Skip to main content

Role of Microorganisms in Biodegradation of Pollutants

  • Reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Environmental pollution through industrial development has led to the generation of a variety of lethal materials, especially recalcitrant classes such as polycyclic aromatic hydrocarbons, toxic dyes, pesticides, and heavy metals, which are now of critical environmental importance due to their harmful and mutagenic effects on humans, plants, and aquatic organisms. Biodegradation is naturally performed by microorganisms, implying the decomposition of complex organic compounds into a more straightforward inorganic form. These organisms will harness these organisms as a source of energy, while bioremediation is a human engineering technology that reduces pollutants using microorganisms through techniques of natural attenuation, biostimulation, or bioaugmentation to strengthen the ability of microorganisms. Various microorganisms can degrade environmental pollutants with promising skills like bacteria, fungi, algae, and protozoa. Certain parameters must be established to provide the highest biodegradation rate of degradable microorganisms under the optimum conditions. These factors are biological factors such as bioavailability, nutrient availability, culture type and type of microorganism, and environmental factors such as pH, temperature, oxygen availability, and pollutant concentration. Biodegradation mechanisms depend mainly on microbial enzymes such as oxidoreductases, hydrolases, peroxidase, oxygenase, proteases, lipases, and lacquers. Genetically modified microorganisms have been applied to further improve the remediation of pollutants and ensure safe biodegradation using symbiotic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABGs:

Aerobic bacterial granules

AMF:

Arbuscular mycorrhizal fungi

ATP:

Adenosine triphosphate

ATPase:

Adenosine triphosphatase

BR:

Brassino steroids

CAM plasmid:

transmissible camphor plasmid

CK:

Cytokinin

CoA:

Coenzyme A

COD:

Chemical oxygen demand

EC50:

Effective concentration

EcM:

Ericoid mycorrhiza

EcO 157:

Escherichia coli O157:H7

EPA:

Environmental Protection Agency

ET:

Ethylene

FQ:

Fluoroquinolone

GA:

Gibberellin

GE:

Genetic engineering

GEMs:

Genetically engineered microorganisms

gfp:

encoding green fluorescent protein

GMMs:

Genetically modified microorganisms

GTAs:

Gene transfer agents

HGT:

Horizontal gene transfer

HMs:

Heavy metals

IAA:

Auxins indole-3-acetic acid

lacZ :

Encoding β-galactosidase genes

LDPE:

Low-density polyethylene

LEV:

Levofloxacin

LGT:

Lateral gene transfer

lux/luc:

Encoding bacterial/firefly luciferase

MO:

Microorganisms

MTs:

Metallothioneins

N=N:

Atmospheric dinitrogen

NADH:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

NAH plasmid:

Naphthalene plasmid

PAHs:

Polycyclic aromatic hydrocarbons

PASHs:

Polycyclic aromatic sulfur heterocycles

PCR:

Polymerase chain reaction

PCs:

Phytochelatins

PET:

Polyethylene terephthalate

PGPR:

Plant growth-promoting rhizobacteria

PSMs:

Phosphate-solubilizing microorganisms

PU:

Polyurethane

S-GEMS:

Suicide gene-mediated GEM transfer control

UV:

Ultraviolet

VP:

Versatile peroxidase

WWTPs:

Wastewater treatment plants

XYL plasmid:

A nonconjugative xylene-degradative plasmid

References

  1. Evans GG, Furlong J (2011) Pollution and Pollution Control. In: Environmental biotechnology: theory and application. John Wiley & Sons, pp. 65-87.

    Google Scholar 

  2. El Mahdi AM, Aziz HA (2018) A review on biodegradation and toxicity methods: Risk assessment, standards, and analyses. In: Toxicity and biodegradation testing. Springer, pp. 349–388.

    Google Scholar 

  3. Ali MI, Khalil NM, Abd El-Ghany MN (2012) Biodegradation of some polycyclic aromatic hydrocarbons by Aspergillus terreus. African journal of microbiology research 6(16): 3783–3790.

    CAS  Google Scholar 

  4. Gurikar C, Naik M, Sreenivasa MY (2016) Azotobacter: PGPR activities with special reference to effect of pesticides and biodegradation. In: Microbial inoculants in sustainable agricultural productivity. Springer, pp. 229–244.

