Skip to main content

Advertisement

Log in

Effect of landfill leachate on arsenic migration and transformation in shallow groundwater systems

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Arsenic contamination of groundwater has affected human health and environmental safety worldwide. Hundreds of millions of people in more than 100 countries around the world are directly or indirectly troubled by arsenic-contaminated groundwater. In addition, arsenic contamination of groundwater caused by leakage of leachate from municipal solid waste landfills has occurred in some countries and regions, which has attracted widespread attention. Understanding how domestic waste landfill leachate affects the arsenic’s migration and transformation in shallow groundwater is crucial for accurate assessment of the distribution and ecological hazards of arsenic in groundwater. Based on literature review, this study systematically summarized and discussed the basic characteristics of landfill leachate, the mechanism of arsenic pollution in groundwater, and the effect of landfill leachate on the migration and transformation of arsenic in groundwater. Combined with relevant research findings and practical experience, countermeasures and suggestions to limit the impact of landfill leachate on the migration and transformation of arsenic in groundwater are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abd El-Salam MM, Abu-Zuid GI (2015) Impact of landfill leachate on the groundwater quality: a case study in Egypt. J Adv Res 6:579–586

    Article  CAS  Google Scholar 

  • Acharyya S, Chakraborty P, Lahiri S, Raymahashay B, Guha S, Bhowmik A (1999) Arsenic poisoning in the Ganges delta. Nature 401:545–545

    Article  CAS  Google Scholar 

  • Acharyya SK, Shah BA (2007) Groundwater arsenic contamination affecting different geologic domains in India—a review: influence of geological setting, fluvial geomorphology and Quaternary stratigraphy. J Environ Sci Health A 42:1795–1805

    Article  CAS  Google Scholar 

  • Aftabtalab A, Rinklebe J, Shaheen SM, Niazi NK, Moreno-Jiménez E, Schaller J, Knorr K-H (2022) Review on the interactions of arsenic, iron (oxy)(hydr)oxides, and dissolved organic matter in soils, sediments, and groundwater in a ternary system. Chemosphere 286:131790

    Article  CAS  Google Scholar 

  • Aharoni I, Siebner H, Dahan O (2017) Application of vadose-zone monitoring system for real-time characterization of leachate percolation in and under a municipal landfill. Waste Manag 67:203–213

    Article  CAS  Google Scholar 

  • Alozie N, Heaney N, Lin C (2018) Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids. Sci Total Environ 630:1188–1194

    Article  CAS  Google Scholar 

  • Anawar HM, Akai J, Sakugawa H (2004) Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere 54:753–762

    Article  CAS  Google Scholar 

  • Arthur J, Dabous A, Cowart J (2005) Water–rock geochemical considerations for aquifer storage and recovery: Florida case studies. Dev Water Sci 52:327–339

    CAS  Google Scholar 

  • Babaei S, Sabour MR, Moftakhari Anasori Movahed S (2021) Combined landfill leachate treatment methods: an overview. Environ Sci Pollut Res 28:59594–59607

    Article  CAS  Google Scholar 

  • Baun DL, Christensen TH (2004) Speciation of heavy metals in landfill leachate: a review. Waste Manag Res 22:3–23

    Article  CAS  Google Scholar 

  • Bhatt AH, Karanjekar RV, Altouqi S, Sattler ML, Hossain MS, Chen VP (2017) Estimating landfill leachate BOD and COD based on rainfall, ambient temperature, and waste composition: exploration of a MARS statistical approach. Environ Technol Innov 8:1–16

    Article  CAS  Google Scholar 

  • Bindal S, Kumar A, Mallick J, Shashtri S, Kumar P, Singh CK (2020) Geochemical, topographical, and meteorological controls on groundwater arsenic contamination in Sharda River Basin of Uttar Pradesh, India. J Climate Change 6:71–87

    Article  Google Scholar 

  • Biswas A, Besold J, Sjöstedt C, Gustafsson JP, Scheinost AC, Planer-Friedrich B (2019) Complexation of arsenite, arsenate, and monothioarsenate with oxygen-containing functional groups of natural organic matter: an XAS Study. Environ Sci Technol 53:10723–10731

