Skip to main content
Log in

Phycoremediation of heavy metals and production of biofuel from generated algal biomass: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to human activity and natural processes, heavy metal contamination frequently affects the earth’s water resources. The pollution can be categorized as resistant and persistent since it poses a significant risk to terrestrial and marine biological systems and human health. Because of this, several appeals and demands have been made worldwide to try and clean up these contaminants. Through bioremediation, algal cells are frequently employed to adsorb and eliminate heavy metals from the environment. Bioremediation is seen as a desirable strategy with few adverse effects and low cost. Activities and procedures for bioremediation involving algal cells depend on various environmental factors, including salinity, pH, temperature, the concentration of heavy metals, the amount of alga biomass, and food availability. Additionally, the effectiveness of removing heavy metals from the environment by assessing how environmental circumstances affect algal activities. The main issues discussed are (1) heavy metal pollution of water bodies, the role of algal cells in heavy metal removal, the methods by which algae cells take up and store heavy metals, and the process of turning the algae biomass produced into biofuel. (2) To overcome the environmental factors and improve heavy metals bioremediation, many strategies are applied, such as immobilizing the cells, consortium culture, and using dry mass rather than living cells. (3) The processes for converting produced algal biomass into biofuels like biodiesel and biomethanol. The present study discusses the life cycle assessment and the limitations of biofuel products from algae biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

% :

Percent

As:

Arsenic

BOD:

Biology oxygen demand

Cd:

Cadmium

Ca2+ :

Calcium

COD:

Chemical oxygen demand

Cr:

Chromium

Co:

Cobalt

Cu:

Copper

EPS:

Exopolysaccharide

FTIR:

Fourier transform infrared spectroscopy

HM:

Heavy metals

Pb:

Lead

Mg2+ :

Magnesium

Mn:

Manganese

Hg:

Mercury

MBIC:

Microalgae-biochar immobilized complex

Ni:

Nickel

K+ :

Potassium

Na+ :

Sodium

TDS:

Total dissolved solids

U:

Uranium

Zn:

Zinc

References

  • Abdelaal A, Abdelkader AI, Alshehri F, Elatiar A, Almadani SA (2022) Assessment and spatiotemporal variability of heavy metals pollution in water and sediments of a coastal landscape at the Nile Delta. Water(20734441) 14, 23:–3981. https://doi.org/10.3390/w14233981

  • Abdel-Razek MA, Abozeid AM, Eltholth MM, Abouelenien FA, El-Midany SA, Moustafa NY, Mohamed RA (2019) Bioremediation of a pesticide and selected heavy metals in wastewater from various sources using a consortium of microalgae and cyanobacteria. Slov Vet Zb 56:61–73. https://doi.org/10.26873/SVR-744-2019

    Article  Google Scholar 

  • Abdulkareem HN, Alwared AI (2019) Performance of immobilized chlorella algae for removing Pb(II) ions from aqueous solution. Iraqi j chem pet eng 20(3):1–6. https://doi.org/10.31699/IJCPE.2019.3.1

    Article  Google Scholar 

  • Abinandan S, Subashchandrabose SR, Pannerselvan L, Venkateswarlu K, Megharaj M (2019a) Potential of acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, in heavy metal removal and biodiesel production at acidic pH. Bioresour Technol 278:9–16. https://doi.org/10.1016/j.biortech.2019.01.053

    Article  CAS  Google Scholar 

  • Abinandan S, Subashchandrabose SR, Venkateswarlu K, Perera IA, Megharaj M (2019b) Acid-tolerant microalgae can withstand higher concentrations of invasive cadmium and produce sustainable biomass and biodiesel at pH 3.5. Bioresour Technol 281:469–473. https://doi.org/10.1016/j.biortech.2019.03.001

    Article  CAS  Google Scholar 

  • Abioye OP, Ezugwu BU, Aransiola SA, Ojeba MI (2020) Phycoremediation of water contaminated with arsenic (As), cadmium (Cd) and lead (Pb) from a mining site in Minna, Nigeria. Eur J Biol Res 10(1):35–44. https://doi.org/10.5281/zenodo.3735302

    Article  CAS  Google Scholar 

  • Agarwal M, Singh K (2017) Heavy metal removal from wastewater using various adsorbents: a review. Desalin water reuse 7:387–419

    Google Scholar 

  • Aguilar-Ruiz RJ, Martínez-Macias MDR, Sánchez-Machado DI, López-Cervantes J, Dévora-Isiordia GE, Nateras-Ramírez O (2020) Removal of copper improves the lipid content in Nannochloropsis oculata culture. Environ Sci Pollut Res 27(35):44195–44204. https://doi.org/10.1007/s11356-020-10283-4

    Article  CAS  Google Scholar 

  • Ahmad AAH, Bhat A, Buang (2018) Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: kinetic and equilibrium modeling. J Clean Prod 171:1361–1375. https://doi.org/10.1016/j.jclepro.2017.09.252

    Article  CAS  Google Scholar 

  • Ahmad I, Abdullah N, Koji I, Yuzir A, Mohamad SE (2021) Potential of microalgae in bioremediation of wastewater. Bull Chem React Eng Catal 16(2):413–429. https://doi.org/10.9767/bcrec.16.2.10616.413-429

    Article  CAS  Google Scholar 

  • Ahmad S, Pandey A, Pathak VV, Tyagi VV, Kothari R (2019) Phycoremediation: algae as eco-friendly tools for the removal of heavy metals from wastewaters. In: Bharagava RN, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 53–76

    Google Scholar 

  • Ajayan KV, Selvaraju M, Unnikannan P, Sruthi P (2015) Phycoremediation of tannery wastewater using microalgae Scenedesmus species. Int J Phytoremediation 17:907–916

    CAS  Google Scholar 

  • Aksu Z (2001) Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21(3):285–294

