Skip to main content

Microbes: Key Players of the Arsenic Biogeochemical Cycle

  • Chapter
  • First Online:
Microbial Metabolism of Metals and Metalloids

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 10))

Abstract

The arsenic biogeochemical cycle is vastly influenced by the biotransformation of arsenic. The insights within the complexities of this bio-cycle can be determined using microbial community analysis by meta-omics coupled with the identification of microbial pathways influencing the biotransformation of arsenic. The fate of toxic environmental contaminants and nutrients is governed by the microbial arsenic transformations in the biogeochemical cycle. The bioavailability of arsenic species is greatly prejudiced by the microbial redox metabolism of carbon, iron, nitrogen, and sulphur. In this chapter, we exemplify the genes and microbial biogeochemical processes concerned with the biotransformation of arsenic. The importance of deciphering the individual microbial communities using the current and future omic approaches will aid in determining their connections to other cycles of biogeochemical nature. Specific biotechnological solutions could be designed for environmental problems using these microbial metabolic insights. A thorough biochemical modelling integrated with systematic approaches is needed to comprehend the complex nature of organic, inorganic, and environmental arsenic species. Hence, a relation between arsenic biotransformation and the environment could be adjudged which will pave the way for further studies on arsenic biogeochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar-pulido V, Huang W, Suarez-ulloa V, Cickovski T, Mathee K, Narasimhan G (2016) Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinforma 12:5–16

    Google Scholar 

  • Ardini F, Dan G, Grotti M (2020) Arsenic speciation analysis of environmental samples. J Anal At Spectrom 35:215–237

    Article  CAS  Google Scholar 

  • Bastida F, Moreno JL, Nicolás C, Hernández T, García C (2009) Soil metaproteomics: a review of an emerging environmental science. Significance, methodology and perspectives. Eur J Soil Sci 60:845–859

    Article  CAS  Google Scholar 

  • Bauer M, Blodau C (2006) Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci Total Environ 354:179–190

    Article  CAS  PubMed  Google Scholar 

  • Bertin PN, Heinrich-Salmeron A, Pelletier E, Goulhen-Chollet F, Arsène-Ploetze F, Gallien S, Lauga B, Casiot C, Calteau A, Vallenet D, Bonnefoy V (2011) Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 5:1735–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas R, Majhi AK, Sarkar A (2019) The role of arsenate reducing bacteria for their prospective application in arsenic contaminated groundwater aquifer system. Biocat Agri Biotech 20:101218

    Article  Google Scholar 

  • Branco R, Francisco R, Chung AP, Morais PV (2009) Identification of an aox system that requires cytochrome c in the highly arsenic-resistant bacterium Ochrobactrum tritici SCII24. Appl Environ Microbiol 75:5141–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschmann J, Kappeler A, Lindauer U, Kistler D, Berg M, Sigg L (2006) Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminum. Environ Sci Technol 40:6015–6020

    Article  CAS  PubMed  Google Scholar 

  • Carlson HK, Clark IC, Blazewicz SJ, Iavarone AT, Coates JD (2013) Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J Bacteriol 195:3260–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JS, Yoon IH, Kim KW (2018) Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater. Chemosphere 191:29–737

    Article  CAS  Google Scholar 

  • Chatterjee S, Moogoui R, Gupta DK (2017) Arsenic: source, occurrence, cycle, and detection. In: Gupta D, Chatterjee S (eds) Arsenic contamination in the environment. Springer, Cham, pp 13–35

    Chapter  Google Scholar 

  • Chauhan NS, Ranjan R, Purohit HJ, Kalia VC, Sharma R (2009) Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. FEMS Microbiol Ecol 67:130–139

    Article  CAS  PubMed  Google Scholar 

  • Chen XP, Zhu YG, Hong MN, Kappler A, Xu YX (2008) Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants. Environ Toxicol Chem 27:881–887

    Article  PubMed  Google Scholar 

  • Chen J, Madegowda M, Bhattacharjee H, Rosen BP (2015) ArsP: a methylarsenite efflux permease. Mol Microbiol 98:625–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Yoshinaga M, Garbinski LD, Rosen BP (2016) Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance. Mol Microbiol 100:945–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SC, Sun GX, Yan Y, Konstantinidis KT, Zhang SY, Deng Y, Li XM, Cui HL, Musat F, Popp D, Rosen BP (2020) The great oxidation event expanded the genetic repertoire of arsenic metabolism and cycling. Proc Natl Acad Sci 117:10414–10421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrysostomou C, Quandt EM, Marshall NM, Stone E, Georgiou G (2015) An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB. ACS Chem Biol 10:875–882