    Article  CAS  Google Scholar 

  • Biswas R, Sarkar A (2022) Microbes: key players of the arsenic biogeochemical cycle, Microbial metabolism of metals and metalloids. Springer, pp 197–221

    Book  Google Scholar 

  • Cao HT, Nguyen NTT, Anh PN, Vu HH, Nguyen HT (2021) Insight into removal TOC and NH4+ from mature landfill leachate using coupled bio-coagulation from Moringa oleifera seeds and ZVI/H2O2 process. J Water Process Eng 42:102112

    Article  Google Scholar 

  • Charlet L, Morin G, Rose J, Wang Y, Auffan M, Burnol A, Fernandez-Martinez A (2011) Reactivity at (nano) particle-water interfaces, redox processes, and arsenic transport in the environment. Compt Rendus Geosci 343:123–139

    Article  CAS  Google Scholar 

  • Christensen TH, Kjeldsen P, Albrechtsen HJ, Heron G, Nielsen PH, Bjerg PL, Holm PE (1994) Attenuation of landfill leachate pollutants in aquifers. Crit Rev Environ Sci Technol 24:119–202

    Article  CAS  Google Scholar 

  • Costa AM, Alfaia RGSM, Campos JC (2019) Landfill leachate treatment in Brazil–an overview. J Environ Manag 232:110–116

    Article  CAS  Google Scholar 

  • Crawford JF, Smith PG (2016) Landfill technology. Elsevier

    Google Scholar 

  • Cui J, Jing C (2019) A review of arsenic interfacial geochemistry in groundwater and the role of organic matter. Ecotoxicol Environ Saf 183:109550

    Article  CAS  Google Scholar 

  • Dai GZ, Shi GC, Wu XF, Wang Y (2011) Preparation and basic performance of anti-seepage slurry for domestic waste landfill site. Adv Mater Res 250:2302–2306

    Article  Google Scholar 

  • Dhuldhaj UP, Yadav IC, Singh S, Sharma NK (2013) Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management. Rev Environ Contam Toxicol 224:1–38

    CAS  Google Scholar 

  • Dietrich S, Bea SA, Weinzettel P, Torres E, Ayora C (2016) Occurrence and distribution of arsenic in the sediments of a carbonate-rich unsaturated zone. Environ Earth Sci 75:1–14

    Article  CAS  Google Scholar 

  • Eganhouse RP, Cozzarelli IM, Scholl MA, Matthews LL (2001) Natural attenuation of volatile organic compounds (VOCs) in the leachate plume of a municipal landfill: using alkylbenzenes as process probes. Groundwater 39:192–202

    Article  CAS  Google Scholar 

  • Ersahin ME, Cicekalan B, Cengiz AI, Zhang X, Ozgun H (2023) Nutrient recovery from municipal solid waste leachate in the scope of circular economy: recent developments and future perspectives. J Environ Manag 335:117518

    Article  Google Scholar 

  • Feng S, Guo H, Sun X, Han S (2022) Limited roles of anthropogenic activities on arsenic mobilization in groundwater from the Yinchuan Basin, China. J Hydro 610:127910

    Article  CAS  Google Scholar 

  • Ford RG, Acree SD, Lien BK, Scheckel KG, Luxton TP, Ross RR, Williams AG, Clark P (2011) Delineating landfill leachate discharge to an arsenic contaminated waterway. Chemosphere 85:1525–1537

    Article  CAS  Google Scholar 

  • Frau F, Biddau R, Fanfani L (2008) Effect of major anions on arsenate desorption from ferrihydrite-bearing natural samples. Appl Geochem 23:1451–1466

    Article  CAS  Google Scholar 

  • Frau F, Addari D, Atzei D, Biddau R, Cidu R, Rossi A (2010) Influence of major anions on As(V) adsorption by synthetic 2-line ferrihydrite. Kinetic investigation and XPS study of the competitive effect of bicarbonate. Water Air Soil Pollut 205:25–41

  • Frau F, Cidu R, Casu M, Soriga A (2019) Assessing arsenic sources in landfill areas: a case study in Sardinia. Ital J Geosci 138:116–213

    Google Scholar 

  • Gao Z, Weng H, Guo H (2021) Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches. J Hydrol 595:125981