    CAS  Google Scholar 

  • Alwan AA, Al-Mousawi NJ (2021) Isolating some fatty acids- enriched oils used in biofuels from alga salinity tolerant Dunaliella sp. Univ Thi-Qar J 16(1):32–59. https://doi.org/10.32792/utq/utj/vol16/1/3

    Article  Google Scholar 

  • Ankit BK, Korstad J (2022) Phycoremediation: use of algae to sequester heavy metals. Hydrobiologia 1(3):288–303. https://doi.org/10.3390/hydrobiology1030021

    Article  Google Scholar 

  • Anwar K, Anjum MU, Sadiq MA, Bashir E, Ghani KS (2022) Spectrophotometric evaluation of effects of heavy metals on human erythrocytes. Professional Med J 29(6):849–854. https://doi.org/10.29309/TPMJ/2022.29.06.6889

    Article  Google Scholar 

  • Awual MR, Hasan MM, Iqbal J, Islam MA, Islam A, Khandaker S, Asiri AM, Rahman MM (2020) Ligand based sustainable composite material for sensitive nickel(II) capturing in aqueous media. J Environ Chem Eng 8:103591

    CAS  Google Scholar 

  • Babakhani P, Mahdavi MA, Gheshlaghi R, Karimian A (2022) The shift in carbon source induces pH increase and autoflocculation in microalgal suspensions facilitating multi-approach biomass harvesting. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-03361-9

  • Baeyens W, Gao Y, Davison W, Galceran J, Leermakers M, Puy J, Superville P-J, Beguery L (2018) In situ measurements of micronutrient dynamics in open seawater show that complex dissociation rates may limit diatom growth. Sci Rep 8(1):16125. https://doi.org/10.1038/s41598-018-34465-w

    Article  CAS  Google Scholar 

  • Baloyi H, Marx S (2021) Preparation of bio-oil from Scenedesmus acutus using thermochemical liquefaction in a 1 L reactor. J Energy South Africa 32(2):1–10. https://doi.org/10.17159/2413-3051/2021/v32i2a8903

    Article  Google Scholar 

  • Balzano S, Sardo A, Blasio M, Chahine TB, Dell’Anno F, Sansone C, Brunet C (2020) Microalgae metallothioneins and phytochelatins and their potential use in bioremediation. Front Microbiol 11:517. https://doi.org/10.3389/fmicb.2020.00517

    Article  Google Scholar 

  • Bansal A, Shinde O, Sarkar S (2018) Industrial wastewater treatment using phycoremediation technologies and co-production of value-added products. J Bioremed Biodegr 9:428. https://doi.org/10.4172/2155-6199.1000428

    Article  CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377. https://doi.org/10.1016/j.arabjc.2010.07.019

  • Baudelet PH, Ricochon G, Linder M, Muniglia L (2017) A new insight into cell walls of Chlorophyta. Algal Res 25:333–371

    Google Scholar 

  • Bilal M, Rasheed T, Sosa-Hernández JE, Raza A, Nabeel F, Iqbal H (2018a) Biosorption: an interplay between marine algae and potentially toxic elements—a review. Mar Drugs 16(2):65

    Google Scholar 

  • Bilal M, Rasheed T, Sosa-Hernández JE, Raza A, Nabeel F, Iqbal HMN (2018b) Biosorption: an interplay between marine algae and potentially toxic elements--a review. Mar Drugs 16(2):65. https://doi.org/10.3390/md16020065

    Article  CAS  Google Scholar 

  • Bwapwa JK, Jaiyeola AT, Chetty R (2017) Bioremediation of acid mine drainage using algae strains: a review. South Afr J Chem Eng 24:62–70

    Google Scholar 

  • Cameron H, Mata MT, Riquelme C (2018) The effect of heavy metals on the viability of Tetraselmis marina AC16-MESO and an evaluation of the potential use of this microalga in bioremediation. Peer J 6:e5295. https://doi.org/10.7717/peerj.5295

    Article  CAS  Google Scholar 

  • Căpriă FC, Ene A (2019) Valorification directions for marine algae. Ann Univ Dunarea de Jos of Galati: Fascicle II, Mathemat Phys , Theoret Mech 42(1):10–18

    Google Scholar 

  • Chandra Shekharaiah PS, Sanyal D, Dasgupta S, Sapre A, Banik A (2020) Heavy metal mitigation with special reference to bioremediation by mixotrophic algae-bacterial protocooperation. In: Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA (eds) Cellular and molecular phytotoxicity of heavy metals. Nanotechnology in the Life Sciences. Springer, Cham, pp 305–334

    Google Scholar 

  • Cheng SY, Show P-L, Lau BF, Chang J-S, Ling TC (2019a) New prospects for modifed algae in heavy metal adsorption. Trends Biotechnol 37:1255–1268. https://doi.org/10.1016/j.tibtech.2019.04.007

    Article  CAS  Google Scholar 

  • Cheng SY, Show P-L, Lau BF, Chang J-S, Ling TC (2019b) New prospects for modifed algae in heavy metal adsorption. Trends Biotechnol 37(11):1255–1268. https://doi.org/10.1016/j.tibtech.2019.04.007

    Article  CAS  Google Scholar 

  • Collotta M et al (2019) Critical indicators of sustainability for biofuels: an analysis through a life cycle sustainabilty assessment perspective. Renew Sustain Energy Rev 115:109358. https://doi.org/10.1016/j.rser.2019.109358

    Article  Google Scholar 

  • Daliry S, Hallajisani A, Mohammadi Roshandeh J, Nouri H, Golzary A (2017) Investigation of optimal condition for Chlorella vulgaris microalgae growth. Glob J Environ Sci Manage 3(2):217–230

    CAS  Google Scholar 

  • Danouche M, El Ghachtouli N, El Baouchi A, El Arroussi H (2020) Heavy metals phycoremediation using tolerant green microalgae: enzymatic and non-enzymatic antioxidant systems for the management of oxidative stress. J Environ Chem Eng 8:104460 https://doi-org.sdl.idm.oclc.org/10.1016/j.jece.2020.104460

