Skip to main content
Log in

Performance and mechanistic studies of rapid atenolol degradation through peroxymonosulfate activation by V, Co, and bamboo carbon catalyst

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Developing the Co-based catalysts with high reactivity for the sulfate radical (SO4·)–based advanced oxidation processes (SR-AOPs) has been attracting numerous attentions. To improve the peroxymonosulfate (PMS) activation process, a novel Co-based catalyst simultaneously modified by bamboo carbon (BC) and vanadium (V@CoO-BC) was fabricated through a simple solvothermal method. The atenolol (ATL) degradation experiments in V@CoO-BC/PMS system showed that the obtained V@CoO-BC exhibited much higher performance on PMS activation than pure CoO, and the V@CoO-BC/PMS system could fully degrade ATL within 5 min via the destruction of both radicals (SO4· and O2··) and non-radicals (1O2). The quenching experiments and electrochemical tests revealed that the enhancing mechanism of bamboo carbon and V modification involved four aspects: (i) promoting the PMS and Co ion adsorption on the surface of V@CoO-BC; (ii) enhancing the electron transfer efficiency between V@CoO-BC and PMS; (iii) activating PMS with V3+ species; (iv) accelerating the circulation of Co2+ and Co3+, leading to the enhanced yield of reactive oxygen species (ROS). Furthermore, the V@CoO-BC/PMS system also exhibited satisfactory stability under broad pH (3–9) and good efficiency in the presence of co-existing components (HCO3, NO3, Cl, and HA) in water. This study provides new insights to designing high-performance, environment-friendly bimetal catalysts and some basis for the remediation of antibiotic contaminants with SR-AOPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chen X, Zhu J, Ma Y, Zeng C, Mu R, Deng Z, Zhang Z (2024) Facile synthesis of ball-milling and oxalic acid co-modified sludge biochar to efficiently activate peroxymonosulfate for sulfamethoxazole degradation: 1O2 and surface-bound radicals. J Hazard Mater 465:133026

    Article  CAS  Google Scholar 

  • Dai H, Zhou W, Wang W, Liu Z (2022) Unveiling the role of cobalt species in the Co/N-C catalysts-induced peroxymonosulfate activation process. J Hazard Mater 426:127784

    Article  CAS  Google Scholar 

  • Du J, Bao J, Liu Y, Kim SH, Dionysiou DD (2019) Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation. Chem Eng J 376:119193

    Article  CAS  Google Scholar 

  • Fu S, Zhang Y, Xu X, Dai X, Zhu L (2022) Peroxymonosulfate activation by iron self-doped sludge-derived biochar for degradation of perfluorooctanoic acid: a singlet oxygen-dominated nonradical pathway. Chem Eng J 450:137953

    Article  CAS  Google Scholar 

  • Gao B, Zhu S, Gu J, Liu Y, Yi X, Zhou H (2022) Superoxide radical mediated Mn(III) formation is the key process in the activation of peroxymonosulfate (PMS) by Mn-incorporated bacterial-derived biochar. J Hazard Mater 431:128549

    Article  CAS  Google Scholar 

  • Gulkowska A, Sander M, Hollender J, Krauss M (2013) Covalent binding of sulfamethazine to natural and synthetic humic acids: assessing laccase catalysis and covalent bond stability. Environ Sci Technol 47:6916–6924

    Article  CAS  Google Scholar 

  • Haque A, Sachan R, Narayan J (2019) Synthesis of diamond nanostructures from carbon nanotube and formation of diamond-CNT hybrid structures. Carbon 150:388–395

    Article  CAS  Google Scholar 

  • Hebatpuria VM, Arafat HA, Rho HS, Bishop PL, Pinto NG, Buchanan RC (1999) Immobilization of phenol in cement-based solidified/stabilized hazardous wastes using regenerated activated carbon: leaching studies. J Hazard Mater 70:117–138

    Article  CAS  Google Scholar 

  • Hong M, Yao J, Rao F, Chen Z, Gao N, Zhang Z, Jiang W (2023) Insight into the synergistic mechanism of sonolysis and sono-induced BiFeO3 nanorods piezocatalysis in atenolol degradation: ultrasonic parameters ROS and Degradation Pathways. Chemosphere 335:139084

    Article  CAS  Google Scholar 

  • Hou K, Pi Z, Chen F, He L, Yao F, Chen S, Li X, Wang D, Dong H, Yang Q (2022) Peroxymonosulfate (PMS) activation by mackinawite for the degradation of organic pollutants: underappreciated role of dissolved sulfur derivatives. Sci Total Environ 811:151421