    Google Scholar 

  5. Noszczyńska M, Piotrowska-Seget Z (2018) Bisphenols: application, occurrence, safety, and biodegradation mediated by bacterial communities in wastewater treatment plants and rivers. Chemosphere 201: 214–223.

    Article  Google Scholar 

  6. Zurier HS, Goddard JM (2021) Biodegradation of microplastics in food and agriculture. Current Opinion in Food Science 37: 37–44.

    Google Scholar 

  7. Goswami L, Manikandan NA, Pakshirajan K, Pugazhenthi G (2017) Simultaneous heavy metal removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus. 3 Biotech 7(1): 37.

    Google Scholar 

  8. Sarikaya AG, Erden E (2020) Direct Blue 2 Tekstil Boyar Maddesinin Agaricus campestris Biyokütlesi Tarafından Biyosorpsiyonu: Kinetik, İzotermal ve Termodinamik Çalışmalar. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13(1): 258–273.

    Google Scholar 

  9. Imron MF, Kurniawan SB, Ismail, NI, Abdullah SRS (2020) Future challenges in diesel biodegradation by bacteria isolates: a review. Journal of Cleaner Production 251: 119716

    Article  CAS  Google Scholar 

  10. Salamanca D, Engesser KH (2014) Isolation and characterization of two novel strains capable of using cyclohexane as carbon source. Environmental Science and Pollution Research 21(22): 12757–12766.

    Google Scholar 

  11. Barone GD, Ferizović D, Biundo A, Lindblad P (2020) Hints at the Applicability of Microalgae and Cyanobacteria for the Biodegradation of Plastics. Sustainability 12(24): 10449.

    Article  CAS  Google Scholar 

  12. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology 28(4): 1327–1350.

    Google Scholar 

  13. Mehmood U, Inam-ul-Haq M, Saeed M, Altaf A, Azam F, Hayat S (2018) A brief review on plant growth promoting Rhizobacteria (PGPR): a key role in plant growth promotion. Plant protection 2(2): 77–82.

    Google Scholar 

  14. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King saud University-Science 26(1): 1–20.

    Google Scholar 

  15. Lindström K, Mousavi SA (2020) Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology 13(5): 1314–1335.

    Google Scholar 

  16. Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34(1): 33–41.

    Article  Google Scholar 

  17. Prabhu N, Borkar S, Garg S (2019) Phosphate solubilization by microorganisms: overview, mechanisms, applications and advances. Advances in Biological Science Research, pp. 161–176.

    Google Scholar 

  18. Sperber JI (1958) Solution of apatite by soil microorganisms producing organic acids. Australian Journal of Agricultural Research 9(6): 782–787.

    Google Scholar 

  19. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances 17(4–5): 319–339.

    Google Scholar 

  20. Avery Jr GS (1937) The growth hormones found in plants, pp. 317–332.

    Google Scholar 

  21. Kaya C, Tuna A, Yokaş I (2009) The role of plant hormones in plants under salinity stress. Salinity and water stress 44: 45–50.

    Google Scholar 

  22. Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A (2019) Phytohormone priming: regulator for heavy metal stress in plants. Journal of Plant Growth Regulation 38(2): 739–752.

    Article  CAS  Google Scholar 

  23. Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX, Zheng SJ (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. Journal of Hazardous Materials 239: 302–307.

    Article  Google Scholar 

  24. Meyer A, Müller P, Sembdner G (1987) Air pollution and plant hormones. Biochemie und Physiologie der Pflanzen 182(1): 1–21.

    Article  CAS  Google Scholar 

  25. Akio Amorim LL, da Fonseca dos Santos R, Pacifico Bezerra Neto J, Guida-Santos M, Crovella S, Maria Benko-Iseppon A (2017) Transcription factors involved in plant resistance to pathogens. Current Protein and Peptide Science 18(4): 335–351.

    Google Scholar 

  26. Sharifi R, Lee SM, Ryu CM (2018) Microbe-induced plant volatiles. New Phytologist 220(3): 684–691.

    Article  Google Scholar 

  27. Bashan Y, De-Bashan L (2005) Plant growth-promoting. Encyclopedia of soils in the environment 1: 103–115.

    Google Scholar 

  28. Lybrand DB, Xu H, Last RL, Pichersky E (2020) How plants synthesize Pyrethrins: safe and biodegradable insecticides. Trends in Plant Science 25(12): 1240–1251.