    CAS  Google Scholar 

  • Danouche M, Ghachtouli N, Arroussi H (2021) Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 7(7):e07609

    Article  CAS  Google Scholar 

  • Dębowski M, Świca I, Kazimierowicz J, Zieliński M (2023) Large scale microalgae biofuel technology—development perspectives in light of the barriers and limitations. Energies (19961073) 16(1):81. https://doi.org/10.3390/en16010081

    Article  CAS  Google Scholar 

  • Deng Z, Khatiwada JR, Fan L, Qin W (2022) Algae for wastewater treatment and production of biofuels and bioproducts. Int J Environ Res 16(3):1–17. https://doi.org/10.1007/s41742-022-00412-x

    Article  CAS  Google Scholar 

  • Ding T, Yang M, Zhang J, Yang B, Lin K, Li J, Gan J (2017) Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. J Hazard Mater 330:127–134. https://doi.org/10.1016/j.jhazmat.2017.02.004

    Article  CAS  Google Scholar 

  • Dirbaz M, Roosta A (2018) Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Parachlorella sp. J Environ Chem Eng 6(2):2302–2309. https://doi.org/10.1016/j.jece.2018.03.039

    Article  CAS  Google Scholar 

  • Domozych DS, Popper ZA, Sørensen I (2016) Charophytes: evolutionary giants and emerging model organisms. Front Plant Sci 10 (7):1470. https://doi.org/10.3389/fpls.2016.01470

  • Dong L, Wang HX, Wang Y, Hu XQ, Wen XL (2022a) Effects of Cd2+ and Pb2+ on growth and photosynthesis of two freshwater algae species. Pol J Environ Stud 31(3):2059–2068. https://doi.org/10.15244/pjoes/143256

    Article  CAS  Google Scholar 

  • Dong L-L, Wang H-X, Wang Y, Hu X-Q, Wen X-L (2022b) Effects of Cd2+ and Pb2+ on growth and photosynthesis of two freshwater algae species. Polish J Environ Stud 31(3):2059–2068. https://doi.org/10.15244/pjoes/143256

    Article  CAS  Google Scholar 

  • El Agawany N, Kaamoush M, El-Zeiny A, Ahmad M (2021) Effect of heavy metals on protein content of marine unicellular green alga Dunaliella tertiolecta. Environ Monit Assess 193:584. https://doi.org/10.15244/pjoes/143256

    Article  CAS  Google Scholar 

  • Elahi A, Arooj I, Bukhari DA, Rehman A (2020) Successive use of microorganisms to remove chromium from wastewater. Appl Microbiol Biotechnol 104(9):3729–3743. https://doi.org/10.1007/s00253-020-10533-y

    Article  CAS  Google Scholar 

  • El-Naggar NE-A, Hussein MH, Shaaban-Dessuuki SA, Dalal SR (2020) Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci Rep 10(1):1–19

    Google Scholar 

  • El-Sheekh M, Metwally M, Allam N, Hemdan H (2017) Effect of algal cell immobilization technique on sequencing batch reactors for sewage wastewater treatment. Int J Environ Res. 11(5/6):603–611

    CAS  Google Scholar 

  • Esmaeili A, Aghababai Beni A (2015) Biosorption of nickel and cobalt from plant effluent by Sargassum glaucescens nanoparticles at new membrane reactor. Int J Environ Sci Technol 12(6):2055–2064. https://doi.org/10.1007/s13762-014-0744-3

    Article  CAS  Google Scholar 

  • Expósito N, Carafa R, Kumar V, Sierra J, Schuhmacher M, Papiol GG (2021) Performance of Chlorella vulgaris exposed to heavy metal mixtures: linking measured endpoints and mechanisms. Int J Environ Res Public Health 18:1037. https://doi.org/10.3390/ijerph18031037

    Article  CAS  Google Scholar 

  • Filote C, Roșca M, Hlihor R-M (2021) Overview of using living and non-living microorganisms for the removal of heavy metals from wastewaters. J Agric Sci 52(4):22–31

    Google Scholar 

  • Ganesan R, Manigandan S, Samuel MS, Shanmuganathan R, Brindhadevi K, Lan Chi NT, Duc PA, Pugazhendhi A (2020) A review on prospective production of biofuel from microalgae. Biotechnol Rep 27:e00509. https://doi.org/10.1016/j.btre.2020.e00509

    Article  Google Scholar 

  • Gao H, Khera E, Lee JK, Wen F (2016) Immobilization of multi-biocatalysts in alginate beads for cofactor regeneration and improved reusability. J. Vis. Exp 110:53944. https://doi.org/10.3791/53944-v

    Article  Google Scholar 

  • Gonçalves CF, Menegol T, Rech R (2019) Biochemical composition of green microalgae Pseudoneochloris marina grown under different temperature and light conditions. Biocatal Agric Biotechnol 18:101032. https://doi.org/10.1016/j.bcab.2019.101032

    Article  Google Scholar 

  • González-Camejo J, Barat R, Pachés M, Murgui M, Seco A, Ferrer J (2018) Wastewater nutrient removal in a mixed microalgae- bacteria culture: effect of light and temperature on the microalgae-bacteria competition. Environ Technol 39:503–515

    Google Scholar 

  • Gu S, Lan CQ (2021) Biosorption of heavy metal ions by green alga Neochloris oleoabundans: effects of metal ion properties and cell wall structure. J Hazard Mater 15(418):126336. https://doi.org/10.1016/j.jhazmat.2021.126336

    Article  CAS  Google Scholar 

  • Guiza S (2017) Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel. Ecol Eng 99:134–140. https://doi.org/10.1016/j.ecoleng.2016.11.043