    Article  CAS  Google Scholar 

  • Ghosh A, Mukiibi M, Sáez AE, Ela WP (2006) Leaching of arsenic from granular ferric hydroxide residuals under mature landfill conditions. Environ Sci Technol 40:6070–6075

    Article  CAS  Google Scholar 

  • Gibney BP, Nüsslein K (2007) Arsenic sequestration by nitrate respiring microbial communities in urban lake sediments. Chemosphere 70:329–336

    Article  CAS  Google Scholar 

  • Goswami R, Neog N, Thakur R (2022) Hydrogeochemical analysis of groundwater quality for drinking and irrigation with elevated arsenic and potential impact on agro-ecosystem in the upper Brahmaputra plain, India. Environ Sci Pollut Res 29(45):68735–68756

    Article  CAS  Google Scholar 

  • Guo H, Wen D, Liu Z, Jia Y, Guo Q (2014) A review of high arsenic groundwater in Mainland and Taiwan, China: distribution, characteristics and geochemical processes. Appl Geochem 41:196–217

    Article  CAS  Google Scholar 

  • Guo H, Li X, Xiu W, He W, Cao Y, Zhang D, Wang A (2019) Controls of organic matter bioreactivity on arsenic mobility in shallow aquifers of the Hetao Basin, PR China. J Hydrol 571:448–459

    Article  CAS  Google Scholar 

  • Gusiatin ZM, Kulikowska D, Klik B (2017) Suitability of humic substances recovered from sewage sludge to remedy soils from a former As mining area–a novel approach. J Hazard Mater 338:160–166

    Article  CAS  Google Scholar 

  • Guyonnet D, Touze-Foltz N, Norotte V, Pothier C, Didier G, Gailhanou H, Blanc P, Warmont F (2009) Performance-based indicators for controlling geosynthetic clay liners in landfill applications. Geotext Geomembr 27:321–331

    Article  Google Scholar 

  • Halim AA, Aziz HA, Johari MAM, Ariffin KS (2010) Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination 262:31–35

    Article  Google Scholar 

  • Han FX, Su Y, Monts DL, Plodinec MJ, Banin A, Triplett GE (2003) Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften 90:395–401

    Article  CAS  Google Scholar 

  • Han J, Ro H-M (2018) Interpreting competitive adsorption of arsenate and phosphate on nanosized iron (hydr)oxides: effects of pH and surface loading. Environ Sci Pollut Res 25:28572–28582

    Article  CAS  Google Scholar 

  • Han S, Zhang F, Zhang H, An Y, Wang Y, Wu X, Wang C (2013) Spatial and temporal patterns of groundwater arsenic in shallow and deep groundwater of Yinchuan Plain, China. J Geochem Explor 135:71–78

    Article  CAS  Google Scholar 

  • Harte PT, Ayotte JD, Hoffman A, Révész KM, Belaval M, Lamb S, Boehlke J (2012) Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA. Hydrogeol J 20:1189–1201

    Article  CAS  Google Scholar 

  • Hu L-G, Sa Y (2009) Biogeochemical of arsenic. Progress Chem 21:458

    CAS  Google Scholar 

  • Hu L, Zhang D, Qian Y, Nie Z, Long Y, Shen D, Fang C, Yao J (2022) Microbes drive changes in arsenic species distribution during the landfill process. Environ Pollut 292:118322

    Article  CAS  Google Scholar 

  • Hu S, Lu Y, Peng L, Wang P, Zhu M, Dohnalkova AC, Chen H, Lin Z, Dang Z, Shi Z (2018) Coupled kinetics of ferrihydrite transformation and As(V) sequestration under the effect of humic acids: a mechanistic and quantitative study. Environ Sci Technol 52:11632–11641

    CAS  Google Scholar 

  • Huang J-H (2014) Impact of microorganisms on arsenic biogeochemistry: a review. Water Air Soil Pollut 225:1–25

    Article  Google Scholar 

  • Huq M, Su C, Fahad S, Li J, Sarven M, Liu R (2018) Distribution and hydrogeochemical behavior of arsenic enriched groundwater in the sedimentary aquifer comparison between Datong Basin (China) and Kushtia District (Bangladesh). Environ Sci Pollut Res 25:15830–15843