    Google Scholar 

  29. Hassan O, Chang T (2017) Chitosan for eco-friendly control of plant disease. Asian J. Plant Pathol 11(2): 53–70.

    Article  Google Scholar 

  30. Chen SH, Ting ASY (2017) Microfungi for the removal of toxic triphenylmethane dyes. In: Mining of Microbial Wealth and MetaGenomics. Springer, pp. 405–429.

    Google Scholar 

  31. Lewis JD (2016) Mycorrhizal Fungi, evolution, and diversification of. In: Encyclopedia of Evolutionary Biology 3: 94–99.

    Google Scholar 

  32. Ganugi P, Masoni A, Pietramellara G, Benedettelli S (2019) A review of studies from the last twenty years on plant–arbuscular mycorrhizal fungi associations and their uses for wheat crops. Agronomy 9(12): 840.

    Article  CAS  Google Scholar 

  33. Dhalaria R, Kumar D, Kumar H, Nepovimova E, Kuča K, Torequl Islam M, Verma R (2020) Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy 10(6): 815.

    Article  CAS  Google Scholar 

  34. Raman J, Kab-Yeul J, Lakshmanan H, Won-Sik K, Gajendran B (2021) Mycoremediation: An Elimination of Metal and Non-metal Inclusions from Polluted Soil. In: Metal, Metal-Oxides and Metal-Organic Frameworks for Environmental Remediation. Springer 64: 239–259.

    Google Scholar 

  35. Khalil NM, Rodríguez-Couto S, Abd El-Ghany MN (2021) Characterization of Penicillium crustosum l-asparaginase and its acrylamide alleviation efficiency in roasted coffee beans at non-cytotoxic levels. Archives of Microbiology 203(5): 2625–2637.

    Article  CAS  Google Scholar 

  36. Khalil NK, Ali MI, Ouf SA, Abd El-Ghany MN (2016) Characterization of Aspergillus flavus NG 85 laccase and its dye decolorization efficiency. Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(4): 829–817.

    Google Scholar 

  37. Abdelghaffar F (2021) The Performance of Yeast, Fungi, and Algae Biomass in Dye Elimination. In: Advanced Removal Techniques for Dye-containing Wastewaters. Springer, pp. 217–236.

    Google Scholar 

  38. Lopes M, Rama R, Miranda SM, Belo I (2018) Simultaneous degradation of hydrocarbons and production of valuable compounds by Yarrowia lipolytica. CHEMPOR 2018 – 13th International Chemical and Biological Engineering Conference, pp. 334–335.

    Google Scholar 

  39. Massoud R, Khosravi-Darani K, Sharifan A, Asadi GH, Younesi H (2020) The biosorption capacity of Saccharomyces Cerevisiae for cadmium in milk. Dairy 1(2): 169–176.

    Google Scholar 

  40. Falah W, CHEN F, Zeb BS, Hayat MT, Mahmood Q, Ebadi A, Li EZ (2020) Polyethylene Terephthalate Degradation by Microalga Chlorella vulgaris Along with Pretreatment. Mater. Plastice 57(3): 260–270.

    Google Scholar 

  41. Xiong JQ, Kurade MB, Patil DV, Jang M, Paeng KJ, Jeon BH (2017) Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, Scenedesmus obliquus in synthetic saline wastewater. Algal research 25: 54–61.

    Google Scholar 

  42. Kachienga L, Momba M (2014) Biodegradation of hydrocarbon chains of crude oil by-products by selected protozoan isolates in polluted wastewaters. An Interdisciplinary Response to Mine Water Challenges Xuzhou, pp. 743–756.

    Google Scholar 

  43. Ravva SV, Sarreal CZ, Mandrell RE (2010) Identification of protozoa in dairy lagoon wastewater that consume Escherichia coli O157: H7 preferentially. PloS One 5(12): e15671.

    Google Scholar 

  44. Danouche M, Ferioun M, Bahafid W, El Ghachtouli N (2021) Mycoremediation of azo dyes using Cyberlindnera fabianii yeast strain: Application of designs of experiments for decolorization optimization. Water Environment Research 93(8): 1402–1416.