    Article  Google Scholar 

  • Halim AA, Haron WNA (2021) Immobilized microalgae using alginate for wastewater treatment. Pertanika J Sci Technol 29(3):1489–1501. https://doi.org/10.47836/pjst.29.3.34

    Article  Google Scholar 

  • Hamed SM, Selim S, Klöck G, Abd Elgawad H (2017) Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses. Ecotoxicol Environ Saf 144:19–25. https://doi.org/10.1016/j.ecoenv.2017.05.048

    Article  CAS  Google Scholar 

  • Han J, Zhang W, Zou J, Shi H, Liu (2005) Equilibrium biosorption isotherm for lead ion on chaff. J. Hazard Mater 125:266–271

    CAS  Google Scholar 

  • Haq F, Mehmood S, Haroon M, Kiran M, Waseem K, Aziz T, Farid A (2022) Role of starch based materials as a bio-sorbents for the removal of dyes and heavy metals from wastewater. J Polym Environ 30:1730–1748. https://doi.org/10.1007/s10924-021-02337-6

    Article  CAS  Google Scholar 

  • Hazaimeh M, Ahmed ES (2021) Bioremediation perspectives and progress in petroleum pollution in the marine environment: a review. Environ Sci Pollut Res 39:54238–54259. https://doi.org/10.1007/s11356-021-15598-4

    Article  Google Scholar 

  • Hedayatkhah A, Cretoiu MS, Emtiazi G, Stal LJ, Bolhuis H (2018) Bioremediation of chromium contaminated water by diatoms with concomitant lipid accumulation for biofuel production. J Environ Manag 227:313–320. https://doi.org/10.1016/j.jenvman.2018.09.011

    Article  CAS  Google Scholar 

  • Heidarpour A, Aliasgharzad N, Khoshmanzar E, Khoshru B, Lajayer BA (2019) Bioremoval of Zn from contaminated water by using green algae isolates. Environ Technol Innov 16:100464. https://doi.org/10.1016/j.eti.2019.100464

    Article  Google Scholar 

  • Hwang K, Kwon G-J, Yang J, Kim M, Hwang WJ, Youe W, Kim D-Y (2018) Chlamydomonas angulosa (green alga) and Nostoc commune (blue-green alga) microalgae-cellulose composite aerogel beads: manufacture, physicochemical characterization, and Cd (II) adsorption. Materials (Basel, Switzerland) 11(4):562. https://doi.org/10.3390/ma11040562

    Article  CAS  Google Scholar 

  • Inthorn D, Sidtitoon N, Silapanuntakul S, Incharoensakdi A (2002) Sorption of mercury, cadmium and lead by microalgae. Sci Asia 28:253–261

  • Iqbal J, Javed A, Baig MA (2021) Heavy metals removal from dumpsite leachate by algae and cyanobacteria. Biorem J 26(1):31–40. https://doi.org/10.1080/10889868.2021.1884530

    Article  CAS  Google Scholar 

  • Isam M, Baloo L, Chabuk A, Majdi A, Al-Ansari N (2023) Optimization and modelling of Pb (II) and Cu (II) adsorption onto red algae (Gracilaria changii)-based activated carbon by using response surface methodology. Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-04150-8

  • Jaafari J, Yaghmaeian K (2019) Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere 217:447–455. https://doi.org/10.1016/j.chemosphere.2018.10.205

    Article  CAS  Google Scholar 

  • Jeswani HK, Chilvers A, Azapagic A (2020) Environmental sustainability of biofuels: a review Proc. R Soc A 476(2243):2020035120200351

    Google Scholar 

  • Jeyakumar P, Debnath C, Vijayaraghavan R, Muthuraj M (2023) Trends in bioremediation of heavy metal contaminations. Environ Eng Res 28(4):1–19. https://doi.org/10.4491/eer.2021.631

    Article  Google Scholar 

  • Jiang L, Zhou W, Liu D, Liu T, Wang Z (2017) Biosorption isotherm study of Cd2+, Pb2+ and Zn2+ biosorption onto marine bacterium Pseudoalteromonas sp. SCSE709-6 in multiple systems. J Mol Liq 247:230–237. https://doi.org/10.1016/j.molliq.2017.09.117

    Article  CAS  Google Scholar 

  • Kafil M, Berninger F, Kornaros M, Koutra E (2021) Utilization of the microalga Scenedesmus quadricauda for hexavalent chromium bioremediation and biodiesel production. Bioresour Technol 346:126665. https://doi.org/10.1016/j.biortech.2021.126665

    Article  CAS  Google Scholar 

  • Kalaimurugan K, Karthikeyan S, Periyasamy M, Mahendran G (2020) Combustion studies on CI engine with cerium oxide nanoparticle added Neochloris oleoabundans biodiesel-diesel fuel blends. Mater Today 33(7):2886–2889. https://doi.org/10.1016/j.matpr.2020.02.779

    Article  CAS  Google Scholar 

  • Kamyab H, Din MFM, Ponraj M, Keyvanfar A, Rezania S, Taib SM, Abd Majid MZ (2016) Isolation and screening of microalgae from agro-industrial wastewater (POME) for biomass and biodiesel sources. Desalin Water Treat 57:29118–29125. https://doi.org/10.1080/19443994.2016.1139101

    Article  CAS  Google Scholar 

  • Kanamarlapudi S, Chintalpudi VK, Muddada S (2018) Application of biosorption for removal of heavy metals from wastewater. In: Derco J, Vrana B (eds) Biosorption. IntechOpen

  • Kaparapu J (2017) Micro algal immobilization techniques. J Algal Biomass Util 8(1):64–70

    Google Scholar 

  • Kaur M, Saini KC, Ojah H et al (2022) Abiotic stress in algae: response, signaling and transgenic approaches. J Appl Psychol 34(4):1843–1869. https://doi.org/10.1007/s10811-022-02746-7

