Skip to main content

Advertisement

Log in

Bioremediation perspectives and progress in petroleum pollution in the marine environment: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The marine environment is often affected by petroleum hydrocarbon pollution due to industrial activities and petroleum accidents. This pollution has recalcitrant and persistent compounds that pose a high risk to the ecological system and human health. For this reason, the world claims to seek to clean up these pollutants. Bioremediation is an attractive approach for removing petroleum pollution. It is considered a low-cost and highly effective approach with fewer side effects compared to chemical and physical techniques. This depends on the metabolic capability of microorganisms involved in the degradation of hydrocarbons through enzymatic reactions. Bioremediation activities mostly depend on environmental conditions such as temperature, pH, salinity, pressure, and nutrition availability. Understanding the effects of environmental conditions on microbial hydrocarbon degraders and microbial interactions with hydrocarbon compounds could be assessed for the successful degradation of petroleum pollution. The current review provides a critical view of petroleum pollution in seawater, the bioavailability of petroleum compounds, the contribution of microorganisms in petroleum degradation, and the mechanisms of degradation under aerobic and anaerobic conditions. We consider different biodegradation approaches such as biostimulation, bioaugmentation, and phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analyzed during the current study are available in the Saudi digital library repository (https://sdl.edu.sa/SDLPortal/ar/Publishers.aspx).

References

  • Aalbers FS, Fraaije MW (2017) Coupled reactions by coupled enzymes: alcohol to lactone cascade with alcohol dehydrogenase-cyclohexanone monooxygenase fusions. Appl Microbiol Biotechnol 101(20):7557–7565. https://doi.org/10.1007/s00253-017-8501-4

    Article  CAS  Google Scholar 

  • Abbasian A, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol 176:670–699. https://doi.org/10.1007/s12010-015-1603-5

    Article  CAS  Google Scholar 

  • Abdel-Aziz AM, Gupta VK, Dalia S, Fadel M (2016) 7. Role of nutrient in microbial developments and microbial metabolic diversity: recent advancements and future developments. Microb Appl. https://doi.org/10.1515/9783110412789-009

  • Abdelhaleem HAR, Zein HS, Azeiz A, Sharaf AN, Abdelhadi AA (2019) Identification and characterization of novel bacterial polyaromatic hydrocarbon-degrading enzymes as potential tools for cleaning up hydrocarbon pollutants from different environmental sources. Environ Toxicol Pharmacol 67:108–116. https://doi.org/10.1016/j.etap.2019.02.009

    Article  CAS  Google Scholar 

  • Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Article  Google Scholar 

  • Abidli A, Huang Y, Cherukupally P, Bilton AM, Park CB (2020) Novel separator skimmer for oil spill cleanup and oily wastewater treatment: from conceptual system design to the first pilot-scale prototype development. Environ Technol Innov 18:100598. https://doi.org/10.1016/j.eti.2019.100598

    Article  Google Scholar 

  • Adadevoh JS, Triolo S, Ramsburg CA, Ford RM (2016) Chemotaxis increases the residence time of bacteria in granular media containing distributed contaminant sources. Environ Sci Technol 50:181–187

    Article  CAS  Google Scholar 

  • Agarry SE (2017) Statistical optimization and kinetic studies of enhanced bioremediation of crude oil - contaminated marine water using combined adsorption-biostimulation strategy. J Appl Sci Environ Manag 21(1):59–74

    CAS  Google Scholar 

  • Ahmad F, Zhu D, Sun J (2020) Bacterial chemotaxis: a way forward to aromatic compounds biodegradation. Environ Sci Eur 32(1):1–18. https://doi.org/10.1186/s12302-020-00329-2

    Article  Google Scholar 

  • Alegbeleye OO, Opeolu BO, Jackson V (2017) Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Braz J Microbiol 48:314–325. https://doi.org/10.1016/J.BJM.2016.07.027

    Article  CAS  Google Scholar 

  • Al-Hasan RH, Sorkho NA, Al Bader D, Radwan SS (1994) Utilization of hydrocarbons by cyanobacteria from microbial mats on oily coasts of the Gulf. Appl Microbiol Biotechnol 41:615–619

    Article  CAS  Google Scholar 

  • Al-Majed AA, Adebayo AR, Hossain MEA (2012) Sustainable approach to controlling oil spills. J Environ Manag 113:213–227

    Article  Google Scholar 

  • Almeida C, Reis I, Couto M, Bordalo A, Mucha A (2013) Potential of the microbial community present in an unimpacted beach sediment to remediate petroleum hydrocarbons. Environ Sci Pollut Res 20(5):3176–3184. https://doi.org/10.1007/s11356-012-1240-2

    Article  CAS  Google Scholar 

  • Arctic Wake-up Call (2020) Russian. Life. 63(4):6–7

    Google Scholar 

  • Awasthi MK, Selvam A, Chan MJ, Wong JWC (2018) Bio-degradation of oily food waste employing thermophilic bacterial strains. Bioresour Technol 248:141–147

    Article  CAS  Google Scholar 

  • Baghour M (2019) Algal degradation of organic pollutants. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of Ecomaterials. Springer, Cham, pp 1–22. https://doi.org/10.1007/978-3-319-68255-6_86

    Chapter  Google Scholar 

  • Bani-Hani E, Tawalbeh M, Al-Othman A, Assad ME (2019) Rheological study on seawater contaminated with oil components. Pol J Environ Stud 28(4):2585–2591. https://doi.org/10.15244/pjoes/92121

    Article  CAS  Google Scholar 

  • Banin E, Khare SK, Naider F, Rosenberg E (2001) Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of zooxanthellae. Appl Environ Microbiol 67:1536–1541

    Article  CAS  Google Scholar 

  • Bao MT, Chen QG, Gong YG, Li YM, Wang HF, Jiang GC (2013) Removal efficiency of heavy oil by free and immobilised microorganisms on laboratory-scale. Can J Chem Eng 91(1):1–8

    Article  CAS  Google Scholar 

  • Becker BR, de Souza ES, Martins RL, da Luz BJ (2016) Bioremediation of oil-contaminated beach and restinga sediments using a slow-release fertilizer. CLEAN: Soil, Air, Water 44(9):1154

    CAS  Google Scholar 

  • Ben Jmaa S, Kallel A (2019) Assessment of performance of Posidona oceanica (L.) as biosorbent for crude oil-spill cleanup in seawater. Biomed Res Int 2019:1–9. https://doi.org/10.1155/2019/6029654

    Article  CAS  Google Scholar 

  • Beskoski VP, Gojgic-Cvijovic G, Milic J, Ilic M, Miletic S, Solevic T, Vrvic MM (2011) Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil) – a field experiment. Chemosphere 83(1):34–40

    Article  CAS  Google Scholar 

  • Bhatt P, Verma A, Gangola S, Bhandari G, Chen S (2021) Microbial glycoconjugates in organic pollutant bioremediation: recent advances and applications. Microb Cell Factories 20(1):1–18. https://doi.org/10.1186/s12934-021-01556-9

    Article  Google Scholar 

  • Bianco F, Race M, Papirio S, Esposito G (2020) Removal of polycyclic aromatic hydrocarbons during anaerobic biostimulation of marine sediments. Sci Total Environ 709:136141. https://doi.org/10.1016/j.scitotenv.2019.136141

    Article  CAS  Google Scholar 

  • Brakstad OG, Lofthus S, Ribicic D, Netzer R (2017) Biodegradation of petroleum oil in cold marine environments. In: Margesin R (ed) Psychrophiles: From Biodiversity to Biotechnology. Springer, Cham, pp 169–188. https://doi.org/10.1007/978-3-319-57057-0_27

