Skip to main content

Advertisement

Log in

Biodegradation of carbofuran by Pseudomonas aeruginosa S07: biosurfactant production, plant growth promotion, and metal tolerance

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pesticides are an indispensable part of modern farming as it aids in controlling pests and hence increase crop yield. But, unmanaged use of pesticides is a growing concern for safety and conservation of the environment. In the present study, a novel biosurfactant-producing bacterium, Pseudomonas aeruginosa S07, was utilized to degrade carbofuran pesticide, and it was obtained at 150 mg/L concentration; 89.2% degradation was achieved on the 5th day of incubation in in vitro culture condition. GC-MS (gas chromatography and mass spectrometry) and LC-MS (liquid chromatography and mass spectrometry) analyses revealed the presence of several degradation intermediates such as hydroxycarbofurnan, ketocarbofuran, and hydroxybenzofuran, in the degradation process. The bacterium was found to exhibit tolerance towards several heavy metals: Cu, Co, Zn, Ni, and Cd, where maximum and least tolerance were obtained against Co and Ni, respectively. Additionally, the bacterium also possesses plant growth-promoting activity showing positive results in nitrogen fixation, phosphate solubilising, ammonia production, and potassium solubilizing assays. Thus, from the study, it can be assumed that the bacterium can be useful in the production of bioformulation for remediation and rejuvenation of pesticide-contaminated sites in the coming days.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  • Abdul Salam J, Das N (2013) Enhanced biodegradation of lindane using oil-in-water bio-microemulsion stabilized by biosurfactant produced by a new yeast strain, Pseudozyma VITJzN01. J Microbiol Biotechnol 23(11):1598–1609

    Article  CAS  Google Scholar 

  • Aswathi A, Pandey A, Sukumaran RK (2019) Rapid degradation of the organophosphate pesticide–chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3. Bioresour Technol 292:122025

    Article  CAS  Google Scholar 

  • Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S et al (2021) New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere 268:128827. https://doi.org/10.1016/j.chemosphere.2020.128827

    Article  CAS  Google Scholar 

  • Borah A, Das R, Mazumdar R, Thakur D (2019) Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics. J Appl Microbiol 127(3):825–844

    Article  CAS  Google Scholar 

  • Deepika KV, Kalam S, Sridhar PR, Podile AR, Bramhachari PV (2016) Optimization of rhamnolipid biosurfactant production by mangrove sediment bacterium Pseudomonas aeruginosa KVD-HR42 using response surface methodology. Biocatal Agric Biotechnol 5:38–47

    Article  Google Scholar 

  • Delgadillo-Mirquez L, Lopes F, Taidi B, Pareau D (2016) Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Rep 11:18–26

    Article  Google Scholar 

  • Duc HD (2022) Enhancement of carbofuran degradation by immobilized Bacillus sp. strain DT1. Environ Eng Res 27(4):210158. https://doi.org/10.4491/eer.2021.158

  • Edi-Premono M, Moawad AM, Vleck PLG (1996) Effect of phosphate solubilizing pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones J Crop Sci 11:13

    Google Scholar 

  • Ekram MA, Sarker I, Rahi MS, Rahman MA, Saha AK, Reza MA (2020 May) Efficacy of soil-borne Enterobacter sp. for carbofuran degradation: HPLC quantitation of degradation rate. J Basic Microbiol 60(5):390–399

    Article  CAS  Google Scholar 

  • Ewida AYI, Mohamed WSED (2019) Isolation and characterization of biosurfactant producing bacteria from oil-contaminated water. Biosci Biotechnol Res Asia 16(04):833–841

    Article  Google Scholar 

  • Ganesh A, Lin J (2009) Diesel degradation and biosurfactant production by Gram-positive isolates. Afr J Biotechnol 8:5847–5854

    Article  CAS  Google Scholar 

  • Gangola S, Sharma A, Joshi S, Bhandari G, Prakash O, Govarthanan M, Kim W, Bhatt P (2022) Novel mechanism and degradation kinetics of pesticides mixture using Bacillus sp. strain 3C in contaminated sites. Pestic Biochem Physiol 181:104996

  • George S, Jayachandran K (2013) Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. J Appl Microbiol 114(2):373–383

    Article  CAS  Google Scholar 

  • Gilani RA, Rafique M, Rehman A, Munis MFH, Rehman SU, Chaudhary HJ (2016) Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. J Basic Microbiol 56(2):105–119

