in Siberian Huskies. PLOS Genet. 2018;14:e1007648.
PubMed
PubMed Central
Article
CAS
Google Scholar
Friedrich J, Strandberg E, Arvelius P, Sánchez-Molano E, Pong-Wong R, Hickey JM, et al. Genetic dissection of complex behaviour traits in German Shepherd dogs. Heredity (Edinb). 2019;123:746–58.
MacLean EL, Snyder-Mackler N, vonHoldt BM, Serpell JA. Highly heritable and functionally relevant breed differences in dog behaviour. Proc R Soc B Biol Sci. 2019;286:20190716.
CAS
Article
Google Scholar
Momozawa Y, Merveille AC, Battaille G, Wiberg M, et al. Genome wide association study of 40 clinical measurements in eight dog breeds. Sci Rep. 2020;10:1–11.
Article
CAS
Google Scholar
Khanna C, Lindblad-Toh K, Vail D, London C, Bergman P, Barber L, et al. The dog as a cancer model. Nat Biotechnol. 2006;24:1065–6.
LeBlanc AK, Mazcko C, Brown DE, Koehler JW, et al. Creation of an NCI comparative brain tumor consortium: informing the translation of new knowledge from canine to human brain tumor patients. Neuro Oncol. 2016;18:1209–18.
PubMed
PubMed Central
Article
Google Scholar
Mazcko C, Thomas R, Mazcko C, Thomas R. The establishment of the Pfizer-Canine Comparative Oncology and Genomics Consortium Biospecimen Repository. Vet Sci. 2015;2:127–30.
PubMed
PubMed Central
Article
Google Scholar
Innes JF, Myint P. Veterinary tissue banking and bone transplantation. Vet Rec. 2011;168:344–5.
CAS
PubMed
Article
Google Scholar
Lacerda RP, Peña Gimenez MT, Laguna F, Costa D, Ríos J, Leiva M. Corneal grafting for the treatment of full-thickness corneal defects in dogs: a review of 50 cases. Vet Ophthalmol. 2017;20:222–31.
CAS
PubMed
Article
Google Scholar
Megquier K, Genereux DP, Hekman J, Swofford R, et al. BarkBase: epigenomic annotation of canine genomes. Genes (Basel). 2019;10:433.
CAS
Article
Google Scholar
Vonsattel JPG, del Amaya MP, Keller CE. Twenty-first century brain banking. Processing brains for research: The Columbia University methods. Acta Neuropathol. 2008;115:509–32.
PubMed
Article
Google Scholar
Bell JE, Alafuzoff I, Al-Sarraj S, Arzberger T, et al. Management of a twenty-first century brain bank: experience in the BrainNet Europe consortium. Acta Neuropathol. 2008;115:497–507.
PubMed
Article
Google Scholar
Nichols L, Freund M, Ng C, Kau A, et al. The National Institutes of Health Neurobiobank: a federated national network of human brain and tissue repositories. Biol Psychiatry. 2014:75.
Ghi P, Di Brisco F, Dallorto D, Osella MC, et al. Age-related modifications of egr1 expression and ubiquitin-proteasome components in pet dog hippocampus. Mech Ageing Dev. 2009;130:320–7.
CAS
PubMed
Article
Google Scholar
Våge J, Bønsdorff TB, Arnet E, Tverdal A, Lingaas F. Differential gene expression in brain tissues of aggressive and non-aggressive dogs. BMC Vet Res. 2010;6:34.
PubMed
PubMed Central
Article
CAS
Google Scholar
Vas J, Topál J, Péch É, Miklósi Á. Measuring attention deficit and activity in dogs: A new application and validation of a human ADHD questionnaire. Appl Anim Behav Sci. 2007;103:105–17.
Article
Google Scholar
Dodman NH, Ginns EI, Shuster L, Moon-Fanelli AA, et al. Genomic risk for severe canine compulsive disorder, a dog model of human OCD. Intern J Appl Res Vet Med. 2016;14:1–18.
CAS
Google Scholar
Topál J, Román V, Turcsán B. The dog (Canis familiaris) as a translational model of autism: It is high time we move from promise to reality. WIREs Cogn Sci. 2019;10:e1495. https://doi.org/10.1002/wcs.1495.
Briggs J, Paoloni M, Chen Q-R, Wen X, Khan J, Khanna C. A compendium of canine normal tissue gene expression. PLoS One. 2011;6:e17107.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hejjas K, Vas J, Topal J, Szantai E, Ronai Z, Szekely A, et al. Association of polymorphisms in the dopamine D4 receptor gene and the activity-impulsivity endophenotype in dogs. Anim Genet. 2007;38:629–33.
Spady TC, Ostrander EA. Canine behavioral genetics: pointing out the phenotypes and herding up the genes. Am J Hum Genet. 2008;82:10–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Chandler K. Canine epilepsy: What can we learn from human seizure disorders? Vet J. 2006;172:207–17.
PubMed
Article
Google Scholar
Potschka H, Fischer A, von Rüden E-L, Hülsmeyer V, Baumgärtner W. Canine epilepsy as a translational model? Epilepsia. 2013;54:571–9.