    Article  CAS  PubMed  Google Scholar 

  • Corkhill CL, Wincott PL, Lloyd JR, Vaughan DJ (2008) The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans. Geochim Cosmochim Acta 72:5616–5633

    Article  CAS  Google Scholar 

  • Di X, Beesley L, Zhang Z, Zhi S, Jia Y, Ding Y (2019) Microbial arsenic methylation in soil and uptake and metabolism of methylated arsenic in plants: a review. Int J Environ Res Public Health 16:5012

    Article  CAS  PubMed Central  Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189

    Article  CAS  PubMed  Google Scholar 

  • Edmonds JS, Francesconi KA (2013) Organoarsenic compounds in the marine environment. In: Craig PJ (ed) Organometallic compounds in the environment. Chichester, Wiley, pp 195–222

    Google Scholar 

  • Edwardson CF, Planer-friedrich B, Hollibaugh JT (2014) Transformation of monothioarsenate by haloalkaliphilic, anoxygenic photosynthetic purple sulfur bacteria. FEMS Microbiol Ecol 90:858–868

    Article  CAS  PubMed  Google Scholar 

  • Finzi AC, Cole JJ, Doney SC, Holland EA, Jackson RB (2011) Research frontiers in the analysis of coupled biogeochemical cycles. Front Ecol Environ 9:74–80

    Article  Google Scholar 

  • García-Salgado S, Raber G, Raml R, Magnes C, Francesconi KA (2012) Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae. Environ Chem 9:63–66

    Article  CAS  Google Scholar 

  • Gilbert JA, Field D, Huang Y, Edwards R, Li W, Gilna P, Joint I (2008) Detection of large numbers of novel sequences in the Metatranscriptomes of complex marine microbial communities. PLoS One 3:e3042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gnanaprakasam ET, Lloyd JR, Boothman C, Ahmed KM, Choudhury I, Bostick BC, van Geen A, Mailloux BJ (2017) Microbial community structure and arsenic biogeochemistry in two arsenic-impacted aquifers in Bangladesh. MBio 8:e01326–e01317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta K, Biswas R, Sarkar A (2020) Advancement of omics: prospects for bioremediation of contaminated soils. In: Shah MP (ed) Microbial Bioremediation & Biodegradation. Springer, Singapore, pp 113–142

    Chapter  Google Scholar 

  • Halter D, Cordi A, Gribaldo S, Gallien S, Goulhen-Chollet F, Heinrich-Salmeron A, Carapito C, Pagnout C, Montaut D, Seby F, Van Dorsselaer A (2011) Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments. Res Microbiol 162:878–887

    Article  CAS  Google Scholar 

  • Han YH, Fu JW, Xiang P, Cao Y, Rathinasabapathi B, Chen Y, Ma LQ (2017) Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata. J Hazard Mater 321:146–153

    Article  CAS  PubMed  Google Scholar 

  • Handley KM, McBeth JM, Charnock JM, Vaughan DJ, Wincott PL, Polya DA, Lloyd JR (2013) Effect of iron redox transformations on arsenic solid-phase associations in an arsenic-rich, ferruginous hydrothermal sediment. Geochim Cosmochim Acta 102:124–142

    Article  CAS  Google Scholar 

  • Hernandez-Maldonado J, Sanchez-Sedillo B, Stoneburner B, Boren A, Miller L, McCann S, Rosen M, Oremland RS, Saltikov CW (2017) The genetic basis of anoxygenic photosynthetic Arsenite oxidation. Environ Microbiol 19:130–141

    Article  CAS  PubMed  Google Scholar 

  • Héry M, Gault AG, Rowland HA, Lear G, Polya DA, Lloyd JR (2008) Molecular and cultivation-dependent analysis of metal-reducing bacteria implicated in arsenic mobilisation in south-east Asian aquifers. Appl Geochem 23:3215–3223

    Article  CAS  Google Scholar 

  • Hoeft SE, Kulp TR, Han S, Lanoil B, Oremland RS (2010) Coupled arsenotrophy in a hot spring photosynthetic biofilm at Mono Lake, California. Appl Environ Microbiol 76:4633–4639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann C, Winkler E, Morin G, Kappler A (2010) Anaerobic Fe(II)-oxidizing bacteria show as resistance and immobilize as during Fe(III) mineral precipitation. Environ Sci Technol 44:94–101