    Article  CAS  Google Scholar 

  • Idehai I (2015) Evaluation of heavy element levels in leachate, soil and groundwater in the Lagos landfill Areas of Nigeria. J Geography, Environ Earth Sci Int 3:1–21

    Article  Google Scholar 

  • Kalmykova Y, Björklund K, Strömvall A-M, Blom L (2013) Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater. Water Res 47:1317–1328

    Article  CAS  Google Scholar 

  • Kapaj S, Peterson H, Liber K, Bhattacharya P (2006) Human health effects from chronic arsenic poisoning–a review. J Environ Sci Health A 41:2399–2428

    Article  CAS  Google Scholar 

  • Khoo K, Tan X, Show P, Pal P, Juan J, Ling T, Ho S-H, Nguyen T (2020) Treatment for landfill leachate via physicochemical approaches: an overview. Chem Biochem Eng Q 34:1–24

    Article  CAS  Google Scholar 

  • Kobya M, Soltani RDC, Omwene PI, Khataee A (2020) A review on decontamination of arsenic-contained water by electrocoagulation: reactor configurations and operating cost along with removal mechanisms. Environ Technol Innov 17:100519

    Article  CAS  Google Scholar 

  • Kumarathilaka P, Seneweera S, Meharg A, Bundschuh J (2018) Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors-a review. Water Res 140:403–414

    Article  CAS  Google Scholar 

  • Kurniawan TA, Lo W-h, Chan GY (2006) Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. J Hazard Mater 129:80–100

    Article  CAS  Google Scholar 

  • Lee S, Roh Y, Koh D-C (2019) Oxidation and reduction of redox-sensitive elements in the presence of humic substances in subsurface environments: a review. Chemosphere 220:86–97

    Article  CAS  Google Scholar 

  • Lee SI, Kitanidis PK (1993) Analysis of groundwater flow and travel times for a landfill site in an arid region with a thick vadose zone. Hydrol Process 7:373–387

    Article  Google Scholar 

  • Li S, Yang C, Peng C, Li H, Liu B, Chen C, Chen B, Bai J, Lin C (2018) Effects of elevated sulfate concentration on the mobility of arsenic in the sediment–water interface. Ecotoxicol Environ Saf 154:311–320

    Article  CAS  Google Scholar 

  • Li Y, Bi Y, Mi W, Xie S, Ji L (2021) Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. J Hazard Mater 406:124337

    Article  CAS  Google Scholar 

  • Liang X, Lin X, Wei G, Ma L, He H, Santos-Carballal D, Zhu J, Zhu R, De Leeuw NH (2021) Competitive adsorption geometries for the arsenate As(V) and phosphate P(V) oxyanions on magnetite surfaces: experiments and theory. Am Min: J Earth Planet Mater 106:374–388

    Article  Google Scholar 

  • Liu B, Zhang L, Wang Q (2021) Demand gap analysis of municipal solid waste landfill in Beijing: based on the municipal solid waste generation. Waste Manag 134:42–51

    Article  Google Scholar 

  • Liu G, Cai Y (2011) Complexation of arsenic with dissolved organic matter in the environment. Environ Chem 30:50–55

    Google Scholar 

  • Liu X, Wang Y, Shao H, Song T, Zhang J (2013) Experimental study on landfill liners made from modified bentonite. Chinese J Environ Eng 7:4513–4518

    CAS  Google Scholar 

  • Liu Z, Wu W, Shi P, Guo J, Cheng J (2015) Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation. Waste Manag 41:111–118

    Article  CAS  Google Scholar 

  • Liu Z, Jiang X, Lin D (2019) Investigation on the status quo of water quality of a regular domestic waste landfill site in Shenzhen. Environ Protect Circ Econ 39:62–66

    Google Scholar 

  • Luo H, Zeng Y, Cheng Y, He D, Pan X (2020) Recent advances in municipal landfill leachate: a review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ 703:135468

    Article  CAS  Google Scholar 

  • Malik A, Parvaiz A, Mushtaq N, Hussain I, Javed T, Rehman HU, Farooqi A (2020) Characterization and role of derived dissolved organic matter on arsenic mobilization in alluvial aquifers of Punjab, Pakistan. Chemosphere 251:126374

