Skip to main content
Log in

Diversity and abundance of arsenic methylating microorganisms in high arsenic groundwater from Hetao Plain of Inner Mongolia, China

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Arsenic methylation is regarded as an effective way of arsenic detoxification. Current knowledge about arsenic biomethylation in high arsenic groundwater remains limited. In the present study, 16 high arsenic groundwater samples from deep wells of the Hetao Plain were investigated using clone library and quantitative polymerase chain reaction (qPCR) analyses of arsM genes as well as geochemical analysis. The concentrations of methylated arsenic (including monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) varied from 2.40 to 16.85 μg/L. Both bacterial and archaeal arsenic methylating populations were detected in the high arsenic aquifer. They were dominated by Proteobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Methanomicrobia and a large unidentified group. The abundances of predominant populations were correlated positively to either total organic carbon or total arsenic and arsenite concentrations. The arsM gene abundances in high arsenic groundwater ranged from below detection to 5.71 × 106 copies/L and accounted for 0–3.32‰ of total bacterial and archaeal 16S rRNA genes. The arsM gene copies in high arsenic groundwater showed closely positive correlations with methylated arsenic concentrations. The overall results implied that arsenic methylating microorganisms were abundant and diverse in high arsenic groundwater. This was the first study of arsenic methylating microbial communities in high arsenic groundwater aquifers and might provide useful information for arsenic bioremediation in groundwater systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anawar HM, Akai J, Mihaljevi M et al. (2011) Arsenic contamination in groundwater of Bangladesh: perspectives on geochemical, microbial and anthropogenic issues. Water 3:1050–1076

    Article  CAS  Google Scholar 

  • Anderson LCD, Bruland KW (1991) Biogeochemistry of arsenic in natural waters: the importance of methylated species. Environ Sci Technol 25:420–427

    Article  CAS  Google Scholar 

  • Barringer JL, Mumford A, Young LY et al. (2010) Pathways for arsenic from sediments to groundwater to streams: biogeochemical processes in the Inner Coastal Plain, New Jersey, USA. Wat Res 44:5532–5544

    Article  CAS  Google Scholar 

  • Basu P, Oremland RS (2010) Microbial arsenic metabolism: new twists on an old poison. Microbe 5:53–53

    Google Scholar 

  • Berg M, Tran HC, Nguyen TC et al. (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a huam health threat. Environ Sci Technol 35:2621–2626

    Article  CAS  Google Scholar 

  • Bright DA, Brock S, Cullen WR et al. (1994) Methylation of arsenic by anaerobic microbial consortia isolated from lake sediment. Appl Organomet Chem 8:415–422

    Article  CAS  Google Scholar 

  • Cavalca L, Corsini A, Zaccheo P et al. (2013) Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Future Microbiol 8:753–768

    Article  CAS  Google Scholar 

  • Chen X, Zeng XC, Wang J et al. (2017) Microbial communities involved in arsenic mobilization and release from the deep sediments into groundwater in Jianghan plain, Central China. Sci Total Environ 579:989–999

    Article  CAS  Google Scholar 

  • Deng Y (2008) Geochemical processes of high arsenic groundwater system at western Hetao Basin. Dissertation. China University of Geosciences.

  • Deng Y, Wang Y, Ma T et al. (2009) Speciation and enrichment of arsenic in strongly reducing shallow aquifers at western Hetao Plain, northern China. Environ Geol 56:1467–1477

    Article  CAS  Google Scholar 

  • Desoeuvre A, Casiot C, Héry M (2016) Diversity and distribution of arsenic-related genes along a pollution gradient in a river affected by acid mine drainage. Microb Ecol 71:672–685

    Article  CAS  Google Scholar 

  • Ghosh S, Sar P (2013) Identification and characterization of metabolic properties of bacterial populations recovered from arsenic contaminated ground water of North East India (Assam). Water Res 47:6992–7005

    Article  CAS  Google Scholar 

  • Giri AK, Patel RK, Mahapatra SS et al. (2013) Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environ Sci Pollut R 20:1281–1291

    Article  CAS  Google Scholar 

  • Gorra R, Webster G, Martin M et al. (2012) Dynamic microbial community associated with iron–arsenic co-precipitation products from a groundwater storage system in Bangladesh. Microb Ecol 64:171–186

    Article  CAS  Google Scholar 

  • Guo H, Tang X, Yang S et al. (2008) Effect of indigenous bacteria on geochemical behavior of arsenic in aquifer sediments from the Hetao Basin, Inner Mongolia: evidence from sediment incubations. Appl Geochem 23:3267–3277

    Article  CAS  Google Scholar 

  • Guo H, Zhang B, Li Y et al. (2010) Concentrations and patterns of rare earth elements in high arsenic groundwaters from the Hetao Plain, Inner Mongolia. Earth Sci Front 17:59–66