    Article  Google Scholar 

  • Kaur S, Roy A (2021) Bioremediation of heavy metals from wastewater using nanomaterials. Environ Dev Sustain 23(7):9617–9640. https://doi.org/10.1007/s10668-020-01078-1

    Article  Google Scholar 

  • Kumar S, Kaushik G, Dar MA, Nimesh S, López-Chuken, UJ, Villarreal-Chiu JF (2018) Microbial degradation of organophosphate pesticides: a review. Pedosphere 28:190–208

  • Kumar CSP, Sylas VP, Mechery J, Ambily V, Kabeer R, Sunila CT (2023a) Phycoremediation of cashew nut processing wastewater and production of biodiesel using Planktochlorella nurekis and Chlamydomonas reinhardtii. Algal Res 69:102924

    Google Scholar 

  • Kumar L, Mohan L, Anand R et al (2023b) Chlorella minutissima-assisted silver nanoparticles synthesis and evaluation of its antibacterial activity. Syst Microbiol and Biomanuf. https://doi.org/10.1007/s43393-023-00173-4

  • Leong YK, Chang JS (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol 303:122886. https://doi.org/10.1016/j.biortech.2020.122886

    Article  CAS  Google Scholar 

  • Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J 44(1):19–41

  • Li T, Lin G, Podola B, Melkonian M (2015) Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. J Hazard Mater 297(30):112–118. https://doi.org/10.1016/j.jhazmat.2015.04.080

    Article  CAS  Google Scholar 

  • Li Y, Yang X, Geng B (2018) Preparation of immobilized sulfate-reducing bacteria-microalgae beads for effective bioremediation of copper-containing wastewater. Water Air Soil Pollut 229:54. https://doi.org/10.1007/s11270-018-3709-1

    Article  CAS  Google Scholar 

  • Lin Z, Li J, Luan Y, Dai W (2020) Application of algae for heavy metal adsorption: a 20-year meta-analysis. Ecotoxicol Environ Saf 190:110089. https://doi.org/10.1016/j.ecoenv.2019.110089

    Article  CAS  Google Scholar 

  • Mahmood T, Hussain N, Shahbaz A et al (2022) Sustainable production of biofuels from the algae-derived biomass. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-022-02796-8

  • Maliaka V, Verstijnen YJM, Faassen EJ, Smolders AJP, Lürling M (2020) Effects of guanotrophication and warming on the abundance of green algae, cyanobacteria and microcystins in Lake Lesser Prespa, Greece. PLoS One 15(3):e0229148. https://doi.org/10.1371/journal.pone.0229148

    Article  CAS  Google Scholar 

  • Maltsev Y, Maltseva A, Maltseva S (2021) Differential Zn and Mn sensitivity of microalgae species from genera Bracteacoccus and Lobosphaera. Environ Sci Pollut Res 28:57412–57423. https://doi.org/10.1007/s11356-021-15981-1

    Article  CAS  Google Scholar 

  • Marella TK, Saxena A, Tiwari A (2020) Diatom mediated heavy metal remediation: a review. Bioresour Technol 305:123068. https://doi.org/10.1016/j.biortech.2020.123068

    Article  CAS  Google Scholar 

  • Marinova G, Ivanova J, Pilarski P, Chernev G, Chaneva G (2018) Effect of heavy metals on the green alga Scenedesmus incrassatulus. Oxid Commun 41(2):318–328

    CAS  Google Scholar 

  • Megawati M, Bahlawan ZAS, Damayanti A, Putri ARD, Triwibowo B, Prasetiawan H (2022) Comparative study on the various hydrolysis and fermentation methods of Chlorella vulgaris biomass for the production of bioethanol. Int J Renew Energy Dev 11(2):515–522. https://doi.org/10.14710/ijred.2022.41696

    Article  CAS  Google Scholar 

  • Metwally BS, El-Sayed AA, Radwan EK, Hamouda AS, El-Sheikh MN, Salama M (2018) Fabrication, characterization, and dye adsorption capability of recycled modified polyamide nanofibers. Egypt J Chem 61:867–882

    Google Scholar 

  • Monteiro CM, Castro PM, Malcata FX (2010) Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water Air Soil Pollut 208(1–4):17–27. https://doi.org/10.1007/s11270-009-0146-1

    Article  CAS  Google Scholar 

  • Mukhtar B, Malik MF, Shah SH, Azzam A, Slahuddin, Liaqat I (2017) Heavy metal bioremediation in soil: key species and strategies involved in the process. International Journal of Applied Biology and Forensics 1(2):5–15

  • Naaz F, Bhattacharya A, Pant KK, Malik A (2021) Impact of heavy metal laden algal biomass on hydrothermal liquefaction and biorefinery approach. Process Saf Environ Prot 145:141–149

    CAS  Google Scholar 

  • Nanda M, Chand B, Bisht T, Kumar V, Vlaskin MS (2021) Microalgal Cd resistance and its exertions on pigments, biomass and lipid profiles. Bioremediat JBIOREM 25(2):169–177. https://doi.org/10.1080/10889868.2020.1867049

    Article  CAS  Google Scholar 

  • Navakoudis AME, Ververidis KPF (2018) Microalgae: a potential tool for remediating aquatic environments from toxic metals. Int J Environ Sci Technol 15(8):1815–1830. https://doi.org/10.1007/s13762-018-1783-y

    Article  CAS  Google Scholar 

  • Nowicka B (2022) Heavy metal–induced stress in eukaryotic algae—mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environ Sci Pollut Res 29(12):16860–16911. https://doi.org/10.1007/s11356-021-18419-w

    Article  CAS  Google Scholar 

  • Ogundele OD, Adewumi AJ, Oyegoke DA (2023a) Phycoremediation: algae as an effective agent for sustainable remediation and waste water treatment. Environ Earth Sci 10(1):7–17. https://doi.org/10.18280/eesrj.100102