    Chapter  Google Scholar 

  • Bruckberger MC, Morgan MJ, Bastow TP, Walsh T, Prommer H, Mukhopadhyay A, Kaksonen AH, Davis GB, Puzon GJ (2020) Investigation into the microbial communities and associated crude oil-contamination along a Gulf War impacted groundwater system in Kuwait. Water Res 170:115314. https://doi.org/10.1016/j.watres.2019.115314

    Article  CAS  Google Scholar 

  • Brzeszcz J, Kaszycki P (2018) Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation 29(4):359–407. https://doi.org/10.1007/s10532-018-9837-x

    Article  Google Scholar 

  • Bulatović S, Marić N, Knudsen TŠ, Avdalović J, Ilić M, Jovančićević B, Vrvić MM (2020) Bioremediation of groundwater contaminated with petroleum hydrocarbons applied at a site in Belgrade (Serbia). J Serb Chem Soc 85(8):1067–1081. https://doi.org/10.2298/JSC191023003B

    Article  Google Scholar 

  • Chaillan F, Gugger M, Saliot A, Couté A, Oudot J (2005) Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat. Chemosphere 62(10):1574–1582. https://doi.org/10.1016/j.chemosphere.2005.06.050

    Article  CAS  Google Scholar 

  • Chanton J, Zhao T, Rosenheim BE, Joye S, Bosman S, Brunner C, Yeager KM, Diercks AR, Hollander D (2015) Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the deepwater horizon oil spill. Environ Sci Technol 49(2):847–854

    Article  CAS  Google Scholar 

  • Chekroun BK, Sánchez E, Baghour M (2014) The role of algae in bioremediation of organic pollutants. Int Res J Public Environ Health 1:19–32

    Google Scholar 

  • Chen Y, Yu B, Lin J, Naidu R, Chen Z (2016) Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chem Eng J 289:463–470

    Article  CAS  Google Scholar 

  • Chen Q, Li J, Liu M, Sun H, Bao M (2017) Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment. PLoS One 12(3):e0174445. https://doi.org/10.1371/journal.pone.0174445

    Article  CAS  Google Scholar 

  • Chen J, Liu Y-F, Zhou L, Mbadinga SM, Yang T, Zhou J, Liu JF, Yang SZ, Gu JD, Mu BZ (2019a) Methanogenic degradation of branched alkanes in enrichment cultures of production water from a high-temperature petroleum reservoir. Appl Microbiol Biotechnol 103(5):2391–2401. https://doi.org/10.1007/s00253-018-09574-1

    Article  CAS  Google Scholar 

  • Chen J, Zhang W, Wan Z, Li S, Huang T, Fei Y (2019b) Oil spills from global tankers: status review and future governance. J Clean Prod 227:20–32. https://doi.org/10.1016/j.jclepro.2019.04.020

    Article  Google Scholar 

  • Chen J, Liu Y, Zhou L et al (2020a) Long-chain n-alkane biodegradation coupling to methane production in an enriched culture from production water of a high-temperature oil reservoir. AMB Express 10:63. https://doi.org/10.1186/s13568-020-00998-5

    Article  CAS  Google Scholar 

  • Chen Q, Bao B, Li Y, Liu M, Zhu B, Mu J, Chen Z (2020b) Effects of marine oil pollution on microbial diversity in coastal waters and stimulating indigenous microorganism bioremediation with nutrients. Reg Stud Mar Sci 39:101395. https://doi.org/10.1016/j.rsma.2020.101395

    Article  Google Scholar 

  • Clerc EE, Raina JB, Lambert BS, Seymour J, Stocker R (2020) In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. J Vis Exp 159:e61062. https://doi.org/10.3791/61062

    Article  CAS  Google Scholar 

  • Couto CRA, Jurelevicius D, Alvarez VM, Elsas JD, Seldin L (2016) Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants. J Environ Manag 184:473–479

    Article  CAS  Google Scholar 

  • Couto CRA, Leite DCA, Jurelevicius D, Elsas JD, Seldin L (2020) Chemical and biological dispersants differently affect the bacterial communities of uncontaminated and oil-contaminated marine water. Braz J Microbiol 51:691–700. https://doi.org/10.1007/s42770-019-00153-8

    Article  CAS  Google Scholar 

  • Crisafi F, Genovese M, Smedile F, Russo D, Catalfamo M, Yakimov M, Giuliano L, Denaro R (2016) Bioremediation technologies for polluted seawater sampled after an oil-spill in Taranto Gulf (Italy): a comparison of biostimulation, bioaugmentation and use of a washing agent in microcosm studies. Mar Pollut Bull 106(1-2):119–126

    Article  CAS  Google Scholar 

  • Dangi AK, Sharma B, Hill RT, Shukla P (2019) Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 39(1):79–98. https://doi.org/10.1080/07388551.2018.1500997

    Article  CAS  Google Scholar 

  • Delille D, Basseres A, Dessommes A (1998) Effectiveness of bioremediation for oil-polluted Antarctic seawater. Polar Biol 19:237–241

    Article  Google Scholar 

  • Dellagnezze BM, Vasconcellos SP, Angelim AL, Melo VM, Santisi S, Cappello S, Oliveira VM (2016) Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil degradation in mesocosm scale. Mar Pollut Bull 107(1):107–117

    Article  CAS  Google Scholar 

  • Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol Bull 204:160–167

    Article  CAS  Google Scholar 

  • Devan PK, Bibin C, Gowtham S, Hariharan G, Hariharan R (2020) A comprehensive review on solar cooker with sun tracking system. Materials Today Proceedings 33(1):771–777. https://doi.org/10.1016/j.matpr.2020.06.124/

  • Dou J, Wang Y, Ding A, Yuan J, Liu X (2016) Nitrate dependent degradation of xylene isomers by pseudomonas chlororaphis under anaerobic conditions. Environ Eng Manag J 15(4):817–826. https://doi.org/10.30638/eemj.2016.088

    Article  CAS  Google Scholar 

  • Durval IJB, Resende AHM, Figueiredo MA, Luna JM (2018) Studies on biosurfactants produced using Bacillus cereus isolated from seawater with biotechnological potential for marine oil-spill bioremediation. J Surfactant Deterg 22(2):349–363. https://doi.org/10.1002/jsde.12218

    Article  CAS  Google Scholar 

  • Dwivedi A, Kumar A, Bhat JL (2019) Production and characterization of biosurfactant from Corynebacterium species and its effect on the growth of petroleum degrading bacteria. Microbiology 88(1):87–93. https://doi.org/10.1134/S002626171901003X

    Article  CAS  Google Scholar 

  • Fantroussi SE, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  CAS  Google Scholar 

  • Farrington JW (2014) Oil pollution in the marine environment II: fates and effects of oil spills. Environment 56(4):16–31. https://doi.org/10.1080/00139157.2014.922382

    Article  Google Scholar 

  • Fasca H, de Castilho LVA, de Castilho JFM, Pasqualino IP, Alvarez VM, de Azevedo Jurelevicius D, Seldin L (2018) Response of marine bacteria to oil contamination and to high pressure and low temperature deep sea conditions. Microbiol Open 7(2):e00550. https://doi.org/10.1002/mbo3.550

    Article  CAS  Google Scholar 

  • Fei D, Liu F-F, Gang H-Z, Liu JF, Yang SZ, Ye RQ, Mu BZ (2020) A new member of the surfactin family produced by Bacillus subtilis with low toxicity on erythrocyte. Process Biochem 94:164–171. https://doi.org/10.1016/j.procbio.2020.04.022

    Article  CAS  Google Scholar 

  • Ferguson RMW, Gontikaki E, Anderson JA, Witte U (2017) The variable influence of dispersant on degradation of oil hydrocarbons in subarctic deep-sea sediments at low temperatures (0–5°C). Sci Rep 7(1):2253. https://doi.org/10.1038/s41598-017-02475-9