    Article  CAS  Google Scholar 

  45. Ortega-Calvo JJ, Stibany F, Semple KT, Schaeffer A, Parsons JR, Smith KE (2020) Why Biodegradable Chemicals Persist in the Environment? A Look at Bioavailability. Bioavailability of Organic Chemicals in Soil and Sediment 100: 243–265.

    Article  Google Scholar 

  46. Gupta S, Pathak B (2020) Mycoremediation of polycyclic aromatic hydrocarbons, in Abatement of Environmental Pollutants. Elsevier, pp. 127–149.

    Google Scholar 

  47. de Lima Brossi MJ, Jiménez DJ, Cortes-Tolalpa L, van Elsas JD (2016) Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation. Microbial Ecology 71(3): 616–627.

    Article  Google Scholar 

  48. Theerachat M, Tanapong P, Chulalaksananukul W (2017) The culture or co-culture of Candida rugosa and Yarrowia lipolytica strain rM-4A, or incubation with their crude extracellular lipase and laccase preparations, for the biodegradation of palm oil mill wastewater. International Biodeterioration & Biodegradation 121: 11–18.

    Article  CAS  Google Scholar 

  49. Al-Hawash AB, Dragh MA, Li S, Alhujaily A, Abbood HA, Zhang X, Ma F (2018) Principles of microbial degradation of petroleum hydrocarbons in the environment. The Egyptian Journal of Aquatic Research 44(2): 71–76.

    Article  Google Scholar 

  50. Kachienga L, Jitendra K, Momba M (2018) Metagenomic profiling for assessing microbial diversity and microbial adaptation to degradation of hydrocarbons in two South African petroleum-contaminated water aquifers. Scientific Reports 8(1): 1–6.

    Article  CAS  Google Scholar 

  51. Dadrasnia A, Usman MM, Alinejad T, Motesharezadeh B, Mousavi SM (2018) Hydrocarbon degradation assessment: Biotechnical approaches involved. In: Microbial Action on Hydrocarbons. Springer, pp. 63–95.

    Google Scholar 

  52. Aziam R, Boukarma L, Abali M, Nouaa S, Eddaoudi E, Sinan F, Chiban M (2021) Evaluation of macroalgal biomass for removal of hazardous organic dyes from wastewater. In: Advanced Removal Techniques for Dye-containing Wastewaters. Springer, pp. 195–215.

    Google Scholar 

  53. Watanabe K (2001) Microorganisms relevant to bioremediation. Current Opinion in Biotechnology 12(3): 237–241.

    Article  CAS  Google Scholar 

  54. Kanissery RG, Sims GK (2011) Biostimulation for the enhanced degradation of herbicides in soil. Applied and Environmental Soil Science 2011:1–10.

    Article  Google Scholar 

  55. Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research 165(5): 363–375.

    Article  CAS  Google Scholar 

  56. Tyagi M, da Fonseca MMR, de Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2): 231–241.

    Article  CAS  Google Scholar 

  57. Ebrahimian J, Safamehr R (2020) Biodegradation of Environmental Pollution through Microorganisms. Medbiotech Journal 4(03): 98–101.

    Google Scholar 

  58. Saxena G, Kishor R, Saratale GD, Bharagava RN (2020) Genetically modified organisms (GMOs) and their potential in environmental management: constraints, prospects, and challenges. In: Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp. 1–19.

    Chapter  Google Scholar 

  59. Keese P (2008) Risks from GMOs due to horizontal gene transfer. Environmental Biosafety Research 7(3): 123–149.

    Article  CAS  Google Scholar 

  60. Lang AS, Zhaxybayeva O, Beatty JT (2012) Gene transfer agents: phage-like elements of genetic exchange. Nature Reviews Microbiology 10(7): 472–482.

    Article  CAS  Google Scholar 

  61. Dubey G, Mohan GBM, Dubrovsky A, Amen T, Tsipshtein S, Rouvinski A, Ben-Yehuda S (2016) Architecture and characteristics of bacterial nanotubes. Developmental Cell 36(4):453–461.

    Article  CAS  Google Scholar 

  62. Berleman J, Auer M (2013) The role of bacterial outer membrane vesicles for intra-and interspecies delivery. Environmental Microbiology 15(2): 347–354.