    Article  CAS  PubMed  Google Scholar 

  • Hohmann C, Morin G, Ona-Nguema G, Guigner JM, Brown GE Jr, Kappler A (2011) Molecular-level modes of As binding to Fe(III) (oxyhydr) oxides precipitated by the anaerobic nitrate-reducing Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Geochim Cosmochim Acta 75:4699–4712

    Article  CAS  Google Scholar 

  • Hollibaugh JT, Budinoff C, Hollibaugh RA, Ransom B, Bano N (2006) Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a Soda Lake. Appl Environ Microbiol 2:2043–2049

    Article  CAS  Google Scholar 

  • Hu M, Sun W, Krumins V, Li F (2019) Arsenic contamination influences microbial community structure and putative arsenic metabolism gene abundance in iron plaque on paddy rice root. Sci Total Environ 649:405–412

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Jia Y, Sun GX, Zhu YG (2012) Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters-supporting information. Environ Sci Technol 46:2163–2168

    Article  CAS  PubMed  Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71

    Article  CAS  PubMed  Google Scholar 

  • Ji J, He E, Qiu H, Peijnenburg WJ, Van Gestel CA, Cao X (2020) Effective modeling framework for quantifying the potential impacts of coexisting anions on the toxicity of arsenate, selenite, and vanadate. Environ Sci Technol 54:2379–2388

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Bauer I, Paul A, Kappler A (2009) Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone. Environ Sci Technol 43:3639–3645

    Article  CAS  PubMed  Google Scholar 

  • Kleinert S, Muehe EM, Posth NR, Dippon U, Daus B, Kappler A (2011) Biogenic Fe(III) minerals lower the efficiency of iron-mineral-based commercial filter systems for arsenic removal. Environ Sci Technol 45:7533–7541

    Article  CAS  PubMed  Google Scholar 

  • Kour M (2014) Isolation and characterization of metal resistance genes by using Metatranscriptomic approach. Master Dissertation, Thapar University, Patiala, Punjab

    Google Scholar 

  • Kulp TR (2014) Arsenic and primordial life. Nat Geosci 7:785–786

    Article  CAS  Google Scholar 

  • Kulp TR, Hoeft SE, Miller LG, Saltikov C, Murphy JN, Han S, Lanoil B, Oremland RS (2006) Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich Soda Lakes: Mono and Searles Lakes, California. Appl Environ Microbiol 72:6514–6526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafuente A, Pérez-Palacios P, Doukkali B, Molina-Sánchez MD, Jiménez-Zurdo JI, Caviedes MA, Rodríguez-Llorente ID, Pajuelo E (2015) Unraveling the effect of arsenic on the model Medicago–Ensifer interaction: a transcriptomic meta-analysis. ISME J 205:255–272

    CAS  Google Scholar 

  • Langner P, Mikutta C, Kretzschmar R (2011) Arsenic sequestration by organic Sulphur in peat. Nat Geosci 5:66–73

    Article  CAS  Google Scholar 

  • Lankadurai BP, Nagato EG, Simpson MJ (2013) Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ Rev 21:180–205

    Article  CAS  Google Scholar 

  • Lear G, Song B, Gault AG, Polya DA, Lloyd JR (2007) Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl Environ Microbiol 73:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Walmsley AR, Rosen BP (2006) An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci 103:15617–15622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Hu S, Liu T, Li F, Peng L, Lin Z, Dang Z, Liu C, Shi Z (2019) Coupled kinetics model for microbially mediated arsenic reduction and adsorption/desorption on iron oxides: role of arsenic desorption induced by microbes. Environ Sci Technol 53:8892–8902

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Liu M, Kim EH, Maaty WS, Bothner B, Lei B, Rensing C, Wang G, McDermott TR (2012) A periplasmic arsenite-binding protein involved in regulating arsenite oxidation. Environ Microbiol 14:1624–1634

    Article  CAS  PubMed  Google Scholar 

  • Lomax C, Liu WJ, Wu L, Xue K, Xiong J, Zhou J, McGrath SP, Meharg AA, Miller AJ, Zhao FJ (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193:665–672

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG (2014) Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122:284–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Bai Y, Liang J, Qu J (2014) Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil. PLoS One 9:e108185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  PubMed  Google Scholar 

  • Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A (2014) The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat Rev Microbiol 12:797–809

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Matissek M, Müller SM, Taleshi MS, Ebert F, Francesconi KA, Schwerdtle T (2014) In vitro toxicological characterisation of three arsenic-containing hydrocarbons. Metallomics 6:1023–1033

    Article  CAS  PubMed  Google Scholar 

  • Mitchell K, Moreno-Jimenez E, Jones R, Zheng L, Trakal L, Hough R, Beesley L (2020) Mobility of arsenic, chromium and copper arising from soil application of stabilised aggregates made from contaminated wood ash. J Hazard Mater 393:122479

    Article  CAS  PubMed  Google Scholar 

  • Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A, Chan LK, Meng J, Durham BP, Shen C, Varaljay VA, Smith CB (2013) Sizing up metatranscriptomics. ISME J 7:237–243

    Article  CAS  PubMed  Google Scholar 

  • Muehe EM, Morin G, Scheer L, Pape PL, Esteve I, Daus B, Kappler A (2016) Arsenic (V) incorporation in Vivianite during microbial reduction of arsenic(V)-bearing biogenic Fe(III) (Oxyhydr)oxides. Environ Sci Technol 50:2281–2291

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Rosen BP (2002) Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect 110:745–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngegla JV, Zhou X, Chen X, Zhu X, Liu Z, Feng J, Zeng XC (2020) Unique diversity and functions of the arsenic-methylating microorganisms from the tailings of Shimen Realgar mine. Ecotoxicology 29:86–96

    Article  CAS  PubMed  Google Scholar 

  • Nitzsche KS, Weigold P, Lösekann-Behrens T, Kappler A, Behrens S (2015) Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam. Chemosphere 138:47–59

    Article  CAS  PubMed  Google Scholar 

  • Omoregie EO, Couture RM, Van Cappellen P, Corkhill CL, Charnock JM, Polya DA, Vaughan D, Vanbroekhoven K, Lloyd JR (2013) Arsenic bioremediation by biogenic iron oxides and sulfides. Appl Environ Microbiol 79:4325–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Dowdle PR, Hoeft S, Sharp JO, Schaefer JK, Miller LG, Blum JS, Smith RL, Bloom NS, Wallschlager D (2000) Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California. Geochim Cosmochim Acta 64:3073–3084

    Article  CAS  Google Scholar 

  • Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT (2002) Anaerobic oxidation of Arsenite in Mono Lake water and by a facultative, Arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795–4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oremland RS, Saltikov CW, Wolfe-Simon F, Stolz JF (2009) Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiol J 26:522–536

    Article  CAS  Google Scholar 

  • Palmer NE, Freudenthal JH, Wandruszka RV (2006) Reduction of arsenates by humic materials. Environ Chem 3:131–136

    Article  CAS  Google Scholar 

  • Pederick RL, Gault AG, Charnock JM, Polya DA, Lloyd JR (2007) Probing the biogeochemistry of arsenic: response of two contrasting aquifer sediments from Cambodia to stimulation by arsenate and ferric iron. J Environ Sci Heal Part A 42:1763–1774

    Article  CAS  Google Scholar 

  • Petursdottir AH, Fletcher K, Gunnlaugsdottir H, Krupp E, Kupper FC, Feldmann J (2016) Environmental effects on arsenosugars and arsenolipids in Ectocarpus (Phaeophyta). Environ Chem 13:21–33

    Article  CAS  Google Scholar 

  • Planer-Friedrich B, London J, Mccleskey RB, Nordstrom DK, Wallschlager D (2007) Thioarsenates in geothermal waters of yellowstone National Park: determination, preservation, and geochemical importance. Environ Sci Technol 41:5245–5251

    Article  CAS  PubMed  Google Scholar 

  • Planer-Friedrich B, Suess E, Scheinost AC, Wallschla D (2010) Arsenic speciation in sulfidic waters: reconciling contradictory spectroscopic and chromatographic evidence. Anal Chem 82:10228–10235

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci 103:2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab A, Newcombe C, Pitton D, Ebel R, Feldmann J (2013) Comprehensive analysis of lipophilic arsenic species in a brown alga (Saccharina latissima). Anal Chem 85:2817–2824