    Article  CAS  Google Scholar 

  • Flores-Chaparro CE, Chazaro Ruiz LF, Alfaro de la Torre MC, HuertaDiaz MA, Rangel-Mendez JR (2017) Biosorption removal of benzene and toluene by three dried macroalgae at different ionic strength and temperatures: algae biochemical composition and kinetics. J Environ Manag 193:126–135

    Article  CAS  Google Scholar 

  • Fu X, Wang H, Bai Y, Xue J, Gao Y, Hu S, Wu T, Sun J (2020) Systematic degradation mechanism and pathways analysis of the immobilized bacteria: permeability and biodegradation, kinetic and molecular simulation. Environ Sci Ecotechnol 2:100028

    Article  Google Scholar 

  • Gao J, Ye J, Ma J, Tang L, Huang J (2014) Biosorption and biodegradation of triphenyltin by Stenotrophomonas maltophilia and their influence on cellular metabolism. J Hazard Mater 276:112–119. https://doi.org/10.1016/j.jhazmat.2014.05.023

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Pringault O (2001) Microbiology: cyanobacteria track water in desert soils. Nature 413(6854):380–381

    Article  CAS  Google Scholar 

  • Gaur N, Narasimhulu KYP, PydiSetty Y (2018) Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J Clean Prod 198:1602–1631. https://doi.org/10.1016/j.jclepro.2018.07.076

    Article  CAS  Google Scholar 

  • Geng S, Cao W, Yuan J, Wang Y, Guo Y, Ding A, Zhu Y, Dou J (2020) Microbial diversity and co-occurrence patterns in deep soils contaminated by polycyclic aromatic hydrocarbons (PAHs). Ecotox Environ Safe 203:110931

    Article  CAS  Google Scholar 

  • Gennadiev A, Yu N, Pikovskii I, Tsibart AS, Smirnova MA (2015) Hydrocarbons in soils: origin, composition, and behavior (review). Eur Soil Sci 48:1076–1089

    Article  CAS  Google Scholar 

  • Gentili AR, Cubitto MA, Ferrero M, Rodriguez MS (2006) Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes. Int Biodeterior Biodegrad 57:222–228

    Article  CAS  Google Scholar 

  • Gertler C, Gerdts G, Timmis KN, Golyshin PN (2009) Microbial consortia in mesocosm bioremediation trial using oil sorbents, slow-release fertilizer and bioaugmentation. FEMS Microbiol Ecol 69(2):288–300. https://doi.org/10.1111/j.1574-6941.2009.00693.x

    Article  CAS  Google Scholar 

  • Gertler C, Bargiela R, Mapelli F, Han X, Chen J, Hai T, Amer RA, Mahjoubi M, Malkawi H, Magagnini M, Cherif A, Abdel-Fattah YR, Kalogerakis N, Daffonchio D, Ferrer M, Golyshin PN (2015) Conversion of uric acid into ammonium in oil-degrading marine microbial communities: a possible role of Halomonads. Microb Ecol 70(3):724–740. https://doi.org/10.1007/s00248-015-0606-7

    Article  CAS  Google Scholar 

  • Ghadiryanfar M, Rosentrater KA, Keyhani A, Omid M (2016) A review of macroalgae production, with potential applications in biofuels and bioenergy Renew. Sustain Energy Rev 54:473–481. https://doi.org/10.1016/j.rser.2015.10.022

    Article  CAS  Google Scholar 

  • Ghafari S, Baboli Z, Neisi A, Mirzaee SA, Soltani RDC, Saeedi R, Abtahi M, Jorfi S (2019) Surfactant-enhanced bioremediation of n-hexadecane-contaminated soil using halo-tolerant bacteria Paenibacillus glucanolyticus sp. Strain T7-AHV isolated from marine environment. Chem Biochem Eng Q 33(1):111–123. https://doi.org/10.15255/CABEQ.2018.1465

    Article  CAS  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    Google Scholar 

  • Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1836

    Article  Google Scholar 

  • Gope M, Masto RE, George J, Balachandran S (2018) Exposure and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the street dust of Asansol city, India. Sustain Cities Soc 38:616–626

    Article  Google Scholar 

  • Goveas LC, Sajankila SP (2020) Effect of yeast extract supplementation on halotolerant biosurfactant production kinetics coupled with degradation of petroleum crude oil by Acinetobacter baumannii OCB1 in marine environment. Biores Technol Rep 11:100447. https://doi.org/10.1016/j.biteb.2020.100447

    Article  Google Scholar 

  • Grossi V, Yakimov MM, Al Ali B, Tapilatu Y, Cuny P, Goutx M, La Cono V, Giuliano L, Tamburini C (2010) Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain# 5. Environ Microbiol 12:2020–2033

    Article  CAS  Google Scholar 

  • Gutiérrez MH, Narváez D, Daneri G, Montero P, Pérez-Santos I, Pantoja S (2018) Linking seasonal reduction of microbial diversity to increase in winter temperature of waters of a Chilean patagonia fjord. Front Mar Sci 5:277. https://doi.org/10.3389/fmars.2018.00277

    Article  Google Scholar 

  • Gwenzi W, Nyambishi TJ, Chaukura N, Mapope N (2018) Synthesis and nutrient release patterns of a biochar-based N-P-K slow-release fertilizer. Int J Environ Sci Technol 15(2):405–414

    Article  CAS  Google Scholar 

  • Hadibarata T, Tachibana S, Itoh K (2009) Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J Hazard Mater 164:911–917

    Article  CAS  Google Scholar 

  • Hamdan HZ, Salam DA (2020) Microbial community evolution during the aerobic biodegradation of petroleum hydrocarbons in marine sediment microcosms: effect of biostimulation and seasonal variations. Environ Pollut 265(Part B):114858. https://doi.org/10.1016/j.envpol.2020.114858

    Article  CAS  Google Scholar 

  • Hao L, Fanping M, Yuejie W, Yufei L (2020) Removal of phenol by Isochrysis galbana in seawater under varying temperature and light intensity. Chin J Oceanol Limnol 38:773–782

    Article  CAS  Google Scholar 

  • Haule K, Darecki M, Toczek H (2015) Light penetration in seawater polluted by dispersed oil: results of radiative transfer modelling. J Eur Opt Soc Rapid Publ 10:15052. https://doi.org/10.2971/jeos.2015.15052

    Article  Google Scholar 

  • Hazaimeh M, Abd Mutalib S, Abdullah PS, Kee WK, Surif S (2014) Enhanced crude oil hydrocarbon degradation by self-immobilized bacterial consortium culture on sawdust and oil palm empty fruit bunch. Ann Microbiol 64:1769–1777

    Article  CAS  Google Scholar 

  • He XX, Wang Y, Wang KM, Peng JF, Liu F, Tan WH (2007) Research of the relationship of intracellular acidification and apoptosis in Hela cells based on pH nanosensors. Sci China Chem 50:258–265. https://doi.org/10.1007/s11426-007-0012-1

    Article  CAS  Google Scholar 

  • He H, Chen Y, Li X, Cheng Y, Yang C, Zeng G (2017) Influence of salinity on microorganisms in activated sludge processes: a review. Int Biodeterior Biodegradation 119:520–527. https://doi.org/10.1016/j.ibiod.2016.10.007

    Article  CAS  Google Scholar 

  • Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature. 412(6844):324–327

    Article  CAS  Google Scholar 

  • Horel A, Schiewer S (2011) Influence of constant and fluctuating temperature on biodegradation rates of fish biodiesel blends contaminating Alaskan sand. Chemosphere 83(5):652–660. https://doi.org/10.1016/j.chemosphere.2011.02.027