    Article  CAS  Google Scholar 

  63. de Lorenzo V, Herrero M, Sánchez JM, Timmis KN (1998) Mini-transposons in microbial ecology and environmental biotechnology. FEMS Microbiology Ecology 27(3): 211–224.

    Article  Google Scholar 

  64. Pandey G, Paul D, Jain RK (2005) Conceptualizing “suicidal genetically engineered microorganisms” for bioremediation applications. Biochemical and Biophysical Research Communications 327(3): 637–639.

    Article  CAS  Google Scholar 

  65. Ronchel MC, Ramos JL (2001) Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Applied and Environmental Microbiology 67(6): 2649–2656.

    Article  CAS  Google Scholar 

  66. Singh A, Billingsley K, Ward O (2006) Composting: a potentially safe process for disposal of genetically modified organisms. Critical Reviews in Biotechnology 26(1): 1–16.

    Article  Google Scholar 

  67. Atlas RM (1992) Molecular methods for environmental monitoring and containment of genetically engineered microorganisms. Biodegradation 3(2-3):137–146.

    Article  CAS  Google Scholar 

  68. Rilling JI, Acuña JJ, Nannipieri P, Cassan F, Maruyama F, Jorquera MA (2019) Current opinion and perspectives on the methods for tracking and monitoring plant growth–promoting bacteria. Soil Biology and Biochemistry 130: 205–219.

    Article  CAS  Google Scholar 

  69. Cho JC, Tiedje JM (2002) Quantitative detection of microbial genes by using DNA microarrays. Applied and Environmental Microbiology 68(3):1425–1430.

    Article  CAS  Google Scholar 

  70. Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22(1):117–130.

    Article  Google Scholar 

  71. Liu S, Zhang F, Chen J, Sun G (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. Journal of Environmental Sciences 23(9) :1544–1550.

    Article  CAS  Google Scholar 

  72. Davison J (2002) Towards safer vectors for the field release of recombinant bacteria. Environmental Biosafety Research 1(1): 9–18.

    Article  CAS  Google Scholar 

  73. Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480(1–2): 1–9.

    Google Scholar 

  74. Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegradation-life of Science 1: 289–320.

    Google Scholar 

  75. Kumar A, Kumar A, Singh R, Singh R, Pandey S, Rai A, Rahul B (2020) Genetically engineered bacteria for the degradation of dye and other organic compounds. In: Abatement of Environmental Pollutants. Elsevier, pp. 331–350

    Google Scholar 

  76. Deckers M, Deforce D, Fraiture MA, Roosens NH (2020) Genetically modified micro-organisms for industrial food enzyme production: an overview. Foods 9(3): 326.

    Article  CAS  Google Scholar 

  77. Pant G, Garlapati D, Agrawal U, Prasuna RG, Mathimani T, Pugazhendhi A (2021) Biological approaches practiced using genetically engineered microbes for a sustainable environment: a review. Journal of Hazardous Materials 405: 124631.

    Article  CAS  Google Scholar 

  78. Bhandari G, Sharma M (2021) Microbial Enzymes in the Bioremediation of Pollutants: Emerging Potential and Challenges. In: Mycoremediation and Environmental Sustainability. Springer, Cham, pp. 75–94.

    Chapter  Google Scholar 

  79. Shah NA, Kaleem I, Shabbir A, Moneeba S, Khattak AH (2018). Bioremediation of Contaminated Paddy Soil. In: Environmental Pollution of Paddy Soils. Springer, Cham 53: 245–271.

    Chapter  Google Scholar 

  80. Saini R, Rani V, Sharma S, Verma ML (2021) Screening of Microbial Enzymes and Their Potential Applications in the Bioremediation Process. In: Microbial Products for Health, Environment and Agriculture. Springer, Singapore 31: 359–378.

    Chapter  Google Scholar 

  81. Okino-Delgado CH, Zanutto-Elgui MR, do Prado DZ, Pereira MS, Fleuri LF (2019) Enzymatic bioremediation: current status, challenges of obtaining process, and applications. In: Microbial metabolism of xenobiotic compounds. Springer, Singapore 10: 79–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed N. Abd El-Ghany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fouad, F.A., Youssef, D.G., Shahat, F.M., Abd El-Ghany, M.N. (2023). Role of Microorganisms in Biodegradation of Pollutants. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-09710-2_11

Download citation

Publish with us

Policies and ethics