    Article  CAS  Google Scholar 

  • Gong T, Liu R, Che Y, Xu X, Zhao F, Yu H, Song C, Liu Y, Yang C (2016) Engineering Pseudomonas putida KT 2440 for simultaneous degradation of carbofuran and chlorpyrifos. Microb Biotechnol 9(6):792–800

    Article  CAS  Google Scholar 

  • Goswami M, Deka S (2019) Biosurfactant production by a rhizosphere bacteria Bacillus altitudinis MS16 and its promising emulsification and antifungal activity. Colloids Surf B Biointerfaces 178:285–296

    Article  CAS  Google Scholar 

  • Goswami M, Deka S (2020) Isolation of a novel rhizobacteria having multiple plant growth promoting traits and antifungal activity against certain phytopathogens. Microbiol Res 240:126516

    Article  CAS  Google Scholar 

  • Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhöfer F, Brenner-Weiss G, Franzreb M, Berensmeier S (2008) Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 391:1579–1590

    Article  CAS  Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D et al (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89:101–112

    CAS  Google Scholar 

  • Javee A, Karuppan R, Subramani N (2020) Bioactive glycolipid biosurfactant from seaweed Sargassum myriocystum associated bacteria Streptomyces sp. SNJASM6. Biocatal Agric Biotechnol 23:101505. https://doi.org/10.1016/j.bcab.2020.101505

    Article  Google Scholar 

  • Jiang W, Zhang M, Gao S, Zhu Q, Qiu J, Yan X, Xin F, Jiang M, Hong Q (2022) Comparative genomic analysis of carbofuran-degrading sphingomonads reveals the carbofuran catabolism mechanism in Sphingobium sp. strain CFD-1. Appl Environ Microbiol 88(22):e01024–e01022

    Article  Google Scholar 

  • Jimoh AA, Lin J (2019) Biosurfactant: a new frontier for greener technology and environmental sustainability. Ecotoxicol Environ Saf 184:109607

    Article  CAS  Google Scholar 

  • Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour Technol 99(1):195–199

    Article  CAS  Google Scholar 

  • Kabeer R, Sylas VP, Praveen Kumar CS, Thomas AP, Shanthiprabha VR (2022) Role of heavy metal tolerant rhizosphere bacteria in the phytoremediation of Cu and Pb using Eichhornia crassipes (Mart.) Solms. Int J Phytoremediation 24(11):1120–1132

    Article  CAS  Google Scholar 

  • Kaur K, Kaur R (2018) Occupational pesticide exposure, impaired DNA repair, and diseases. Indian J Occup Environ Med 22(2):74

    Article  Google Scholar 

  • Kempuraj D, Zhang E, Gupta S, Gupta RC, Sinha NR, Mohan RR (2022) Carbofuran pesticide toxicity to the eye. Exp Eye Res 227:109355. https://doi.org/10.1016/j.exer.2022.109355

  • Kumar S, Sharma AK, Rawat SS, Jain DK, Ghosh S (2013) Use of pesticides in agriculture and livestock animals and its impact on environment of India. Asian J Environ Sci 8(1):51–57

    Google Scholar 

  • Lamilla C, Schalchli H, Briceño G, Leiva B, DonosoPiñol P, Barrientos L, Rocha V, Freire D, Diez C (2021) A pesticide biopurification system: a source of biosurfactant-producing bacteria with environmental biotechnology applications. Agronomy 11:624. https://doi.org/10.3390/agronomy11040624

    Article  CAS  Google Scholar 

  • Lihan S, Benet F, Husaini AASA, Apun K, Roslan HA, Hassan H (2021) Isolation and identification of plant growth promoting rhizobacteria from sago palm (Metroxylon sagu, Rottb.). Trop Life Sci Res 32(3):39

    Article  Google Scholar 

  • Liu J, Chen Y, Xu R, Jia Y (2013) Screening and evaluation of biosurfactant-producing strains isolated from oilfield wastewater. Indian J Microbiol 53:168–174

    Article  CAS  Google Scholar 

  • Matsui T, Ito C, Masubuchi S, Itoigawa M (2015) Licarin a is a candidate compound for the treatment of immediate hypersensitivity via inhibition of rat mast cell line RBL-2H3 cells. J Pharm Pharmacol 67(12):1723–1732