    Article  CAS  Google Scholar 

  • Manning BA, Fendorf SE, Bostick B, Suarez DL (2002) Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite. Environ Sci Technol 36:976–981

    Article  CAS  Google Scholar 

  • Masuda H (2018) Arsenic cycling in the Earth’s crust and hydrosphere: interaction between naturally occurring arsenic and human activities. Prog Earth Planet Sci 5:1–11

    Article  CAS  Google Scholar 

  • Mazumder P, Sharma SK, Taki K, Kalamdhad AS, Kumar M (2020) Microbes involved in arsenic mobilization and respiration: a review on isolation, identification, isolates and implications. Environ Geochem Health 42:3443–3469

    Article  CAS  Google Scholar 

  • Meena M, Singh A, Prasad L, Islam A, Meena M, Dotaniya M, Singh H, Yadav B (2020) Impact of arsenic-polluted groundwater on soil and produce quality: a food chain study. Environ Monit Assess 192:1–8

    Article  Google Scholar 

  • Meng X, Bang S, Korfiatis GP (2000) Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res 34:1255–1261

    Article  CAS  Google Scholar 

  • Meng X, Korfiatis GP, Bang S, Bang KW (2002) Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Lett 133:103–111

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Moody CM, Townsend TG (2017) A comparison of landfill leachates based on waste composition. Waste Manag 63:267–274

    Article  CAS  Google Scholar 

  • Mor S, Ravindra K, Dahiya R, Chandra A (2006) Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ Monit Assess 118:435–456

    Article  CAS  Google Scholar 

  • Negi P, Mor S, Ravindra K (2020) Impact of landfill leachate on the groundwater quality in three cities of North India and health risk assessment. Environ Dev Sustain 22:1455–1474

    Article  Google Scholar 

  • Nickson R, McArthur J, Shrestha B, Kyaw-Myint T, Lowry D (2005) Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Appl Geochem 20:55–68

    Article  CAS  Google Scholar 

  • Peng Y (2017) Perspectives on technology for landfill leachate treatment. Arab J Chem 10:S2567–S2574

    Article  CAS  Google Scholar 

  • Phan VT, Bernier-Latmani R, Tisserand D, Bardelli F, Le Pape P, Frutschi M, Géhin A, Couture R-M, Charlet L (2019) As release under the microbial sulfate reduction during redox oscillations in the upper Mekong delta aquifers, Vietnam: a mechanistic study. Sci Total Environ 663:718–730

    Article  CAS  Google Scholar 

  • Pierce ML, Moore CB (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res 16:1247–1253

    Article  CAS  Google Scholar 

  • Prakash S, Verma AK (2021) Arsenic: it’s toxicity and impact on human health. Int J Biol Innov 3:38–47

    Article  Google Scholar 

  • PSG da Silva VE, de S.Rollemberg SL, da Santos SG, CV Silva TF, Vilar VJ, dos Santos A (2022) Landfill leachate biological treatment: perspective for the aerobic granular sludge technology. Environ Sci Pollut Res 29(30):45150–45170

  • Radu T, Subacz JL, Phillippi JM, Barnett MO (2005) Effects of dissolved carbonate on arsenic adsorption and mobility. Environ Sci Technol 39:7875–7882

    Article  CAS  Google Scholar 

  • Raju M (2012) Contamination of ground water due to landfill leachate. Int J Eng Res 1:48–53

    CAS  Google Scholar 

  • Raju NJ (2022) Arsenic in the geo-environment: a review of sources, geochemical processes, toxicity and removal technologies. Environ Res 203:111782

    Article  CAS  Google Scholar 

  • Redman AD, Macalady DL, Ahmann D (2002) Natural organic matter affects arsenic speciation and sorption onto hematite. Environ Sci Technol 36:2889–2896

    Article  CAS  Google Scholar 

  • Renou S, Givaudan J, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150:468–493

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Song X, Min H, Zhao L, Fu Q, Zheng W, Wang X, Ding X, Liu L, Ji M (2022) The experience and development of the treatment technology of municipal solid waste leachate in China. Water 14:2458