    Article  CAS  Google Scholar 

  • Hosokawa R, Nagai M, Morikawa M, Okuyama H (2009) Autochthonous bioaugmentation and its possible application to oil spills. World J Microbiol Biotechnol 25:1519–1528

    Article  CAS  Google Scholar 

  • Hou N, Zhang N, Jia T, Sun Y, Dai Y, Wang Q, Li D, Luo Z, Li C (2018) Biodegradation of phenanthrene by biodemulsifier-producing strain Achromobacter sp. LH-1 and the study on its metabolisms and fermentation kinetics. Ecotoxicol Environ Saf 163:205–214. https://doi.org/10.1016/j.ecoenv.2018.07.064

    Article  CAS  Google Scholar 

  • Ibrar M, Zhang H (2020) Construction of a hydrocarbon-degrading consortium and characterization of two new lipopeptides biosurfactants. Sci Total Environ 714:136400. https://doi.org/10.1016/j.scitotenv.2019.136400

    Article  CAS  Google Scholar 

  • Iheonye C, Osuji LC, Onyema MO (2019) Petroleum contamination of Sombreiro River in Akuku-Toru local government area Rivers State, Nigeria, revealed by Chemical Fingerprinting of Aliphatic Hydrocarbons. J Appl Sci Environ Manag 23(5):805–809. https://doi.org/10.4314/jasem.v23i5.5

    Article  CAS  Google Scholar 

  • Imron MF, Titah HS (2018) Optimization of diesel biodegradation by Vibrio alginolyticus using Box-Behnken design. Environ Eng Res 23:374–382. https://doi.org/10.4491/eer.2018.015

    Article  Google Scholar 

  • Imron MF, Kurniawan SB, Ismail NI, Sheikh Abdullah SR (2020) Future challenges in diesel biodegradation by bacteria isolates: a review. J Clean Prod 251:119716. https://doi.org/10.1016/j.jclepro.2019.119716

    Article  CAS  Google Scholar 

  • Incardona JP, Gardner LD, Linbo TL, Brown TL, Esbaugh AJ et al (2014) Deepwater horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proc Natl Acad Sci U S A 111:1510–1518

    Article  CAS  Google Scholar 

  • Jebbar M, Franzetti B, Girard E, Oger P (2015) Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 19(4):721–740. https://doi.org/10.1007/s00792-015-0760-3

    Article  CAS  Google Scholar 

  • Jiang J, Song M, Yang L, Zhang D, Sun Y, Shen Z, Luo C, Zhang G (2016) Exploring the influence of environmental factors on bacterial communities within the rhizosphere of the Cu-tolerant plant. Elsholtzia splendens. Sci Rep 6:36302. https://doi.org/10.1038/srep36302

    Article  CAS  Google Scholar 

  • Jiménez N, Viñas M, Bayona JM, Albaiges J, Solanas AM (2007) The Prestige oil spill: bacterial community dynamics during a field biostimulation assay. Appl Microbiol Biotechnol 77(4):935–945

    Article  CAS  Google Scholar 

  • Johnson P, Trybala A, Starov V, Pinfield VJ (2021) Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv Colloid Interf Sci 288:102340

    Article  CAS  Google Scholar 

  • Kaczorek E, Urbanowicz M, Olszanowski A (2010) The influence of surfactants on cell surface properties of Aeromonas hydrophila during diesel oil biodegradation. Colloids Surf B: Biointerfaces 81:363–368

    Article  CAS  Google Scholar 

  • Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci (China) 51:52–74. https://doi.org/10.1016/j.jes.2016.08.023

    Article  CAS  Google Scholar 

  • Kalhor A, Movafeghi A, Mohammadi-Nassab A, Abedi E, Bahrami A (2017) Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Mar Pollut Bull 123(1-2):286–290

    Article  CAS  Google Scholar 

  • Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4:141–147

    Article  CAS  Google Scholar 

  • Kenneth L, Tremblay GH, Levy EM (1993) Bioremediation: application of slow-release fertilizers on low-energy shorelines. Int Oil Spill Conf Proc 1993(1):449–454. https://doi.org/10.7901/2169-3358-1993-1-449

    Article  Google Scholar 

  • Khalaf SM, Hassan FM, Al-Obaidy AHJ (2019) Detection of polycyclic aromatic hydrocarbons compounds concentrations and their fate in Tigris River within Baghdad City - Iraq. Iraqi J Agricult Sci 50:231–244

    Google Scholar 

  • Khalil DMA, Massoud MS, El-Zayat SA, El-Sayed MA (2021) Bioremoval capacity of phenol by some selected endophytic fungi isolated from Hibiscus sabdariffa and batch biodegradation of phenol in paper and pulp effluents. Iran J Microbiol 13(3):407–417

    Google Scholar 

  • Knezevich V, Koren O, Ron E, Rosenberg E (2006) Petroleum bioremediation in seawater using guano as the fertilizer. Bioremed J 10(3):83–91. https://doi.org/10.1080/10889860600939492

    Article  CAS  Google Scholar 

  • Koolivand A, Abtahi H, Parhamfar M, Didehdar M, Saeedi R, Fahimirad S (2019) Biodegradation of high concentrations of petroleum compounds by using indigenous bacteria isolated from petroleum hydrocarbons-rich sludge: effective scale-up from liquid medium to composting process. J Environ Manag 248:109228. https://doi.org/10.1016/j.jenvman.2019.06.129

    Article  CAS  Google Scholar 

  • Koren O, Knezevic V, Ron EZ, Rosenberg E (2003) Petroleum pollution bioremediation using water-insoluble uric acid as the nitrogen source. Appl Environ Microbiol 69(10):6337–6339

    Article  CAS  Google Scholar 

  • Kostka JE, Joye SB, Radović JR, Marietou A, Lincoln SA, Noirungsee N, Viamonte J (2019) Chapter 7- biodegradation of petroleum hydrocarbon in the Deep Sea. In: Murawski SA, Gilbert S, Hollander DJ, Paris CB, Schlüter M, Wetzel DL (eds) Deep Oil Spills, s.L. Springer, Berlin, pp 107–124. https://doi.org/10.1007/978-3-030-11605-7_7

    Chapter  Google Scholar 

  • Krell T, Lacal J, Guazzaroni ME, Busch A, Silva-Jiménez H, Fillet S, Reyes-Darías JA, Muñoz-Martínez F, Rico-Jiménez M, García-Fontana C, Duque E, Segura A, Ramos JL (2012) Responses of Pseudomonas putida to toxic aromatic carbon sources. J Biotechnol 160:25–32

    Article  CAS  Google Scholar 

  • Kumar AG, Rajan NN, Kirubagaran R, Dharani G (2019) Biodegradation of crude oil using self-immobilized hydrocarbonoclastic deep sea bacterial consortium. Mar Pollut Bull 146:741–750. https://doi.org/10.1016/j.marpolbul.2019.07.006

    Article  CAS  Google Scholar 

  • Kurniawan SB, Purwanti IF, Titah HS (2018) The effect of pH and aluminium to bacteria isolated from aluminium recycling industry. J Ecol Eng 19:154–161. https://doi.org/10.12911/22998993/86147

    Article  Google Scholar 

  • Langdahl BR, Bisp P, Ingvorsen K (1996) Nitrile hydrolysis by Rhodococcus erythropolis BL1, an acetonitrile-tolerant strain isolated from a marine sediment. Microbiology. 142:145–154

    Article  CAS  Google Scholar 

  • Laothamteep N, Kawano H, Vejarano F, Suzuki-Minakuchi C, Shintani M, Nojiri H, Pinyakong O (2021) Effects of environmental factors and coexisting substrates on PAH degradation and transcriptomic responses of the defined bacterial consortium OPK. Environ Pollut 277:116769