    Article  Google Scholar 

  • Ogundele OD, Adewumi AJ, Oyegoke DA (2023b) Phycoremediation: algae as an effective agent for sustainable remediation and waste water treatment. Environ. Earth Sci.EN 10(1):7–17. https://doi.org/10.18280/eesrj.100102

    Article  Google Scholar 

  • Osman AI, Mehta N, Elgarahy AM, Al-Hinai A, Al-Muhtaseb AH, Rooney DW (2021) Conversion of biomass to biofuels and life cycle assessment: a review. Environ Chem Lett 19(6):4075–4118. https://doi.org/10.1007/s10311-021-01273-0

    Article  CAS  Google Scholar 

  • Palma H, Killoran E, Sheehan M, Berner F, Heimann K (2017) Assessment of microalga biofilms for simultaneous remediation and biofuel generation in mine tailings water. Bioresour Technol 234:327–335

    CAS  Google Scholar 

  • Pandey S, Kumar P, Dasgupta S, Archana G, Bagchi D (2022) Gradient strategy for mixotrophic cultivation of Chlamydomonas reinhardtii: small steps, a large impact on biofuel potential and lipid droplet morphology. Bioenergy Res 2022. https://doi.org/10.1007/s12155-022-10454-w

  • Pavasant P, Apiratikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba TF (2006) Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour Technol 97(18):2321–2329

  • Pessoa MF (2012) Harmful efects of UV radiation in algae and aquatic macrophytes-a review. Emir J Food Agric 24:510–526

    Google Scholar 

  • Petrović M, Šoštarić T, Stojanović M, Petrović J, Mihajlović M, Ćosović A, Stanković S (2017) Mechanism of adsorption of Cu2+ and Zn2+ on the corn silk (Zea mays L.). Ecol Eng 99:83–90. https://doi.org/10.1016/j.ecoleng.2016.11.057

    Article  Google Scholar 

  • Pettersson M, Olofsson J, Börjesson P, Björnsson L (2022) Reductions in greenhouse gas emissions through innovative co-production of bio-oil in combined heat and power plants. Appl Energy 324:119637

    CAS  Google Scholar 

  • Priyadarshini E, Priyadarshini SS, Pradhan N (2019) Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl Microbiol Biotechnol 103(8):3297–3316. https://doi.org/10.1007/s00253-019-09685-3

    Article  CAS  Google Scholar 

  • Rahbari H, Akram A, Pazoki M, Aghbashlo M (2019) Bio-oil production from sargassum macroalgae: a green and healthy source of energy. Jundishapur J Health Sci 11(1):e84301

    Google Scholar 

  • Rahhou A, Layachi M, Akodad M et al (2023) The bioremediation potential of Ulva lactuca (Chlorophyta) causing green tide in Marchica Lagoon (NE Morocco, Mediterranean Sea): biomass, heavy metals, and health risk assessment. Water 15(7):1310. https://doi.org/10.3390/w15071310

    Article  CAS  Google Scholar 

  • Rajalakshmi AM, Silambarasan T, Dhandapani R (2021) Small scale photo bioreactor treatment of tannery wastewater, heavy metal biosorption and CO2 sequestration using microalga Chlorella sp.: a biodegradation approach. Appl Water Sci 11(7):1–12. https://doi.org/10.1007/s13201-021-01438-w

    Article  CAS  Google Scholar 

  • Ramírez-Rodríguez AE, Bañuelos-Hernández B, García-Soto MJ, Govea-Alonso DG, Rosales-Mendoza S, Alfaro de la Torre MC, Monreal-Escalante E, Paz-Maldonado LMT (2019) Arsenic removal using Chlamydomonas reinhardtii modified with the gene acr3 and enhancement of its performance by decreasing phosphate in the growing media. Int J Phytoremediation 21(7):617–623. https://doi.org/10.1080/15226514.2018.1546274

    Article  CAS  Google Scholar 

  • Rashidi B, Trindade LM (2018) Detailed biochemical and morphologic characteristics of the green microalga Neochloris oleoabundans cell wall. Algal Res 35:152–159. https://doi.org/10.1016/j.algal.2018.08.033

    Article  Google Scholar 

  • Rastogi RP, Sinha RP, Moh SH, Lee TK, Kottuparambil S, Kim Y-J, Rhee J-S, Choi E-M, Brown MT, Häder D-P (2014) Ultraviolet radiation and cyanobacteria. J Photochem Photobiol B 141:154–169

    CAS  Google Scholar 

  • Ratnasari A, Syafiuddin A, Syamimi Zaidi N, Kueh AB, Hadibarata T, Dwi Prastyo D, Ravikumar R, Sathishkumar P (2022) Bioremediation of micropollutants using living and non-living algae - current perspectives and challenges. Environ Pollut 292(part B):118474

    CAS  Google Scholar 

  • Rawat J, Gupta PK, Pandit S, Prasad R, Pande V (2021) Current perspectives on integrated approaches to enhance lipid accumulation in microalgae. 3 Biotech 11:303. https://doi.org/10.1007/s13205-021-02851-3

    Article  Google Scholar 

  • Rebelo FM, Caldas ED (2016) Arsenic, lead, mercury and cadmium: toxicity, levels in breast milk and the risks for breastfed infants. Environ Res 151:671–688

    CAS  Google Scholar 

  • Rezasoltani S, Champagne P (2023) An integrated approach for the phycoremediation of Pb(II) and the production of biofertilizer using nitrogen-fixing cyanobacteria. J Hazard Mater 445:130448

  • Rodrigues A, Pinto E (2011) Evaluation of Chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis. Enzyme Res 2011:405603

    Google Scholar 

  • Romera E, González F, Ballester A, Blázquez ML, Muñoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98(17):3344–3353

    CAS  Google Scholar 

  • Ruan G, Mi W, Yin X, Song G, Bi Y (2022) Molecular responses mechanism of Synechocystis sp. PCC 6803 to cadmium stress. Water (20734441) 14(24):4032. https://doi.org/10.3390/w14244032