    Article  CAS  Google Scholar 

  • Hu J, Jing X, Zhai L, Guo J, Lu K, Mao L (2019) BiOCl facilitated photocatalytic degradation of atenolol from water: reaction kinetics, pathways and products. Chemosphere 220:77–85

    Article  CAS  Google Scholar 

  • Hu Y, Chen D, Zhang R, Ding Y, Ren Z, Fu M, Zeng G (2021) Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway. J Hazard Mater 419:126495

    Article  CAS  Google Scholar 

  • Ji J, Zhao Y, Wang H, Jiang L, Yuan X, Wang H (2022) Resource utilization of chicken manure to produce biochar for effective removal of levofloxacin hydrochloride through peroxymonosulfate activation: the synergetic function of graphitization and nitrogen functionality. Chemosphere 309:136419

    Article  CAS  Google Scholar 

  • Jiang Y, Yu Z, Lv Y, Li X, Lin C, Ye X, Yang G, Liu Y, Dai L, Liu M, Ruan R (2023) Insights to PFOS elimination with peroxydisulfate activation mediated by boron modified Fe/C catalysts: enhancing mechanism of boron and PFOS degradation pathway. J Colloid Interf Sci 652:1743–1755

    Article  CAS  Google Scholar 

  • Kearns DR (1971) Physical and chemical properties of singlet molecular oxygen. Chem Rev 71:395–427

    Article  CAS  Google Scholar 

  • Kong L, Fang G, Xi X, Wen Y, Chen Y, Xie M, Zhu F, Zhou D, Zhan J (2021) A novel peroxymonosulfate activation process by periclase for efficient singlet oxygen-mediated degradation of organic pollutants. Chem Eng J 403:126445

    Article  CAS  Google Scholar 

  • Kung W, Lin HH, Wang Y, Lin AY (2024) Solar-driven persulfate degradation of caffeine and cephradine in synthetic human urine. J Hazard Mater 465:133031

    Article  CAS  Google Scholar 

  • Lei Y, Sun W, Tiwari SK, Thummavichai K, Ola O, Qin X, Ma Z, Wang N, Zhu Y (2021) Zn/Co-ZIF reinforced sugarcane bagasse aerogel for highly efficient catalytic activation of peroxymonosulfate. J Environ Chem Eng 9:106885

    Article  CAS  Google Scholar 

  • Leng L, Xu S, Liu R, Yu T, Zhuo X, Leng S, Xiong Q, Huang H (2020) Nitrogen containing functional groups of biochar: an overview. Bioresource Technol 298:122286

    Article  CAS  Google Scholar 

  • Li M, He Z, Zhong H, Hu L, Sun W (2021) Multi-walled carbon nanotubes facilitated Roxarsone elimination in SR-AOPs by accelerating electron transfer in modified electrolytic manganese residue and forming surface activated-complexes. Water Res 200:117266

    Article  CAS  Google Scholar 

  • Li A, Ye C, Jiang Y, Deng H (2023) Enhanced removal performance of magnesium-modified biochar for cadmium in wastewaters: role of active functional groups, processes, and mechanisms. Bioresource Technol 386:129515

    Article  CAS  Google Scholar 

  • Lin W, Huang Z, Ping S, Zhang S, Wen X, He Y, Ren Y (2022) Toxicological effects of atenolol and venlafaxine on zebrafish tissues: bioaccumulation, DNA hypomethylation, and molecular mechanism. Environ Pollut 299:118898

    Article  CAS  Google Scholar 

  • Liu F, Li H, Lei S, Yu Q, Ren H, Geng J (2023) Enhanced degradation of pharmaceuticals in wastewater by coupled radical and non-radical pathways: Further unravelling kinetics and mechanism. J Hazard Mater 453:131362

    Article  CAS  Google Scholar 

  • Luo H, Wan Y, Zhou H, Cai Y, Zhu M, Dang Z, Yin H (2022) Mechanisms and influencing factors for electron transfer complex in metal-biochar nanocomposites activated peroxydisulfate. J Hazard Mater 438:129461

    Article  CAS  Google Scholar 

  • Luo H, Wan Y, Li J, Cai Y, Dang Z, Yin H (2023) MgxCu-biochar activated peroxydisulfate triggers reductive species for the reduction and enhanced electron-transfer degradation of electron-deficient aromatic pollutants. J Hazard Mater 452:131267