CAS
PubMed
Article
Google Scholar
Ekenstedt KJ, Oberbauer AM. Inherited epilepsy in Dogs. Top Companion Anim Med. 2013;28:51–8.
PubMed
Article
Google Scholar
Koskinen LLE, Seppälä EH, Weissl J, Jokinen TS, et al. ADAM23 is a common risk gene for canine idiopathic epilepsy. BMC Genet. 2017;18:1–5.
Article
CAS
Google Scholar
Czeibert K, Sándor S, Egerer A, Kubinyi E. A canine brain and tissue bank. Canine Science Forum 2018, Budapest, Hungary, oral presentation. 2018.
Sándor S, Tátrai K, Czeibert K, Egyed B, et al. CDKN2A gene expression as a potential aging biomarker in dogs. Front Vet Sci. 2021;8:348.
Google Scholar
Urfer S, Darvas M, Keene D, Czeibert K, Kubinyi E, Sándor S, et al. Amyloid beta-42 levels in companion dog brains correlate with age and cognitive function. Innov Aging. 2020;4:887–7.
Schepers GWH. The Fossil Brain. South African Archaeol Bull. 1949;4:71.
Article
Google Scholar
Vanlangenakker N, Berghe T, Krysko D, Festjens N, Vandenabeele P. Molecular mechanisms and pathophysiology of necrotic cell death. Curr. Mol. Med. 2008;8:207–20.
CAS
PubMed
Article
Google Scholar
Stan AD, Ghose S, Gao XM, Roberts RC, Lewis-Amezcua K, Hatanpaa KJ, et al. Human postmortem tissue: what quality markers matter? Brain Res. 2006;1123:1–11.
Sheedy D, Harding A, Say M, Stevens J, Kril JJ. Histological assessment of cerebellar granule cell layer in postmortem brain; a useful marker of tissue integrity? Cell Tissue Bank. 2012;13:521–7.
CAS
PubMed
Article
Google Scholar
Ohashi Y, Creek KE, Pirisi L, Kalus R, Young SR. RNA degradation in human breast tissue after surgical removal: a time-course study. Exp Mol Pathol. 2004;77:98–103.
CAS
PubMed
Article
Google Scholar
Ravid R, Swaab DF. The Netherlands brain bank--a clinico-pathological link in aging and dementia research. J Neural Transm Suppl. 1993;39:143–53.
Najafi M. RNA Preservation and Stabilization. Biochem Physiol. 2014;3:1.
Google Scholar
Mutter GL, Zahrieh D, Liu C, Neuberg D, Finkelstein D, Baker HE, et al. Comparison of frozen and RNALater solid tissue storage methods for use in RNA expression microarrays. BMC Genomics. 2004;5:88.
Wang Y, Zheng H, Chen J, Zhong X, Wang Y, Wang Z, et al. The impact of different preservation conditions and freezing-thawing cycles on quality of RNA, DNA, and proteins in cancer tissue. Biopreserv Biobank. 2015;13:335–47.
Hecht EE, Smaers JB, Dunn WD, Kent M, Preuss TM, Gutman DA. Significant neuroanatomical variation among domestic dog breeds. J Neurosci. 2019;39:7748–58.
CAS
PubMed
PubMed Central
Article
Google Scholar
Doyghty MJ, Stuart D. Quantification of the hemolysis associated with use of T-61 R as a euthanasia agent in rabbits–a comparison with Euthanyl R (pentobarbital sodium) and the impact on serum hexosaminidase measurements. Can J Physiol Pharmacol. 1995;73:1274–80.
Article
Google Scholar
Mayevsky A, Barbiro-Michaely E, Ligeti L, MacLaughlin AC. Effects of euthanasia on brain physiological activities monitored in real-time. Neurol Res. 2002;24:647–51.
PubMed
Article
Google Scholar
Klioueva NM, Rademaker MC, Dexter DT, Al-Sarraj S, et al. BrainNet Europe’s Code of Conduct for brain banking. J Neural Transm. 2015;122:937–40.
PubMed
Article
Google Scholar
Schmitt S, Kynast K, Schirmacher P, Herpel E. Challenges for quality management in implementation, maintenance, and sustainability of research tissue biobanks. Virchows Arch. 2016;468:93–9.
CAS
PubMed
Article
Google Scholar
Betsou F. (2017) Quality assurance and quality control in biobanking. In: Hainaut P., Vaught J., Zatloukal K., Pasterk M. (eds) Biobanking of Human Biospecimens. Springer, Cham. https://doi.org/10.1007/978-3-319-55120-3_2.
Merino-Martinez R, Norlin L, van Enckevort D, Anton G, Schuffenhauer S, Silander K, et al. Toward Global Biobank Integration by Implementation of the Minimum Information About BIobank Data Sharing (MIABIS 2.0 Core). Biopreserv Biobank. 2016;14:298–306.