    Article  CAS  Google Scholar 

  • Latimer JS, Zheng J (2003) Chapter 2- the sources, transport, and fate of PAHs in the marine environment. In: Douben PET (ed) PAHs: An Ecotoxicology Perspective. John Wiley & Sons Ltd, Hoboken, pp 7–33

    Chapter  Google Scholar 

  • Lee RF (2003) Photo-oxidation and photo-toxicity of crude and refined oil spills. Spill Sci Technol Bull 8:157–162. https://doi.org/10.1016/S1353-2561(03)00015-X

    Article  CAS  Google Scholar 

  • Lee K, Stoffyn-Egli P, Tremblay GH, Owens EH, Sergy GA, Guénette CC, Prince RC (2003) Oil–mineral aggregate formation on oiled beaches: natural attenuation and sediment relocation. Spill Sci Technol Bull 8(3):285–296

    Article  CAS  Google Scholar 

  • Lee DW, Lee H, Kwon BO, Khim JS, Yim UH, Seok Kim BS, Kim JJ (2018) Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environ Pollut 241:254–264

    Article  CAS  Google Scholar 

  • Li D, Yan J, Wang L, Zhang Y, Liu D, Geng H, Xiong L (2016) Characterization of the phthalate acid catabolic gene cluster in phthalate acid esters transforming bacterium-Gordonia sp. strain HS-NH1. Int Biodeterior Biodegrad 106:34–40

    Article  CAS  Google Scholar 

  • Liang Y, Zhu H, Bañuelos G, Yan B, Zhou Q, Yu X, Cheng X (2017) Constructed wetlands for saline wastewater treatment: a review. Ecol Eng 98:275–285

    Article  Google Scholar 

  • Liao L, Chen S, Peng H, Yin H, Ye J, Liu Z, Dang Z, Liu Z (2015) Biosorption and biodegradation of pyrene by Brevibacillus brevis and cellular responses to pyrene treatment. Ecotoxicol Environ Saf 115:166–173

    Article  CAS  Google Scholar 

  • Lin Y, Cai L (2008) PAH-degrading microbial consortium and its pyrene-degrading plasmids from mangrove sediment samples in Huian, China. Mar Pollut Bull 57:703–706

    Article  CAS  Google Scholar 

  • Lin M, Liu YH, Chen WW, Wang H, Hu XK (2014) Use of bacteria-immobilized cotton fibers to absorb and degrade crude oil. Int Biodeterior Biodegrad 88:8–12

    Article  CAS  Google Scholar 

  • Louvado A, Coelho FJRC, Gomes H, Cleary DFR, Cunha A, Gomes NCM (2018) Independent and interactive effects of reduced seawater pH and oil contamination on subsurface sediment bacterial communities. Environ Sci Pollut Res 25(32):32756–32766. https://doi.org/10.1007/s11356-018-3214-5

    Article  CAS  Google Scholar 

  • Lu Y, Yuan J, Lu X, Su C, Zhang Y, Wang C, Cao X, Li Q, Su J, Ittekkot V, Garbutt RA, Bush S, Fletcher S, Wagey T, Kachur A, Sweijd N (2018) Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ Pollut 239:670–680

    Article  CAS  Google Scholar 

  • Luis J, Calderon P, Gontikaki E, Potts LD, Shaw S, Gallego A, Anderson JA, Witte U (2019) Pressure and temperature effects on deep-sea hydrocarbon-degrading microbial communities in subarctic sediments. Microbiol Open 8(6):e00768. https://doi.org/10.1002/mbo3.768

    Article  CAS  Google Scholar 

  • Lumibao CY, Formel S, Elango V, Pardue JH, Blum M, Van Bael SA (2018) Persisting responses of salt marsh fungal communities to the deep water horizon oil spill. Sci Total Environ 642:904–913

    Article  CAS  Google Scholar 

  • Magris RA, Giarrizzo T (2020) Mysterious oil spill in the Atlantic Ocean threatens marine biodiversity and local people in Brazil. Mar Pollut Bull 153:110961. https://doi.org/10.1016/j.marpolbul.2020.110961

    Article  CAS  Google Scholar 

  • Mambwe M, Kalebaila KK, Johnson T (2021) Remediation technologies for oil contaminated soil. Global J Environ Sci Manag 7(3):419–438. https://doi.org/10.22034/gjesm.2021.03.07

    Article  Google Scholar 

  • Mapelli F, Scoma A, Michoud G, Aulenta F, Boon N, Borin S, Kalogerakis N, Daffonchio D (2017) Biotechnologies for marine oil spill cleanup: indissoluble ties with microorganisms. Trends Biotechnol 35(9):860–870

    Article  CAS  Google Scholar 

  • Marietou A, Chastain R, Beulig F, Scoma A, Hazen TC, Bartlett DH (2018) The effect of hydrostatic pressure on enrichments of hydrocarbon degrading microbes from the Gulf of Mexico following the deepwater horizon oil spill. Front Microbiol 9:808. https://doi.org/10.3389/fmicb.2018.008

    Article  Google Scholar 

  • Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35(1):162–177. https://doi.org/10.1016/j.envint.2008.07.018

    Article  CAS  Google Scholar 

  • Mason CF (2019) Policy brief—regulating offshore oil and gas exploration: insights from the deepwater horizon experience in the Gulf of Mexico. Rev Environ Econ Policy 13(1):149–154. https://doi.org/10.1093/reep/rey018

    Article  Google Scholar 

  • Mauritius Oil Spill Will Have Wide-Ranging Effects (2020) Emerald expert briefings oxan-db (oxan-db). https://doi.org/10.1108/OXAN-DB254636

  • McFarlin KM, Prince RC, Perkins R, Leigh MB (2014) Biodegradation of dispersed oil in Arctic seawater at -10C. PLoS One 9(1):e84297. https://doi.org/10.1371/journal.pone.0084297

    Article  CAS  Google Scholar 

  • McKew BA, Coulon F, Yakimov M, Denaro R, Genovese M, Smith CJ, Osborn AM, Timmis KN, McGenity TJ (2007) Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ Microbiol 9:1562–1571

    Article  CAS  Google Scholar 

  • Meng L, Li W, Bao M, Sun P (2019) Great correlation: biodegradation and chemotactic adsorption of Pseudomonas synxantha LSH-7’ for oil contaminated seawater bioremediation. Water Res 153:160–168. https://doi.org/10.1016/j.watres.2019.01.021

    Article  CAS  Google Scholar 

  • Miettinen H, Bomberg M, Nyyssönen M, Reunamo A, Jørgensen KS, Vikman M (2019) Oil degradation potential of microbial communities in water and sediment of Baltic Sea coastal area. PLoS One 14(7):1–31. https://doi.org/10.1371/journal.pone.0218834

    Article  CAS  Google Scholar 

  • Mihankhah T, Saeedi M, Karbassi A (2020) Contamination and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban dust from different land-uses in the most populated city of Iran. Ecotoxicol Environ Saf 187:109838. https://doi.org/10.1016/j.ecoenv.2019.109838

    Article  CAS  Google Scholar 

  • Mille G, Mulyono M, El Jammal T, Bertrand J-C (1988) Effects of oxygen on hydrocarbon degradation studies in vitro in surficial sediments. Estuar Coast Shelf Sci 27(3):283–295

    Article  CAS  Google Scholar 

  • Minai-Tehrani D, Minoui S, Herfatmanesh A (2009) Effect of salinity on biodegradation of polycyclic aromatic hydrocarbons (PAHs) of heavy crude oil in soil. Bull Environ Contam Toxicol 82(2):179–184

    Article  CAS  Google Scholar 

  • Mnif I, Chaabouni SE, Ghribi D (2018) Glycolipid biosurfactants, main classes, functional properties and related potential applications in environmental biotechnology. J Polym Environ 26:2192–2206