    CAS  Google Scholar 

  • Guo H, Zhang B, Wang G et al. (2010) Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chem Geol 270:117–125

    Article  CAS  Google Scholar 

  • Handley KM, Mcbeth JM, Charnock JM et al. (2013) Effect of iron redox transformations on arsenic solid-phase associations in an arsenic-rich, ferruginous hydrothermal sediment. Geochim Cosmochim AC 102:124–142

    Article  CAS  Google Scholar 

  • Heising S, Schink B (1998) Phototrophic oxidation of ferrous iron by a Phodomicrobium vannielii strain. Microbiology 144:2263–2269

    Article  CAS  Google Scholar 

  • Héry M, Van Dongen BE, Gill F et al. (2010) Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology 8:155–168

    Article  CAS  Google Scholar 

  • Jia Y, Huang H, Zhong M et al. (2013) Microbial arsenic methylation in soil and rice rhizosphere. Environ Sci Technol 47:3141–3148

    Article  CAS  Google Scholar 

  • Jiang Y, Guo H, Jia Y et al. (2015) Principal component analysis and hierarchical cluster analyses of arsenic groundwater geochemistry in the Hetao Basin, Inner Mongolia. Geochemistry 75:197–205

    CAS  Google Scholar 

  • Kim EJ, Hwang BR, Baek K (2015) Effects of natural organic matter on the coprecipitation of arsenic with iron. Environ Geochem Health 37:1029–1039

    Article  CAS  Google Scholar 

  • Kirk MF, Holm TR, Park J et al. (2004) Bacterial sulfate reduction limits natural arsenic contamination in groundwater. Geology 32:953–956

    Article  Google Scholar 

  • Klemme JH, Chyla I, Preuss M (2010) Dissimilatory nitrate reduction by strains of the facultative phototrophic bacterium Rhodopseudomonas palustris. FEMS Microbiol Lett 9:137–140

    Article  Google Scholar 

  • Li P, Li B, Webster G et al. (2014) Abundance and diversity of sulfate-reducing bacteria in high arsenic shallow aquifers. Geomicrobiol J 31:802–812

    Article  CAS  Google Scholar 

  • Li P, Wang Y, Dai X et al. (2015) Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China. PLoS One 10:e0125844

    Article  CAS  Google Scholar 

  • Li P, Wang Y, Jiang Z et al. (2013) Microbial diversity in high arsenic groundwater in Hetao Basin of Inner Mongolia, China. Geomicrobiol J 30:897–909

    Article  CAS  Google Scholar 

  • Ma K, Liu X, Dong X (2006) Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. Int J Syst Evol Microbiol 56:127–131

    Article  CAS  Google Scholar 

  • Maguffin SC, Kirk MF, Daigle AR et al. (2015) Substantial contribution of biomethylation to aquifer arsenic cycling. Nat Geosci 8:290–293

    Article  CAS  Google Scholar 

  • Michael HA (2013) An arsenic forecast for China. Science 341:852–853

    Article  CAS  Google Scholar 

  • Michalke K, Wickenheiser EB, Mehring M et al. (2000) Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microb 66:2791–2796

    Article  CAS  Google Scholar 

  • Mori K, Lino T, Suzuki K et al. (2012) Aceticlastic and NaCl-Requiring Methanogen “Methanosaeta pelagica” sp nov., isolated from marine tidal flat sediment. Appl Environ Microb 78:3416–3423

    Article  CAS  Google Scholar 

  • Nadkarni MA, Martin FE, Jacques NA et al. (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266

    Article  CAS  Google Scholar 

  • Nicolli HB, Bundschuh J, Blanco MC et al. (2012) Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci Total Environ 429:36–56

    Article  CAS  Google Scholar 

  • Ollivier B, Cayol JL, Patel BK et al. (1997) Methanoplanus petrolearius sp. Nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol Lett 147:51–56

    Article  CAS  Google Scholar 

  • Oni O, Miyatake T, Kasten S (2015) Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front Microbiol 6:365

    Google Scholar 

  • Oremland RS, Saltikov CW, Wolfe-simon F et al. (2009) Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiol J 26:522–536

    Article  CAS  Google Scholar 

  • Oremland RS, Stolz J, Hollibaugh J (2004) The microbial arsenic cycle in Mono lake, California. FEMS Microbiol Ecol 48:15–27

    Article  CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y et al. (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. PNAS 103:2075–2080

    Article  CAS  Google Scholar 

  • Rahman MM, Sengupta MK, Ahamed S et al. (2005) Arsenic contamination of groundwater and its health impact on residents in a village in West Bengal, India. Bull World Health Organ 83:49–57

    Google Scholar 

  • Robertson WJ, Bowman JP, Franzmann PD et al. (2001) Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasoline-contaminated groundwater. Int J Syst Evol Microbiol 51:133–140

    Article  CAS  Google Scholar 

  • Sadiq M (1997) Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water Air Soil Poll 93:117–136