    Article  CAS  Google Scholar 

  • Mishra S, Pang S, Zhang W, Lin Z, Bhatt P, Chen S (2021) Insights into the microbial degradation and biochemical mechanisms of carbamates. Chemosphere 279:130500

    Article  CAS  Google Scholar 

  • Mishra S, Zhang W, Lin Z, Pang S, Huang Y, Bhatt P, Chen S (2020) Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere 259:127419

    Article  CAS  Google Scholar 

  • Mohanram R, Jagtap C, Kumar P (2016) Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor. Mar Pollut Bull 105(1):131–138

    Article  CAS  Google Scholar 

  • Nair AM, Rebello S, Rishad KS, Asok AK, Jisha MS (2015) Biosurfactant facilitated biodegradation of quinalphos at high concentrations by Pseudomonas aeruginosa Q10. Soil Sediment Contam Int J 24(5):542–553

    Article  CAS  Google Scholar 

  • Naqvi TA, Armughan A, Ahmed N, Ahmed S (2013) Biodegradation of carbamates by Pseudomonas aeruginosa. Minerva Biotecnol 25(4):207–211

    Google Scholar 

  • Nayak P, Solanki H (2021) Pesticides and Indian agriculture—a review. Int J Res Granthaalayah 9:250–263

    Article  Google Scholar 

  • Odukkathil G, Vasudevan N (2013a) Enhanced biodegradation of endosulfan and its major metabolite endosulfate by a biosurfactant producing bacterium. J Environ Sci Health B 48(6):462–469

    Article  CAS  Google Scholar 

  • Odukkathil G, Vasudevan N (2013b) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12:421–444

    Article  CAS  Google Scholar 

  • Odukkathil G, Vasudevan N (2015) Biodegradation of endosulfan isomers and its metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii. J Environ Sci Health B 50(2):81–89

    Article  CAS  Google Scholar 

  • Onaizi SA (2021) Demulsification of crude oil/water nanoemulsions stabilized by rhamnolipid biosurfactant using enzymes and pH-swing. Sep Purif Technol 259:118060

    Article  CAS  Google Scholar 

  • Onwona-Kwakye M, Plants-Paris K, Keita K, Lee J, Brink PJVD, Hogarh JN, Darkoh C (2020) Pesticides decrease bacterial diversity and abundance of irrigated rice fields. Microorganisms 8(3):318

    Article  CAS  Google Scholar 

  • Pantazaki AA, Papaneophytou CP, Lambropoulou DA (2011) Simultaneous polyhydroxyalkanoates and rhamnolipids production by Thermus thermophilus HB8. AMB Express 1(1):1–13

    Article  Google Scholar 

  • Park H, Seo SI, Lim J-H, Song J, Seo J-H, Kim PI (2022) Screening of Carbofuran-degrading Bacteria Chryseobacterium sp. BSC2-3 and unveiling the change in metabolome during Carbofuran degradation. Metabolites 12(3):219

  • Patowary R, Patowary K, Kalita MC, Deka S (2016) Utilization of paneer whey waste for costeffective production of rhamnolipid biosurfactant. Appl Biochem Biotechnol 180:383–399

    Article  CAS  Google Scholar 

  • Patowary R, Patowary K, Kalita MC, Deka S, Borah JM, Joshi SJ, Zhang M, Peng W, Sharma G, Rinklebe J, Sarma H (2022) Biodegradation of hazardous naphthalene and cleaner production of rhamnolipids—green approaches of pollution mitigation. Environ Res 209:112875

  • Paul D, Sinha SN (2017) Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Ann Agrar Sci 15(1):130–136

    Article  Google Scholar 

  • Pimentel D (2005) Environmental and economic costs of the application of pesticides primarily in the United States. Environ Dev Sustain 7:229–252

    Article  Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leaflets 5:71–75

    Google Scholar 

  • Prihandiani A, Bella DR, Chairani NR, Winarto Y, Fox J (2021) The tsunami of pesticide use for rice production on Java and its consequences. Asia Pac J Anthropol 22(4):276–297

    Article  Google Scholar 

  • Qiu X, Zhong Q, Li M, Bai W, Li B (2007) Biodegradation of pnitrophenol by methyl parathion-degrading Ochrobactrum sp. B2. Int Biodeterior Biodegradation 59:297–301