    Article  CAS  Google Scholar 

  • Salama E-S, Roh H-S, Dev S, Khan MA, Abou-Shanab RAI, Chang SW, Jeon B-H (2019) Algae as a green technology for heavy metals removal from various wastewater. World J Microbiol Biotechnol 35:75. https://doi.org/10.1007/s11274-019-2648-3

    Article  CAS  Google Scholar 

  • Sargın İ, Arslan G, Kaya M (2016) Efficiency of chitosan-algal biomass composite microbeads at heavy metal removal. React Funct Polym 98:38–47

  • Sari A, Tuzen M (2008) Biosorption of Pb (II) and Cd (II) from aqueous solution using green alga (Ulva lactuca) biomass. J Hazard Mater 152(1):302–308

    CAS  Google Scholar 

  • Sarkar MM, Rohani MF, Hossain MAR, Shahjahan M (2022) Evaluation of heavy metal contamination in some selected commercial fish feeds used in Bangladesh. Biol Trace Elem Res 200(2):844–854. https://doi.org/10.1007/s12011-021-02692-4

    Article  CAS  Google Scholar 

  • Sedlakova-Kadukova J, Kopcakova A, Gresakova L, Godany A, Pristas P (2019) Bioaccumulation and biosorption of zinc by a novel Streptomyces K11 strain isolated from highly alkaline aluminium brown mud disposal site. Ecotoxicol Environ Saf 167:204–211. https://doi.org/10.1016/j.ecoenv.2018.09.123

    Article  CAS  Google Scholar 

  • Selvi A, Rajasekar A, Theerthagiri J, Ananthaselvam A, Sathishkumar K, Madhavan J, Rahman PKSM (2019) Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Front Environ Sci 7:171. https://doi.org/10.3389/fenvs.2019.00066

    Article  Google Scholar 

  • Sen Gupta G, Yadav G, Tiwari S (2020) Bioremediation of heavy metals: a new approach to sustainable agriculture. In: Upadhyay AK, Singh R, Singh DP (eds) Restoration of wetland ecosystem: a trajectory towards a sustainable environment. Springer, Singapore, pp 195–226

    Google Scholar 

  • Sharma J, Kumar V, Kumar SS, Malyan SK, Mathimani T, Bishnoi NR, Pugazhendhi A (2020) Microalgal consortia for municipal wastewater treatment – lipid augmentation and fatty acid profiling for biodiesel production. J Photochem Photobiol B Biol:202, 111638. https://doi.org/10.1016/j.jphotobiol.2019.111638

  • Sharma J, Sharma S, Sonia V (2021) Classification and impact of synthetic textile dyes on Aquatic Flora: a review. Reg Stud Mar Sci 45:101802. https://doi.org/10.1016/j.rsma.2021.101802

    Article  Google Scholar 

  • Shen Y, Li H, Zhu W, Ho S-H, Yuan W, Chen J, Xie Y (2017) Microalgal-biochar immobilized complex: a novel efficient biosorbent for cadmium removal from aqueous solution. Bioresour Technol 244:1031–1038

    CAS  Google Scholar 

  • Shivagangaiah CP, Sanyal D, Dasgupta S, Banik A (2021) Phycoremediation and photosynthetic toxicity assessment of lead by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa. Physiol Plant:1–13. https://doi.org/10.1111/ppl.13368

  • Silva DA, Cardoso LG, Silva JSJ, Souza CO, Lemos PVF, Almeida PF, Ferreira ES, Lombardi AT, Druzian JI (2022) Strategy for the cultivation of Chlorella vulgaris with high biomass production and biofuel potential in wastewater from the oil industry. Environ Technol Innov 25:102204. https://doi.org/10.1016/j.eti.2021.102204

    Article  CAS  Google Scholar 

  • Singh AK, Sharma N, Farooqi H, Abdin MZ, Mock T, Kumar S (2017) Phycoremediation of municipal wastewater by microalgae to produce biofuel. Int J Phytoremediation 19(9):805–812

    CAS  Google Scholar 

  • Song B, Lin R, Lam CH, Wu H, Tsui T-H, Yu Y (2021) Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2020.110370

  • Spain O, Plöhn M, Funk C (2021) The cell wall of green microalgae and its role in heavy metal removal. Physiol Plant 173(2):526–535. https://doi.org/10.1111/ppl.13405

    Article  CAS  Google Scholar 

  • Takáčová A, Bajuszová M, Šimonovičová A, Šutý Š, Nosalj S (2022) Biocoagulation of dried algae Chlorella sp. and pellets of Aspergillus niger in decontamination process of wastewater, as a presumed source of biofuel. J. Fungi 8(12):1282. https://doi.org/10.3390/jof8121282

    Article  CAS  Google Scholar 

  • Talapatra N, Gautam R, Mittal V, Ghosh UK (2021) A comparative study of the growth of microalgae-bacteria symbiotic consortium with the axenic culture of microalgae in dairy wastewater through extraction and quantification of chlorophyll. Mater Today: Proc In Press. https://doi.org/10.1016/j.matpr.2021.06.227

  • Tayang A, Songachan LS (2021) Microbial bioremediation of heavy metals. Curr Sci 120(6):1013–1025

    CAS  Google Scholar 

  • Tiwari A, Marella TK (2019) Potential and application of diatoms for industry-specific wastewater treatment. In: Gupta S, Bux F (eds) Application of microalgae in wastewater treatment. Springer, Cham, pp 321–339

    Google Scholar 

  • Torres EM, Hess D, McNeil BT, Guy T, Quinn JC (2017) Impact of inorganic contaminants on microalgae productivity and bioremediation potential. Ecotoxicol Environ Saf 139:367–376

    CAS  Google Scholar 

  • Tutak W, Jamrozik A, Grab-Rogaliński K (2023) Evaluation of combustion stability and exhaust emissions of a stationary compression ignition engine powered by diesel/n-butanol and RME biodiesel/n-butanol blends. Energies (19961073) 16(4):1717. https://doi.org/10.3390/en16041717