    CAS  Google Scholar 

  • Senn DB, Hemond HF (2002) Nitrate controls on iron and arsenic in an urban lake. Science 296:2373–2376

    Article  CAS  Google Scholar 

  • Slyemi D, Bonnefoy V (2012) How prokaryotes deal with arsenic. Environ Microbiol Rep 4:571–586

    CAS  Google Scholar 

  • Sorokin DY, Muntyan MS, Panteleeva AN et al. (2012) Thioalkalivibrio sulfidiphilus sp. nov., a haloalkaliphilic, sulfur-oxidizing gammaproteobacterium from alkaline habitats. Int J Syst Evol Microbiol 62:1884–1889

    Article  CAS  Google Scholar 

  • Stolz JF, Perera E, Kilonzo B et al. (2007) Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environ Sci Technol 41:818–823

    Article  CAS  Google Scholar 

  • Styblo M, Razo LMD, Vega L et al. (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299

    Article  CAS  Google Scholar 

  • Sutton NB, van der Kraan GM, van Loosdrecht M et al. (2009) Characterization of geochemical constituents and bacterial populations associated with As mobilization in deep and shallow tube wells in Bangladesh. Water Res 43:1720–1730

    Article  CAS  Google Scholar 

  • Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microb 66:5066

    Article  CAS  Google Scholar 

  • Tsai S, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotech 20:659–667

    Article  CAS  Google Scholar 

  • Wang P, Bao P, Sun G (2015) Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp. BXM. FEMS Microbiol Lett 362:1–8

    Article  CAS  Google Scholar 

  • Wang P, Sun G, Jia Y et al. (2014) A review on completing arsenic biogenchemical cycle: microbial volatilization of arsines in environment. J Environ Sci China 26:371–381

    Article  Google Scholar 

  • Wang Y, Li P, Dai X et al. (2015) Abundance and diversity of methanogens: potential role in high arsenic groundwater in Hetao Plain of Inner Mongolia, China. Sci Total Environ 515:153–161

    Article  CAS  Google Scholar 

  • Wang Y, Li P, Jiang Z et al. (2016) Microbial community of high arsenic groundwater in agricultural irrigation area of Hetao Plain, Inner Mongolia. Front Microbiol 7:1917

    Google Scholar 

  • Wang Y, Xie X, Johnson TM et al. (2014) Coupled iron, sulfur and carbon isotope evidences for arsenic enrichment in groundwater. J Hydrol 519:414–422

    Article  CAS  Google Scholar 

  • Weng TN, Liu CW, Kao YH et al. (2017) Isotopic evidence of nitrogen sources and nitrogen transformation in arsenic-contaminated groundwater. Sci Total Environ 578:167–185

    Article  CAS  Google Scholar 

  • Xie Z, Wang Y, Duan M et al. (2011) Arsenic release by indigenous bacteria Bacillus cereus from aquifer sediments at Datong Basin, northern China. Front Earth Sci 5:37–44

    Article  CAS  Google Scholar 

  • Zavarzina DG, Sokolova TG, Tourova TP et al. (2007) Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles 11:1–7

    Article  CAS  Google Scholar 

  • Zheng RL, Sun GX, Zhu YG (2013) Effects of microbial processes on the fate of arsenic in paddy soil. Chin Sci Bull 58:186–193

    Article  CAS  Google Scholar 

  • Zheng Y, Stute M, Geen AV et al. (2004) Redox control of arsenic mobilization in Bangladesh groundwater. Appl Geochem 19:201–214

    Article  CAS  Google Scholar 

  • Zhai W, Wong MT, Luo F et al. (2017) Arsenic methylation and its relationship to abundance and diversity of arsM genes in composting manure. Sci Rep 7:42198

    Article  Google Scholar 

  • Zhang SY, Zhao FJ, Sun GX et al. (2015) Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. Environ Sci Technol 49:4138–4146

    Article  CAS  Google Scholar 

  • Zhao C, Zhang Y, Chan Z et al. (2015) Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009. Front Microbiol 6:986

    Google Scholar 

  • Zhao FJ, Harris E, Yan J et al. (2013) Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and As speciation in rice. Environ Sci Technol 47:7147–7154

    Article  CAS  Google Scholar 

  • Zhu YG, Yoshinaga M, Zhao FJ et al. (2014) Earth Abides Arsenic Biotransformations. Annu Rev Earth Planet Sci 42:443–467

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (grant numbers 41702260, 41702365, 41521001 and 41772260).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Li or Yanxin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, P., Jiang, Z. et al. Diversity and abundance of arsenic methylating microorganisms in high arsenic groundwater from Hetao Plain of Inner Mongolia, China. Ecotoxicology 27, 1047–1057 (2018). https://doi.org/10.1007/s10646-018-1958-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-018-1958-9

Keywords

Navigation