    Article  CAS  Google Scholar 

  • Lykoudi A, Frontistis Z, Vakros J, Manariotis ID, Mantzavinos D (2020) Degradation of sulfamethoxazole with persulfate using spent coffee grounds biochar as activator. J Environ Manag 271:111022

    Article  CAS  Google Scholar 

  • Muhammad S, Shukla PR, Tadé MO, Wang S (2012) Heterogeneous activation of peroxymonosulphate by supported ruthenium catalysts for phenol degradation in water. J Hazard Mater 215–216:183

    Article  Google Scholar 

  • Nguyen T, Nguyen T, Chen C, Chen W, Bui X, Lam SS, Dong C (2023) NiCo2O4-loaded sunflower husk-derived biochar as efficient peroxymonosulfate activator for tetracycline removal in water. Bioresource Technol 382:129182

    Article  CAS  Google Scholar 

  • Peng L, Kassotaki E, Liu Y, Sun J, Dai X, Pijuan M, Rodriguez-Roda I, Buttiglieri G, Ni B (2017) Modelling cometabolic biotransformation of sulfamethoxazole by an enriched ammonia oxidizing bacteria culture. Chem Eng Sci 173:465–473

    Article  CAS  Google Scholar 

  • Ruan Y, Lin H, Zhang X, Wu R, Zhang K, Leung KMY, Lam JCW, Lam PKS (2020) Enantiomer-specific bioaccumulation and distribution of chiral pharmaceuticals in a subtropical marine food web. J Hazard Mater 394:122589

    Article  CAS  Google Scholar 

  • Saputra E, Muhammad S, Sun H, Patel A, Shukla P, Zhu ZH, Wang S (2012) α-MnO2 activation of peroxymonosulfate for catalytic phenol degradation in aqueous solutions. Catal Commun 26:144

    Article  CAS  Google Scholar 

  • Saputra E, Muhammad S, Sun H, Ang HM, Tadé MO, Wang S (2013) Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Environ Sci Technol 47:5882–5887

    Article  CAS  Google Scholar 

  • Wang S, Wang J (2020) Peroxymonosulfate activation by Co9S8@ S and N co-doped biochar for sulfamethoxazole degradation. Chem Eng J 385:123933

    Article  CAS  Google Scholar 

  • Wang C, Yang Q, Li Z, Lin K-YA, Tong S (2019) A novel carbon-coated Fe-C/N composite as a highly active heterogeneous catalyst for the degradation of acid red 73 by persulfate. Sep Purif Technol 213:447–455

    Article  CAS  Google Scholar 

  • Wang A, Hou J, Feng Y, Wu J, Miao L (2022) Removal of tetracycline by biochar-supported biogenetic sulfidated zero valent iron: kinetics, pathways and mechanism. Water Res 225:119168

    Article  CAS  Google Scholar 

  • Wang C, Wang X, Wang H, Zhang L, Wang Y, Dong C, Huang Y, Guo P, Cai R, Haigh SJ, Yang X, Sun Y, Yang D (2023) Low-coordinated Co-N3 sites induce peroxymonosulfate activation for norfloxacin degradation via high-valent cobalt-oxo species and electron transfer. J Hazard Mater 455:131622

    Article  CAS  Google Scholar 

  • Wilson S, Hassan D, Jakeman M, Breuning E (2022) Cost-effectiveness of atenolol compared to propranolol as first-line treatment of infantile haemangioma: A pilot study. JPRAS Open 33:52–56

    Article  Google Scholar 

  • Wu SK, Yang DX, Zhou YY, Zhou H, Ai SL, Yang Y, Wan ZH, Luo L, Tang L, Tsang DCW (2020) Simultaneous degradation of p-arsanilic acid and inorganic arsenic removal using M-rGO/PS Fenton-like system under neutral conditions. J Hazard Mater 399:123032

    Article  CAS  Google Scholar 

  • Xie Y, Hu S, Ma D, Liu R, Xu C, Liu H (2022) NO3 photolysis-induced advanced reduction process removes NO3 and 2, 4, 6-tribromophenol. Chemosphere 288:132633

    Article  CAS  Google Scholar 

  • Yang Q, Yang X, Yan Y, Sun C, Wu H, He J, Wang D (2018) Heterogeneous activation of peroxymonosulfate by different ferromanganese oxides for tetracycline degradation: structure dependence and catalytic mechanism. Chem Eng J 348:263–270