    Article  CAS  PubMed  Google Scholar 

  • Reed DC, Algar CK, Huber JA, Dick GJ (2014) Gene-centric approach to integrating environmental genomics and biogeochemical models. Proc Natl Acad Sci 111:1879–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richey C, Chovanec P, Hoeft SE, Oremland RS, Basu P, Stolz JF (2009) Respiratory arsenate reductase as a bidirectional enzyme. Biochem Biophys Res Commun 382:298–302

    Article  CAS  PubMed  Google Scholar 

  • Rochette EA, Bostick BC, Li G, Fendorf S (2000) Kinetics of arsenate reduction by dissolved sulfide. Environ Sci Technol 34:4714–4720

    Article  CAS  Google Scholar 

  • Rowland HAL, Boothman C, Pancost R, Gault AG, Polya DA, Lloyd JR (2009) The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of Arsenite from West Bengal. J Environ Qual 38:1598–1607

    Article  CAS  PubMed  Google Scholar 

  • Sacheti P, Bhonsle H, Patil R, Kulkarni MJ, Srikanth R, Gade W (2013) Arsenomics of Exiguobacterium sp. PS (NCIM 5463). RSC Adv 3:9705–9713

    Article  CAS  Google Scholar 

  • Sardiwal S, Santini JM, Osborne TH, Djordjevic S (2010) Characterization of a two-component signal transduction system that controls arsenite oxidation in the chemolithoautotroph NT-26. FEMS Microbiol Lett 313:20–28

    Article  CAS  PubMed  Google Scholar 

  • Saunders JK, Fuchsman CA, McKay C, Rocap G (2019) Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc Natl Acad Sci 116:9925–9930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmeisser E, Goessler W, Francesconi KA (2006) Human metabolism of arsenolipids present in cod liver. Anal Bioanal Chem 385:367–376

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Kappler A (2011) Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate. J Contam Hydrol 126:216–225

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Ofner J, Kappler A (2010a) Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Environ Sci Technol 44:4479–4485

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Rolle M, Kocar BD, Fendorf S, Kapppler A (2010b) Influence of natural organic matter on as transport and retention. Environ Sci Technol 45:546–553

    Article  PubMed  CAS  Google Scholar 

  • Shekhar SK, Godheja J, Modi DR (2020) Molecular Technologies for Assessment of bioremediation and characterization of microbial communities at pollutant-contaminated sites. In: Bharagava RN, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 437–474

    Chapter  Google Scholar 

  • Shi X, Wei X, Koo I, Schmidt RH, Yin X, Kim SH, Vaughn A, Mcclain CJ, Arteel GE, Zhang X, Watson WH (2014) Metabolomic analysis of the effects of chronic arsenic exposure in a mouse model of diet-induced fatty liver disease. J Proteome Res 13:547–554

    Article  CAS  PubMed  Google Scholar 

  • Stolz JF, Basu P, Oremland RS (2010) Microbial arsenic metabolism: new twists on an old poison. Microbe 5:53–59

    Google Scholar 

  • Sun W, Sierra R, Fernandez N, Sanz JL, Amils R, Legatzki A, Maier RM, Amils R, Field JA (2009a) Molecular characterization and in situ quantification of anoxic Arsenite oxidizing denitrifying enrichment cultures. FEMS Microbiol Ecol 68:72–85

    Article  CAS  PubMed  Google Scholar 

  • Sun GX, Williams PN, Zhu YG, Deacon C, Carey AM, Raab A, Feldmann J, Meharg AA (2009b) Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environ Int 35:473–475

    Article  CAS  PubMed  Google Scholar 

  • Taleshi MS, Jensen KB, Raber G, Edmonds JS, Gunnlaugsdottir H, Francesconi KA (2008) Arsenic-containing hydrocarbons: natural compounds in oil from the fish capelin, Mallotus villosus. Chem Commun 39:4706–4707

    Article  CAS  Google Scholar 

  • Taleshi MS, Edmonds JS, Goessler W, Ruiz-Chancho MJ, Raber G, Jensen KB, Francesconi KA (2010) Arsenic-containing lipids are natural constituents of sashimi tuna. Environ Sci Technol 44:1478–1483

    Article  CAS  PubMed  Google Scholar 

  • Taleshi MS, Raber G, Edmonds JS, Jensen KB, Francesconi KA (2014) Arsenolipids in oil from blue whiting Micromesistius poutassou--evidence for arsenic-containing esters. Sci Rep 4:7492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas DJ, Rosen BP (2013) Arsenic methyltransferase. In: Uversky VN, Kretsinger RH, Permyakov EA (eds) Encyclopedia of metalloproteins. Science+Business Media, New York, pp 138–143