Manders P, Peters TMA, Siezen AE, van Rooij IALM, Snijder R, Swinkels DW, et al. A stepwise procedure to define a data collection framework for a clinical biobank. Biopreserv Biobank. 2018;16:138–47.
Huppertz B, Holzinger A. Biobanks – a source of large biological data sets: open problems and future challenges. In: LNCS. Berlin, Heidelberg: Springer; 2014. p. 317–30.
Google Scholar
Jones-Diette JS, Brennan ML, Cobb M, Doit H, et al. A method for extracting electronic patient record data from practice management software systems used in veterinary practice. BMC Vet Res. 2016;12:1–7.
Article
Google Scholar
Hsu Y, Serpell JA. Development and validation of a questionnaire for measuring behavior and temperament traits in pet dogs. J Am Vet Med Assoc. 2003;223:1293–300.
PubMed
Article
Google Scholar
Mitchell D, Geissler J, Parry-Jones A, Keulen H, Schmitt DC, Vavassori R, et al. Biobanking from the patient perspective. Res Involv Engagem. 2015;1:4.
Lin MJP, Jowsey T, Curtis MA. Why people donate their brain to science: a systematic review. Cell Tissue Bank. 2019;20:447–66.
CAS
PubMed
PubMed Central
Article
Google Scholar
Arahori M, Kuroshima H, Hori Y, Takagi S, Chijiiwa H, Fujita K. Owners’ view of their pets’ emotions, intellect, and mutual relationship: Cats and dogs compared. Behav Processes. 2017;141:316–21.
PubMed
Article
Google Scholar
Evans-Wilday AS, Hall SS, Hogue TE, Mills DS. Self-disclosure with dogs: dog owners’ and non-dog owners’ willingness to disclose emotional topics. Anthrozoos. 2018;31:353–66.
Article
Google Scholar
Van Ommen GJB, Törnwall O, Bréchot C, Dagher G, et al. BBMRI-ERIC as a resource for pharmaceutical and life science industries: the development of biobank-based Expert Centres. Eur J Hum Genet. 2015;23:893–900.
PubMed
Article
Google Scholar
Stewart L, MacLean EL, Ivy D, Woods V, et al. Citizen science as a new tool in dog cognition research. PLoS One. 2015;10:e0135176.
PubMed
PubMed Central
Article
CAS
Google Scholar
Hecht J, Rice ES. Citizen science: a new direction in canine behavior research. Behav Processes. 2015;110:125–32.
PubMed
Article
Google Scholar
Kaeberlein M. The biology of aging: citizen scientists and their pets as a bridge between research on model organisms and human subjects. Vet Pathol. 2016;53:291–8.
CAS
PubMed
Article
Google Scholar
Watowich MM, MacLean EL, Hare B. et al. Age influences domestic dog cognitive performance independent of average breed lifespan. Anim. Cogn. 2020;23:795–805. https://doi.org/10.1007/s10071-020-01385-0.
Goodwin K, Rand J, Morton J, Uthappa V, Walduck R. Email reminders increase the frequency that pet owners update their microchip information. Animals. 2018;8:20.
PubMed Central
Article
PubMed
Google Scholar
Salvin HE, McGreevy PD, Sachdev PS, Valenzuela MJ. Under diagnosis of canine cognitive dysfunction: a cross-sectional survey of older companion dogs. Vet J. 2010;184:277–81.
PubMed
Article
Google Scholar
Suh KS, Sarojini S, Youssif M, Nalley K, et al. Tissue banking, bioinformatics, and electronic medical records: the front-end requirements for personalized medicine. J Oncol. 2013;2013:368751.
PubMed
PubMed Central
Article
Google Scholar
Paul S, Gade A, Mallipeddi S. The state of cloud-based biospecimen and biobank data management tools. Biopreserv Biobank. 2017;15:169–72.
PubMed
Article
Google Scholar
Im K, Gui D, Yong WH. An introduction to hardware, software, and other information technology needs of biomedical biobanks. In: Yong W. (eds) Biobanking. Methods in Molecular Biology, vol 1897. Humana Press, New York, NY. 2019. https://doi.org/10.1007/978-1-4939-8935-5_3.
Pulley J, Clayton E, Bernard GR, Roden DM, Masys DR. Principles of human subjects protections applied in an opt-out, de-identified biobank. Clin Transl Sci. 2010;3:42–8.
PubMed
PubMed Central
Article
Google Scholar
Roden D, Pulley J, Basford M, Bernard G, Clayton EW, Balser JR, et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clin Pharmacol Ther. 2008;84:362–9.
Salvin HE, McGreevy PD, Sachdev PS, Valenzuela MJ. The canine cognitive dysfunction rating scale (CCDR): a data-driven and ecologically relevant assessment tool. Vet J. 2011;188:331–6.
PubMed
Article
Google Scholar
Grinberg LT, Lucena Ferretti RE, Farfel JM, Leite R, et al. Brain bank of the Brazilian aging brain study group - a milestone reached and more than 1,600 collected brains. Cell Tissue Bank. 2007;8:151–62.
PubMed
Article
Google Scholar