    Article  CAS  Google Scholar 

  • Ullah K et al (2015) Assessing the potential of algal biomass opportunities for bioenergy industry: a review. Fuel 143:414–423. https://doi.org/10.1016/j.fuel.2014.10.064

    Article  CAS  Google Scholar 

  • Umair M, Yousuf MU (2023) Evaluating the symmetric and asymmetric effects of fossil fuel energy consumption and international capital flows on environmental sustainability: a case of South Asia. Environ Sci Pollut Res 30:33992–34008 https://doi-org.sdl.idm.oclc.org/10.1007/s11356-022-24607-z

    Google Scholar 

  • Ummalyma SB, Gnansounou E, Sukumaran RK, Sindhu R, Pandey A, Sahoo D (2017) Bioflocculation: an alternative strategy for harvesting of microalgae-an overview. Bioresour Technol 242:227–235. https://doi.org/10.1016/j.biortech.2017.02.097

    Article  CAS  Google Scholar 

  • Utomo HD, Tan KXD, Choong ZYD, Yu JJ, Ong JJ, Lim ZB (2016) Biosorption of heavy metal by algae biomass in surface water. Environ Prot 7:1547–1560

    CAS  Google Scholar 

  • Valdez C, Perengüez Y, Mátyás B, Guevara MF (2018) Analysis of removal of cadmium by action of immobilized Chlorella sp. micro-algae in alginate beads. F1000Research 7:54. https://doi.org/10.12688/f1000research.13527.1

    Article  CAS  Google Scholar 

  • Vetrivel SA, Diptanghu M, Masto R et al (2017) Green algae of the genus Spirogyra: A potential absorbent for heavy metal from coal mine water. Remediat J 27(3):81–90. https://doi.org/10.1002/rem.21522

  • Wang J, Liu Q, Zhao X, Borthwick AGL, Liu Y, Chen Q, Ni J (2019) Molecular biogeography of planktonic and benthic diatoms in the Yangtze River. Microbiome 7:153. https://doi.org/10.1186/s40168-019-0771-x

    Article  Google Scholar 

  • Wang WN, Li T, Li Y, Zhang Y, Wu HL, Xiang WZ, Li AF (2022) Exopolysaccharides from the energy microalga strain Botryococcus braunii: purification, characterization, and antioxidant activity. Foods 1 11:110. https://doi.org/10.3390/foods11010110

    Article  CAS  Google Scholar 

  • Waris A, Khan S, Hronec M et al (2023) The impact of hydro-biofuel-wind-solar energy consumption and coal consumption on carbon emission in G20 countries. Environ Sci Pollut Res 30:72503–72513. https://doi.org/10.1007/s11356-023-27442-y

    Article  CAS  Google Scholar 

  • Wilke A, Buchholz R, Bunke G (2006) Selective biosorption of heavy metals by algae. Environ Biotechnol 2(2):47–56

  • Xu L, Cheng X, Wang Q (2018) Enhanced lipid production in Chlamydomonas reinhardtii by co-culturing with Azotobacter chroococcum. Front Plant Sci 9(741):754. https://doi.org/10.3389/fpls.2018.00741

    Article  Google Scholar 

  • Yang J, Cao J, Xing G, Yuan H (2015) Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol 175:537–544

    CAS  Google Scholar 

  • Yang X, Zhao Z, Zhang G, Hirayama S, Van Nguyen B, Lei Z, Shimizu K, Zhang Z (2021) Insight into Cr(VI) biosorption onto algal-bacterial granular sludge: Cr(VI) bioreduction and its intracellular accumulation in addition to the effects of environmental factors. J Hazard Mater 414:125479

    CAS  Google Scholar 

  • Yin K, Wang Q, Lv M, Chen L (2019) Microorganism remediation strategies towards heavy metals. Chem Eng J 360:1553–1563. https://doi.org/10.1016/j.cej.2018.10.226

  • Zabochnicka M, Krzywonos M, Romanowska-Duda Z, Szufa S, Darkalt A, Mubashar M (2022) Algal biomass utilization toward circular economy. Life (2075-1729) 12(10):1480–N.PAG. https://doi.org/10.3390/life12101480

    Article  CAS  Google Scholar 

  • Zamani-Ahmadmahmoodi R, Malekabadi MB, Rahimi R, Johari SA (2020) Aquatic pollution caused by mercury, lead, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis oculata. Environ Monit Assess 192:330. https://doi.org/10.1007/s10661-020-8222-5

    Article  CAS  Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831. https://doi.org/10.1016/j.jenvman.2016.06.059

    Article  CAS  Google Scholar 

  • Zhang S, Liu Z (2021) Advances in the biological fxation of carbon dioxide by microalgae. J Chem Technol Biotechnol 96(6):1475–1495. https://doi.org/10.1002/jctb.6714

    Article  CAS  Google Scholar 

  • Zhao W, Zhang Y, Mi S, Wu H, He Z, Qian Y, Lu X (2022) Technological and environmental advantages of a new engine combustion mode: Dual Biofuel Intelligent Charge Compression Ignition. Fuel 326:125067

    CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under project number R-2023-632.

Author information

Authors and Affiliations

Authors

Contributions

The study conceptualization and design, data collection, analysis and interpretation of results, and manuscript writing are all solely the author's responsibility.

Corresponding author

Correspondence to Mohammad Hazaimeh.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable

Conflict of interest

The author declare no competing interests.

Additional information

Responsible Editor: Ta Yeong Wu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazaimeh, . Phycoremediation of heavy metals and production of biofuel from generated algal biomass: a review. Environ Sci Pollut Res 30, 109955–109972 (2023). https://doi.org/10.1007/s11356-023-30190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-30190-8

Keywords

Navigation