    Chapter  Google Scholar 

  • Thomasarrigo LK, Mikutta C, Byrne J, Barmettler K, Kappler A, Kretzschmar R (2014) Iron and arsenic speciation and distribution in organic flocs from streambeds of an arsenic-enriched peatland. Environ Sci Technol 48:13218–13228

    Article  CAS  PubMed  Google Scholar 

  • Van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B (2013) Arsenics as bioenergetic substrates. Biochim Biophys Acta Bioenerg 1827:176–188

    Article  CAS  Google Scholar 

  • Viczek SA, Jensen KB, Francesconi KA (2016) Arsenic-containing phosphatidylcholines: a new Group of Arsenolipids Discovered in herring caviar. Angew Chem Int Ed 55:5259–5262

    Article  CAS  Google Scholar 

  • Wang L, Chen S, Xiao X, Huang X, You D, Zhou X, Deng Z (2006) ars RBOCT arsenic resistance system encoded by linear plasmid pHZ227 in Streptomyces sp. strain FR-008. Appl Environ Microbiol 72:3738–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Chen X, Yang J, Wang Z, Sun G (2009) Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil. J Environ Sci 21:1562–1568

    Article  CAS  Google Scholar 

  • Wang L, Yin Z, Jing C (2020) Metagenomic insights into microbial arsenic metabolism in shallow groundwater of Datong basin, China. Chemosphere 245:125603

    Article  CAS  PubMed  Google Scholar 

  • Xiao KQ, Li LG, Ma LP, Zhang SY, Bao P, Zhang T, Zhu YG (2016) Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. Environ Pollut 211:1–8

    Article  CAS  PubMed  Google Scholar 

  • Xue XM, Raber G, Foster S, Chen SC, Francesconi KA, Zhu YG (2014) Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803. Environ Chem 11:506–513

    Article  CAS  Google Scholar 

  • Xue XM, Ye J, Raber G, Francesconi KA, Li G, Gao H, Yan Y, Rensing C, Zhu YG (2017) Arsenic methyltransferase is involved in Arsenosugar biosynthesis by providing DMA. Environ Sci Technol 51:1224–1230

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Ye J, Xue XM, Zhu YG (2015) Arsenic demethylation by a C · as Lyase in cyanobacterium Nostoc sp. PCC 7120. Environ Sci Technol 49:14350–14358

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Ding K, Yu X, Ye J, Xue X (2017) Ability of periplasmic phosphate binding proteins from Synechocystis sp. PCC 6803 to discriminate phosphate against arsenate. Water Air Soil Pollut 228:148

    Article  CAS  Google Scholar 

  • Yang H, Cheng J, Finan TM, Rosen BP (2005) Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 187:6991–6997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YP, Tang XJ, Zhang HM, Cheng WD, Duan GL, Zhu YG (2020) The characterization of arsenic biotransformation microbes in paddy soil after straw biochar and straw amendments. J Hazard Mater 391:122200

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Rensing C, Rosen BP, Zhu YG (2012) Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci 17:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin XX, Chen J, Qin J, Sun GX, Rosen BP, Zhu YG (2011) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 156:1631–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshinaga M, Rosen BP (2014) AC As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters. Proc Natl Acad Sci 111(641):7701–7706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshinaga M, Cai Y, Rosen BP (2011) Demethylation of methylarsonic acid by a microbial community. Environ Microbiol 13:1205–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zargar K, Hoeft S, Oremland R, Saltikov CW (2010) Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J Bacteriol 192:3755–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zargar K, Conrad A, Bernick DL, Lowe TM, Stolc V, Hoeft S, Oremland RS, Stolz J, Saltikov CW (2012) Arx A, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ Microbiol 14:1635–1645

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Kang F, Qu X, Fu H, Alvarez PJ, Tao S, Zhu D (2020) The role of extracellular polymeric substances (EPS) in microbial reduction of arsenate to arsenite by Escherichia coli and Bacillus subtilis. Environ Sci Technol 54:6185–6193

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswas, R., Sarkar, A. (2022). Microbes: Key Players of the Arsenic Biogeochemical Cycle. In: Hurst, C.J. (eds) Microbial Metabolism of Metals and Metalloids. Advances in Environmental Microbiology, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-97185-4_8

Download citation

Publish with us

Policies and ethics