    Article  CAS  Google Scholar 

  • Raj A, Kumar A, Dames JF (2021) Tapping the role of microbial biosurfactants in pesticide remediation: an eco-friendly approach for environmental sustainability. Front Microbiol 12:791723–791723

    Article  Google Scholar 

  • Rekha SN, Naik RP (2006) Pesticide residue in organic and conventional food-risk analysis. J Chem Health Saf 13:12–19

    Article  CAS  Google Scholar 

  • Saquib Q, Siddiqui MA, Ansari SM, Alwathnani HA, Al-Khedhairy AA (2021) Carbofuran cytotoxicity, DNA damage, oxidative stress, and cell death in human umbilical vein endothelial cells: evidence of vascular toxicity. J Appl Toxicol 41(5):847–860

    Article  CAS  Google Scholar 

  • Satapute P, Jogaiah S (2022) A biogenic microbial biosurfactin that degrades difenoconazole fungicide with potential antimicrobial and oil displacement properties. Chemosphere 286:131694

    Article  CAS  Google Scholar 

  • Sequinatto L et al (2013) Occurrence of agrochemicals in surface waters of shallow soils and steep slopes cropped to tobacco. Química Nova 36:768–772

    Article  CAS  Google Scholar 

  • Singh AK, Cameotra SS (2014) Influence of microbial and synthetic surfactant on the biodegradation of atrazine. Environ Sci Pollut Res 21:2088–2097

    Article  CAS  Google Scholar 

  • Singh KN, Narzary D (2021) Heavy metal tolerance of bacterial isolates associated with overburden strata of an opencast coal mine of Assam (India). Environ Sci Pollut Res 28:63111–63126

    Article  CAS  Google Scholar 

  • Singh PB, Sharma S, Saini HS, Chadha BS (2009) Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos. Lett Appl Microbiol 49(3):378–383

    Article  CAS  Google Scholar 

  • Sun Y, Kumar M, Wang L, Gupta J, Tsang DC (2020) Biotechnology for soil decontamination: opportunity, challenges, and prospects for pesticide biodegradation. In: Bio-based materials and biotechnologies for eco-efficient construction, pp 261–283. https://doi.org/10.1016/B978-0-12-819481-2.00013-1

  • Thavasi R, Jayalakshmi S, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 102:3366–3372. https://doi.org/10.1016/j.biortech.2010.11.071

    Article  CAS  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D'antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292(5515):281–284

  • Venkateswarlu K, Sethunathan N (1979) Metabolism of carbofuran in rice straw-amended and unamended rice soils. Am Soc Agron Crop Sci Soc Am Soil Sci Soc Am 8(3):365–368. https://doi.org/10.2134/jeq1979.00472425000800030020x

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18(1):315–322

    Google Scholar 

  • Yan X, Wang Z, Mei Y, Wang L, Wang X, Xu Q, Peng S, Zhou Y, Wei C (2018) Isolation, diversity, and growth-promoting activities of endophytic bacteria from tea cultivars of Zijuan and Yunkang-10. Front Microbiol 9:1848

    Article  Google Scholar 

Download references

Acknowledgements

The authors express heartfelt thanks to the Institute of Advanced Study in Science and Technology (IASST) for providing the ambient environment for the article writing and executing the necessary activities. RP expresses gratitude to IASST for providing fellowship as Institutional Post-Doctoral Fellow.

Author information

Authors and Affiliations

Authors

Contributions

RP has prepared the first draft of the manuscript and proposed the idea, PJ has performed the experiments, CM performed a few experiments, and AD has provided conceptual ideas.

Corresponding author

Correspondence to Arundhuti Devi.

Ethics declarations

Ethical approval, consent to participate, and consent to publish

This is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Diane Purchase

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Biosurfactant-producing bacteria mediated degradation of carbofuran pesticide.

2. 89.2% degradation was achieved on the 5th day of incubation.

3. The bacterium was identified to be Pseudomonas aeruginosa S07.

4. The bacteria possess metal tolerance and exhibit PGP activity.

5. Possible bioformulation from the bacterium for rejuvenation of polluted sites.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patowary, ., Jain, P., Malakar, C. et al. Biodegradation of carbofuran by Pseudomonas aeruginosa S07: biosurfactant production, plant growth promotion, and metal tolerance. Environ Sci Pollut Res 30, 115185–115198 (2023). https://doi.org/10.1007/s11356-023-30466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-30466-z

Keywords

Navigation