    Article  CAS  Google Scholar 

  • MokarramM, Saber A, Obeidi R (2021) Effects of heavy metal contamination released by petrochemical plants on marine life and water quality of coastal area. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13763-3

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375

    Article  CAS  Google Scholar 

  • Mu J, Leng Q, Yang G, Zhu B (2021) Anaerobic degradation of high-concentration polycyclic aromatic hydrocarbons (PAHs) in seawater sediments. Mar Pollut Bull 167:112294

    Article  CAS  Google Scholar 

  • Muangchinda C, Rungsihiranrut A, Prombutara P, Soonglerdsongpha S, Pinyakong O (2018) 16S metagenomic analysis reveals adaptability of a mixed-PAH-degrading consortium isolated from crude oil-contaminated seawater to changing environmental conditions. J Hazard Mater 357:119–127

    Article  CAS  Google Scholar 

  • Muangchinda C, Srisuwankarn P, Boubpha S, Chavanich S, Pinyakong O (2020) The effect of bioaugmentation with Exiguobacterium sp. AO-11 on crude oil removal and the bacterial community in sediment microcosms, and the development of a liquid ready-to-use inoculum. Chemosphere 250:126303. https://doi.org/10.1016/j.chemosphere.2020.126303

    Article  CAS  Google Scholar 

  • Nakama Y (2017) Chapter 15 – surfactants. In: Sakamoto K, Lochhead RY, Maibach HI, Yamashita T (eds) Cosmetic science and technology: theoretical principles and applications. Elsevier, Amsterdam, pp 231–244. https://doi.org/10.1016/B978-0-12-802005-0.00015-X

    Chapter  Google Scholar 

  • Neethu CS, Saravanakumar C, Purvaja R, Robin RS, Ramesh R (2019) Oil-Spill triggered shift in indigenous microbial structure and functional dynamics in different marine environmental matrices. Sci Rep 9:1354. https://doi.org/10.1038/s41598-018-37903-x

    Article  CAS  Google Scholar 

  • Neina D (2019) The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci 2019:1–9. https://doi.org/10.1155/2019/5794869

    Article  CAS  Google Scholar 

  • Nguyen UT, Lincoln SA, Valladares Juárez AG, Schedler M, Macalady JL, Müller R, Freeman KH (2018) The influence of pressure on crude oil biodegradation in shallow and deep Gulf of Mexico sediments. PLoS One 13(7):e0199784. https://doi.org/10.1371/journal.pone.0199784

    Article  CAS  Google Scholar 

  • Nguyen TT, Hwang IY, Na JG, Lee EY (2019) Biological conversion of propane to 2-propanol using group I and II methanotrophs as biocatalysts. J Ind Microbiol Biotechnol 46(5):675–685. https://doi.org/10.1007/s10295-019-02141-1

    Article  CAS  Google Scholar 

  • Nielson KG, Woodman SG, Rood SB (2020) Prospective impacts of oil spills on floodplain vegetation: both crude oil and diluted bitumen increase foliar temperatures, senescence and abscission in three cottonwood (Populus) species. PLoS One 15(3):e0230630. https://doi.org/10.1371/journal.pone.0230630

    Article  CAS  Google Scholar 

  • Nikolopoulou M, Kalogerakis N (2010) Biostimulation strategies for enhanced bioremediation of marine oil spills including chronic pollution. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin. https://doi.org/10.1007/978-3-540-77587-4_187

    Chapter  Google Scholar 

  • Nordam T, Dunnebier DAE, Beegle-Krause CJ, Reed M, Slagstad D (2017) Impact of climate change and seasonal trends on the fate of Arctic oil spills. Ambio 46(3):442–452. https://doi.org/10.1007/s13280-017-0961-3

    Article  Google Scholar 

  • Nuñal SN, Leon SMS, Bacolod E, Koyama J, Uno S, Hidaka M, Yoshikaw AT, Maeda H (2014) Bioremediation of heavily oil-polluted seawater by a bacterial consortium immobilized in cocopeat and rice hull powder. Biocontr Sci 19(1):11–22

    Article  Google Scholar 

  • Obahiagbon KO, Andrew N, Amenaghawon AN, Agbonghae EO (2014) Effect of initial pH on the bioremediation of crude oil polluted water using a consortium of microbes. Pac J Sci Technol 15(1):452–457

    Google Scholar 

  • Ogunlaja A, Ogunlaja OO, Okewole DM, .Morenikeji OA (2019) Risk assessment and source identification of heavy metal contamination by multivariate and hazard index analyses of a pipeline vandalised area in Lagos State, Nigeria. Sci Total Environ 651 (2): 2943-2952.

    Article  CAS  Google Scholar 

  • Ortega MF, Guerrero DE, García-Martínez MJ, Bolonio D, Llamas JF, Canoira L, Gallego JLR (2018) Optimization of land farming amendments based on soil texture and crude oil concentration. Water Air Soil Pollut 229:234

    Article  CAS  Google Scholar 

  • Pan Q, Yu H, Daling PS, Zhang Y, Reed M, Wang Z, Li Y, Wang X, Wu L, Zhang Z, Yu H, Zou Y (2020) Fate and behavior of Sanchi oil spill transported by the Kuroshio during January–February 2018. Mar Pollut Bull 52:110917. https://doi.org/10.1016/j.marpolbul.2020.110917

    Article  CAS  Google Scholar 

  • Parales RE, Ditty JL (2018) Chemotaxis to hydrocarbons. In: Krell T (ed) Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid Interactions. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham

    Google Scholar 

  • Patel V, Jain S, Madamwar D (2012) Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat. India. Bioresour Technol 107:122–130

    Article  CAS  Google Scholar 

  • Patel A, Sartaj KM, Arora N, Pruthi V, Pruthi PA (2017) Biodegradation of phenol via, meta, cleavage pathway triggers, de novo, TAG biosynthesis pathway in oleaginous yeast. J Hazard Mater 340:47–56. https://doi.org/10.1016/j.jhazmat.2017.07.013

    Article  CAS  Google Scholar 

  • Pathak H, Kantharia D, Malpani A, Madamwar D (2009) Naphthalene degradation by Pseudomonas sp. HOB 1: in vitro studies and assessment of naphthalene degradation efficiency in stimulated microcosm. J Hazard Mater 168:1456–1473

    Google Scholar 

  • Podlesińska W, Dąbrowska H (2019) Amphipods in estuarine and marine quality assessment – a review. Oceanologia. 61(2):179–196. https://doi.org/10.1016/j.oceano.2018.09.002

    Article  Google Scholar 

  • Prazeres M, Renema W (2019) Evolutionary significance of the microbial assemblages of large benthic Foraminifera. Biol Rev Camb Philos Soc 94(3):828–848. https://doi.org/10.1111/brv.12482

    Article  Google Scholar 

  • Presentato A, Cappelletti M, Sansone A, Ferreri C, Piacenza E, Demeter MA, Crognale S, Petruccioli M, Milazzo G, Fedi S, Steinbüchel A, Turner RJ, Zannoni D (2018) Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the sole carbon and energy sources. Front Microbiol 9:1–15. https://doi.org/10.3389/fmicb.2018.00672

    Article  Google Scholar 

  • Prior S, Walsh D (2018) A vision for a heavy fuel oil-free arctic. Environment 60(6):4–11. https://doi.org/10.1080/00139157.2018.1517515

    Article  Google Scholar 

  • Qin X, Tang J, Li D, Zhang Q (2012) Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline alkaline soil. Lett Appl Microbiol 55(3):210–217