    Article  CAS  Google Scholar 

  • Sosa A, Armienta MA, Aguayo A, Cruz O (2020) Evaluation of the influence of main groundwater ions on arsenic removal by limestones through column experiments. Sci Total Environ 727:138459

    Article  CAS  Google Scholar 

  • Stahl MO, Badruzzaman A, Tarek MH, Harvey CF (2020) Geochemical transformations beneath man-made ponds: implications for arsenic mobilization in South Asian aquifers. Geochim Cosmochim Acta 288:262–281

    Article  CAS  Google Scholar 

  • Statom R, Thyne G, McCray J (2004) Temporal changes in leachate chemistry of a municipal solid waste landfill cell in Florida, USA. Environ Geol 45:982–991

    Article  CAS  Google Scholar 

  • Stolz J, Basu P, Oremland R (2002) Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 5:201–207

    Article  CAS  Google Scholar 

  • Su Y, Li Q, Tao H (2022) Factors Influencing the abnormal spatial distribution of arsenic content in groundwater in Kuitun river basin. J Yangtze River Sci Res Institute 39:43-49+55

    Google Scholar 

  • Sun X-c, Xu Y, Liu Y-q, Nai C-x, Dong L, Liu J-c, Huang Q-f (2019) Evolution of geomembrane degradation and defects in a landfill: impacts on long-term leachate leakage and groundwater quality. J Clean Prod 224:335–345

    Article  CAS  Google Scholar 

  • Tareq SM, Safiullah S, Anawar H, Rahman MM, Ishizuka T (2003) Arsenic pollution in groundwater: a self-organizing complex geochemical process in the deltaic sedimentary environment, Bangladesh. Sci Total Environ 313:213–226

    Article  CAS  Google Scholar 

  • Thornburg K, Sahai N (2004) Arsenic occurrence, mobility, and retardation in sandstone and dolomite formations of the Fox River Valley, Eastern Wisconsin. Environ Sci Technol 38:5087–5094

    Article  CAS  Google Scholar 

  • Tong Y, Liu J, Liu S (2020) China is implementing “Garbage Classification” action. Environ Pollut 259:113707

    Article  CAS  Google Scholar 

  • Torretta V, Ferronato N, Katsoyiannis IA, Tolkou AK, Airoldi M (2016) Novel and conventional technologies for landfill leachates treatment: A review. Sustainability 9:9

    Article  Google Scholar 

  • Vosoogh A, Baghvand A, Karbassi A, Nasrabadi T (2017) Landfill site selection using pollution potential zoning of aquifers by modified DRASTIC method: case study in Northeast Iran. Iran J Sci Technol - Trans Civ Eng 41:229–239

    Article  Google Scholar 

  • Wang S, Mulligan CN (2006) Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environ Geochem Health 28:197–214

    Article  CAS  Google Scholar 

  • Wang Y, Liu X-h, Si Y-b, Wang R-f (2016) Release and transformation of arsenic from As-bearing iron minerals by Fe-reducing bacteria. Chem Eng J 295:29–38

    Article  CAS  Google Scholar 

  • Wang Y, Li J, An D, Xi B, Tang J, Wang Y, Yang Y (2018a) Site selection for municipal solid waste landfill considering environmental health risks. Resour Conserv Recycl 138:40–46

    Article  Google Scholar 

  • Wang Y, Li P, Jiang Z, Liu H, Wei D, Wang H, Wang Y (2018b) Diversity and abundance of arsenic methylating microorganisms in high arsenic groundwater from Hetao Plain of Inner Mongolia, China. Ecotoxicology 27:1047–1057

    Article  CAS  Google Scholar 

  • Warmadewanthi I, Chrystiadini G, Kurniawan SB, Abdullah SRS (2021) Impact of degraded solid waste utilization as a daily cover for landfill on the formation of methane and leachate. Bioresour Technol Rep 15:100797

    Article  CAS  Google Scholar 

  • Weerasundara L, Ok Y-S, Bundschuh J (2021) Selective removal of arsenic in water: a critical review. Environ Pollut 268:115668