    Article  CAS  Google Scholar 

  • Yao Y, Cai Y, Lu F, Wei F, Wang X, Wang S (2014) Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. J Hazard Mater 270:61–70

    Article  CAS  Google Scholar 

  • Yu Z, Ma J, Huang X, Lv Y, Liu Y, Lin C, Dou R, Ye X, Shi Y, Liu M (2022) Insights into enhanced peroxydisulfate activation with S doped Fe@C catalyst for the rapid degradation of organic pollutants. J Colloid Interf Sci 610:24–34

    Article  CAS  Google Scholar 

  • Zeng Q, Wang Y, Zhang Q, Hu J, Wen Y, Wang J, Wang R, Zhao S (2023) Activity and mechanism of vanadium sulfide for organic contaminants oxidation with peroxymonosulfate. J Colloid Interf Sci 635:358–369

    Article  CAS  Google Scholar 

  • Zhang C, Li F, Wen R, Zhang H, Elumalai P, Zheng Q, Chen H, Yang Y, Huang M, Ying G (2020) Heterogeneous electro-Fenton using three-dimension NZVI-BC electrodes for degradation of neonicotinoid wastewater. Water Res 182:115975

    Article  CAS  Google Scholar 

  • Zhang H, Xie C, Chen L, Duan J, Li F, Liu W (2023a) Different reaction mechanisms of SO4•− and •OH with organic compound interpreted at molecular orbital level in Co(II)/peroxymonosulfate catalytic activation system. Water Res 229:119392

    Article  CAS  Google Scholar 

  • Zhang L, Guo Z, Ma J, Sun D, Jin L, Ao Y, Sun S (2023b) Cation π interactions trigger the oriented assembly of graphene oxide for designing high-performance carbon fiber composites. Appl Surf Sci 633:157599

    Article  CAS  Google Scholar 

  • Zhang L, Sun Y, Ge R, Zhou W, Ao Z, Wang J (2023c) Mechanical insight into direct singlet oxygen generation pathway: pivotal role of FeN4 sites and selective organic contaminants removal. Appl Catal B 339:123130

    Article  CAS  Google Scholar 

  • Zhao Y, Wang H, Ji J, Li X, Yuan X, Duan A, Guan X, Jiang L, Li Y (2022) Recycling of waste power lithium-ion batteries to prepare nickel/cobalt/manganese-containing catalysts with inter-valence cobalt/manganese synergistic effect for peroxymonosulfate activation. J Colloid Interf Sci 626:564–580

    Article  CAS  Google Scholar 

  • Zhou Y, Jiang J, Gao Y, Pang S, Yang Y, Ma J, Gu J, Li J, Wang Z, Wang L, Yuan L, Yang Y (2017) Activation of peroxymonosulfate by phenols: important role of quinone intermediates and involvement of singlet oxygen. Water Res 125:209–218

    Article  CAS  Google Scholar 

  • Zhou J, Yang X, Wei Q, Lan Y, Guo J (2023) Co3O4 anchored on biochar derived from chitosan (Co3O4@BCC) as a catalyst to efficiently activate peroxymonosulfate (PMS) for degradation of phenacetin. J Environ Manag 327:116895

    Article  CAS  Google Scholar 

Download references

Funding

This work was financed by the Fujian Natural Science Foundation (2022J01563 and 2023J05103), the National Natural Science Foundation of China (No. 22208057 and 22278082), and Fu-Xia-Quan Independent Innovation Demonstration Zone Collaborative Innovation Platform Project (No. 2022-P-024).

Author information

Authors and Affiliations

Authors

Contributions

Yuancai Lv: conceptualization and funding acquisition; Yihui Hu: data curation and investigation; Kai Yang: writing—original draft; Yule Lin and Yanting Jiang: investigation; Xin Weng: data curation; Xiaojuan Li and Yifan Liu: methodology; Jian Huang and Chunxiang Lin: writing—review and editing; Minghua Liu: funding acquisition and guiding the investigation.

Corresponding author

Correspondence to Yuancai Lv.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Guilherme Luiz Dotto

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yihui Hu designed the experiments and finished most of the experiments and tests, and Kai Yang wrote the original manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5300 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Yang, K., Lin, Y. et al. Performance and mechanistic studies of rapid atenolol degradation through peroxymonosulfate activation by V, Co, and bamboo carbon catalyst. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33657-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-024-33657-4

Keywords

Navigation