    Article  CAS  Google Scholar 

  • Qin J, Lin C, Almebayedh H, Albader M (2018) Decomposition of long-chain petroleum hydrocarbons by Fenton-like processes: effects of ferrous iron source, salinity and temperature. Ecotoxicol Environ Saf 169:764–769. https://doi.org/10.1016/j.ecoenv.2018.11.086

    Article  CAS  Google Scholar 

  • Quinete N, Hauser-Davis RA, Lemos LS, Moura JF, Siciliano S, Gardinali PR (2020) Occurrence and tissue distribution of organochlorinated compounds and polycyclic aromatic hydrocarbons in Magellanic penguins (Spheniscus magellanicus) from the southeastern coast of Brazil. Sci Total Environ 749:141473. https://doi.org/10.1016/j.scitotenv.2020.141473

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Hasan RH (2000) Oil pollution and cyanobacteria. In: Potts M (ed) The Ecology of Cyanobacteria, Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht, pp 307–319

    Google Scholar 

  • Radwan SS, Al-Muteirie AS (2001) Vitamin requirements of hydrocarbon-utilizing soil bacteria. Microbiol Res 155:301–307

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Awadhi H, El-Nemr IM (2000) Cropping as a phytoremediation practice for oily desert soil with reference to crop safety as food. Int J Phytoremed 2:383–396

    Article  CAS  Google Scholar 

  • Radwan S, Al-Hasan R, Salamah S, Al-Dabbous S (2002) Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. Int Biodeterior Biodegradation 50(1):55–59. https://doi.org/10.1016/S0964-8305(02)00067-7

    Article  CAS  Google Scholar 

  • Rahman PKSM, Mayat A, Harvey JGH, Randhawa KS, Relph LE, Armstrong MC (2019) Biosurfactants and bioemulsifiers from marine algae. In: Sukla L, Subudhi E, Pradhan D (eds) The Role of Microalgae in Wastewater Treatment. Springer, Singapore, pp 169–188. https://doi.org/10.1007/978-981-13-1586-2_13

    Chapter  Google Scholar 

  • Rajabi H, Hadi MM, Mandal P, Lea-Langton A, Sedighi M (2020) Emissions of volatile organic compounds from crude oil processing – global emission inventory and environmental release. Sci Total Environ 727:138654. https://doi.org/10.1016/j.scitotenv.2020.138654

    Article  CAS  Google Scholar 

  • Rajput V, Minkina T, Semenkov I, Klink G, Tarigholizadeh S, Sushkova S (2021) Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. Environ Geochem Health 43(4):1629–1654. https://doi.org/10.1007/s10653-020-00527-0

    Article  CAS  Google Scholar 

  • Raya SA, Saaid IM, Ahmed AA, Umar AA (2020) A critical review of development and demulsification mechanisms of crude oil emulsion in the petroleum industry. J Pet Explor Prod Technol 10(4):1711–1728. https://doi.org/10.1007/s13202-020-00830-7

    Article  CAS  Google Scholar 

  • Riser-Roberts E (1998) Remediation of petroleum contaminated soil: biological, physical, and chemical processes. CRC Press LLC, Boca Raton

    Book  Google Scholar 

  • Røberg S, Østerhus J, Landfald B (2011) Dynamics of bacterial community exposed to hydrocarbons and oleophilic fertilizer in high-Arctic intertidal beach. Polar Biol 34(10):1455–1465. https://doi.org/10.1007/s00300-011-1003-4

    Article  Google Scholar 

  • Roberts GA, Grogan G, Greter A, Flitsch SL, Turner NJ (2002) Identification of a new class of cytochrome P450 from a Rhodococcus sp. J Bacteriol 184(14):3898–3908. https://doi.org/10.1128/JB.184.14.3898-3908.2002

    Article  CAS  Google Scholar 

  • Robinson EM, Rabalais NN (2019) The effects of oil on blue crab and periwinkle snail interactions: a mesocosm study. J Exp Mar Biol Ecol 517:34–39

    Article  Google Scholar 

  • Rodrigues EM, Morais DK, Pylro VS, Redmile-Gordon M, de Oliveira JA, Roesch LFW, Cesar DE, Tótola MR (2018) Aliphatic hydrocarbon enhances phenanthrene degradation by autochthonous prokaryotic communities from a pristine seawater. Microb Ecol 75(3):688–700. https://doi.org/10.1007/s00248-017-1078-8

    Article  CAS  Google Scholar 

  • Ronchi AL, Ballatti A (1996) Production of inoculants. In: Ballati A, Freire J (eds) Legume Inoculants. Selection and Characterization of Strain. Production, Use and Management, La Plata, pp 39–54

    Google Scholar 

  • Sakaya K, Salam DA, Campo P (2019) Assessment of crude oil bioremediation potential of seawater and sediments from the shore of Lebanon in laboratory microcosms. Sci Total Environ 660: 227-235. https://doi.org/10.1016/j.scitotenv.2019.01.025

    Article  CAS  Google Scholar 

  • Salamanca D, Engesser K-H (2014) Isolation and characterization of two novel strains capable of using cyclohexane as carbon source. Environ Sci Pollut Res 21:12757–12766. https://doi.org/10.1007/s11356-014-3206-z

    Article  CAS  Google Scholar 

  • Samanta SK, Jain RK (2000) Evidence for plasmid-mediated chemotaxis of Pseudomonas putida towards naphthalene and salicylate. Can J Microbiol 46:1–6

    Article  CAS  Google Scholar 

  • Santas R, Korda A, Tenente A, Buchholz K, Santas PH (1999) Mesocosm assays of oil spill bioremediation with oleophilic fertilizers: Inipol, F1 or both. Marine Pollut Bull 38(1):44–48

    Article  CAS  Google Scholar 

  • Santos D, Rufino R, Luna J, Santos V, Sarubbo L (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17:401

    Article  CAS  Google Scholar 

  • Sayed K, Baloo L, Sharma NK (2021) Bioremediation of total petroleum hydrocarbons (TPH) by bioaugmentation and biostimulation in water with floating oil spill containment booms as bioreactor basin. Int J Environ Res Public Health 18(5):2226. https://doi.org/10.3390/ijerph18052226

    Article  CAS  Google Scholar 

  • Schedler M, Hiessl R, Juárez VAG, Gust G, Müller R (2014) Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express 4:77. https://doi.org/10.1186/s13568-014-0077-0

    Article  CAS  Google Scholar 

  • Schuurmans RM, Alphen VP, Schuurmans JM, Matthijs HCP, Hellingwerf KJ (2015) Comparison of the photosynthetic yield of cyanobacteria and green algae: different methods give different answers. PLoS One 10(9):e0139061. https://doi.org/10.1371/journal.pone.0139061

    Article  CAS  Google Scholar 

  • Schwarz JR, Walker JD, Colwell RR (1974) Deep sea bacteria: growth and utilization of hydrocarbons at ambient and in situ pressure. Appl Microbiol 1974:982–986

    Article  Google Scholar 

  • Sena HH, Sanches MA, Rocha DFS, Segundo WOPF, de Souza ÉS, de Souza JVB (2018) Production of biosurfactants by soil fungi isolated from the Amazon Forest. Int J Microbiol 2018:1–8. https://doi.org/10.1155/2018/5684261

    Article  CAS  Google Scholar 

  • Shahi A, Ince B, Aydin S, Ince O (2017) Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: a minireview. Appl Microbiol Biotechnol 101:4341–4348

    Article  CAS  Google Scholar 

  • Shankar R, Shim WJ, An JG, Yim UH (2015) A practical review on photooxidation of crude oil: laboratory lamp setup and factors affecting it. Water Res 68:304–315. https://doi.org/10.1016/j.watres.2014.10.012