    Article  CAS  Google Scholar 

  • Wei M, Wu J, Li W, Zhang Q, Su F, Wang Y (2021) Groundwater geochemistry and its impacts on groundwater arsenic enrichment, variation, and health risks in Yongning County, Yinchuan Plain of northwest China. Expo Health 2021:1–20

  • Welch AH, Stollenwerk KG (2003) Arsenic in ground water: geochemistry and occurrence. Springer Science & Business Media

    Book  Google Scholar 

  • Wu X, Bowers B, Kim D, Lee B, Jun Y-S (2019) Dissolved organic matter affects arsenic mobility and iron(III) (hydr)oxide formation: implications for managed aquifer recharge. Environ Sci Technol 53:14357–14367

    Article  CAS  Google Scholar 

  • Xie X, Wang Y, Ellis A, Li J, Su C, Duan M (2013) Multiple isotope (O, S and C) approach elucidates the enrichment of arsenic in the groundwater from the Datong Basin, northern China. J Hydrol 498:103–112

    Article  CAS  Google Scholar 

  • Xu Y, Xue X, Dong L, Nai C, Liu Y, Huang Q (2018) Long-term dynamics of leachate production, leakage from hazardous waste landfill sites and the impact on groundwater quality and human health. Waste Manag 82:156–166

    Article  CAS  Google Scholar 

  • Yadav MK, Saidulu D, Gupta AK, Ghosal PS, Mukherjee A (2021) Status and management of arsenic pollution in groundwater: a comprehensive appraisal of recent global scenario, human health impacts, sustainable field-scale treatment technologies. J Environ Chem Eng 9:105203

    Article  CAS  Google Scholar 

  • Zhang J, Zhang J-m, Xing B, Liu G-d, Liang Y (2021) Study on the effect of municipal solid landfills on groundwater by combining the models of variable leakage rate, leachate concentration, and contaminant solute transport. J Environ Manag 292:112815

    Article  CAS  Google Scholar 

  • Zhang M, Wan K, Zeng J, Lin W, Ye C, Yu X (2020) Co-selection and stability of bacterial antibiotic resistance by arsenic pollution accidents in source water. Environ Int 135:105351

    Article  CAS  Google Scholar 

  • Zhang Q, Guo M, Xie J, Yang X, Chen C (2022a) Investigation on characteristics of landfill leachate and feasibility study of low-temperature vacuum evaporation treatment. J Environ Chem Eng 10:108451

    Article  CAS  Google Scholar 

  • Zhang Z, Matlan SJ, Wang H, Pishro AA, Zhang L, Gao X, Liang Z, Liu X, Zhao P (2022b) Geotechnical evaluation of loess modifications as the sustainable compacted soil liner material in solid waste landfill. Materials 15:4982

    Article  CAS  Google Scholar 

  • Zhao R, Liu J, Feng J, Li X, Li B (2021) Microbial community composition and metabolic functions in landfill leachate from different landfills of China. Sci Total Environ 767:144861

    Article  CAS  Google Scholar 

  • Zhou W, Zhu H, Hu S, Zhang B, Gao K, Dang Z, Liu C (2024) Dynamic coupling of ferrihydrite transformation and associated arsenic desorption/redistribution mediated by sulfate-reducing bacteria. J Environ Sci 135:39–50

    Article  Google Scholar 

  • Zhuang J (2003) Worldwide underground water pollution by arsenic. Min Resour Geol 17:177–178

    Google Scholar 

  • Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34:4747–4753

    Article  CAS  Google Scholar 

Download references

Funding

The financial support was provided by the National Key Research and Development Program of China (No. 2019YFC1903901) and central research institutes of basic research and public service special operations of Chinese Research Academy of Environmental Sciences (2019YSKY-010).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data analysis and collection were done by Ying Zhao, Xinyi Zhang, Zhiqiang Jian, and Yaping Gong. Original draft preparation was done by Xinyi Zhang. Review and editing were done by Ying Zhao and Xiaoguang Meng. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Xinyi Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ., Zhang, X., Jian, Z. et al. Effect of landfill leachate on arsenic migration and transformation in shallow groundwater systems. Environ Sci Pollut Res 31, 5032–5042 (2024). https://doi.org/10.1007/s11356-023-31629-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-31629-8

Keywords

Navigation