    Article  CAS  Google Scholar 

  • Sharma P, Schiewer S (2016) Assessment of crude oil biodegradation in arctic seashore sediments: effects of temperature, salinity, and crude oil concentration. Environ Sci Pollut Res 23(15):14881–14888. https://doi.org/10.1007/s11356-016-6601-9

    Article  CAS  Google Scholar 

  • Shi GY, Yin H, Ye JS, Peng H, Li J, Luo CL (2013) Effect of cadmium ion on biodegradation of decabromodiphenyl ether (BDE-209) by Pseudomonas aeruginosa. J Hazard Mater 263:711–717

    Article  CAS  Google Scholar 

  • Shi KZX, Liu HC, Xu JL, Xue YY, Liu YN, Wu XF, Xiao Y, Gao B, Liu (2018) Degradation characteristics and microbial community change of marine petroleum-degrading bacteria in different degradation environments. Pet Sci Technol 36(17):1361–1367

    Article  CAS  Google Scholar 

  • Shi K, Xue J, Xiao X, Qiao Y, Wu Y, Gao Y (2019) Mechanism of degrading petroleum hydrocarbons by compound marine petroleum-degrading bacteria: surface adsorption, cell uptake, and biodegradation. Energy Fuel 33:11373–11379. https://doi.org/10.1021/acs.energyfuels.9b02306

    Article  CAS  Google Scholar 

  • Sikkema J, de Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    Article  CAS  Google Scholar 

  • Siles JA, Margesin R (2018) Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site. Appl Microbiol Biotechnol 102:4409–4421. https://doi.org/10.1007/s00253-018-8932-6

    Article  CAS  Google Scholar 

  • Simpanen S, Dahl M, Gerlach M, Mikkonen A, Malk V, Mikola J, Romantschuk M (2016) Biostimulation proved to be the most efficient method in the comparison of in situ soil remediation treatments after a simulated oil spill accident. Environ Sci Pollut Res Int 23(24):25024–25038. https://doi.org/10.1007/s11356-016-7606-0

    Article  CAS  Google Scholar 

  • Singh A, Van Hamme JD, Kuhad RC, Parmar N, Ward OP (2014) Subsurface petroleum microbiology. In: Parmar N, Singh A (eds) Geomicrobiology and Biogeochemistry. Soil Biology, 39. Springer, Berlin, pp 153–173. https://doi.org/10.1007/978-3-642-41837-2_9

    Chapter  Google Scholar 

  • Smułek W, Zdarta A, Pacholak A, Runka T, Kaczorek E (2019) Increased biological removal of 1-chloronaphthalene as a result of exposure: a study of bacterial adaptation strategies. Ecotoxicol Environ Saf 185:109707. https://doi.org/10.1016/j.ecoenv.2019.109707

    Article  CAS  Google Scholar 

  • Sørhus E, Incardona JP, Linbo KT, Sørensen L et al (2016) Crude oil exposures reveal roles for intracellular calcium cycling in Haddock craniofacial and cardiac development. Sci Rep 6:31058

    Article  CAS  Google Scholar 

  • Staninska-Pięta J, Piotrowska-Cyplik A, Juzwa W, Zgoła-Grześkowiak A, Wolko L, Sydow Z, Kaczorowski L, Powierska-Czarny J, Cyplik P (2019) The impact of natural and synthetic surfactants on bacterial community during hydrocarbon biodegradation. Int Biodeterior Biodegrad 142:191–199

    Article  CAS  Google Scholar 

  • Staudt A (2010) “Identification of environmental factors critical to the production of exopolysaccharides by Rhizobium tropici.” University of Notre Dame. Available at: https://curate.nd.edu/show/tx31qf8852t.

  • Sun S, Lu Y, Liu Y, Wang M, Hu C (2018a) Tracking an oil tanker collision and spilled oils in the East China sea using multisensor day and night satellite imagery. Geophys Res Lett 45(7):3212–3220

    Article  Google Scholar 

  • Sun Y, Wang H, Li J, Wang B, Qi C, Hu X (2018b) Nutrient-enhanced n-alkanes biodegradation and succession of bacterial communities. J Oceanol Limnol 36(4):1294–1303. https://doi.org/10.1007/s00343-018-6310-y

    Article  CAS  Google Scholar 

  • Swannell RPJ, Lee K, McDonagh M (1996) Field evaluations of marine oil spill bioremediation. Microbiol Rev 60:342–365

    Article  CAS  Google Scholar 

  • Taha AA, Hameed NJ, Rashid FH (2020) Degradation of anthracene by immobilizing laccase from trametes versicolor onto chitosan beads and hyacinth plant. Al-Mustansiriyah J Sci 31(3):14–20. https://doi.org/10.23851/mjs.v31i3.670

    Article  Google Scholar 

  • Tarr MA, Zito P, Overton EB, Olson GM, Adhikari PL, Reddy CM (2016) Weathering of oil spilled in the marine environment. Oceanography. 29(3):126–135. https://doi.org/10.5670/oceanog.2016.77

    Article  Google Scholar 

  • Techtmann SM, Zhuang M, Campo P, Holder E, Elk M, Hazen TC, Domingo SJW (2017) Corexit 9500 enhances oil biodegradation and changes active bacterial community structure of oil-enriched microcosms. Appl Environ Microbiol 83(10):e03462–ee3516. https://doi.org/10.1128/AEM.03462-16

    Article  CAS  Google Scholar 

  • Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2007) Effect of salinity, temperature, pH and crude oil concentration on biodegradation of crude oil by Pseudomonas aeruginosa. J Biol Environ Sci 1(2):51–57

    Google Scholar 

  • Titah HS, Abdullah SRS, Idris M, Anuar N, Basri H, Mukhlisin M, Tangahu BV, Purwanti IF, Kurniawan SB (2018) Arsenic resistance and biosorption by isolated Rhizobacteria from the roots of Ludwigia octovalvis. Inter J Microbiol 2018:1–10. https://doi.org/10.1155/2018/3101498

    Article  CAS  Google Scholar 

  • Truskewycz A, Gundry TD, Khudur LS, Kolobaric A, Taha M, Aburto-Medina A, Ball AS, Shahsavari E (2019) Petroleum hydrocarbon contamination in terrestrial ecosystems-fate and microbial responses. Molecules 24(18):3400. https://doi.org/10.3390/molecules24183400

    Article  CAS  Google Scholar 

  • Ukiwe LN, Egereonu UU, Njoku PC, Nwoko CIA, Allinor JI (2013) Polycyclic aromatic hydrocarbons degradation techniques: a review. Int J Chem 5(4):43. https://doi.org/10.5539/ijc.v5n4p43

    Article  CAS  Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2016) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 222:195–201

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad 120:71–83

    Article  CAS  Google Scholar 

  • Vassilev SV, Vassileva CG (2016) Composition, properties and challenges of algae biomass for biofuel application: an overview. Fuel 181:1–33

    Article  CAS  Google Scholar 

  • Wang F, Li C, Wang H, Chen W, Huang Q (2016) Characterization of a phenanthrene-degrading microbial consortium enriched from petrochemical contaminated environment. Int Biodeterior Biodegradation 115:286–192

    Article  CAS  Google Scholar 

  • Wang Y, Zheng X, Yu X, Liu X (2017) Temperature and salinity effects in modeling the trajectory of the 2011 Penglai 19-3 oil spill. Mar Georesour Geotechnol 35(7):946–953. https://doi.org/10.1080/1064119X.2016.1261971

    Article  CAS  Google Scholar 

  • Warnock AM, Hagen SC, Passeri DL (2015) Marine tar residues: a review. Water Air Soil Pollut 226:68. https://doi.org/10.1007/s11270-015-2298-5

    Article  CAS  Google Scholar 

  • Warshawsky D, Radike M, Jayasimhulu K, Cody T (1988) Metabolism of benzo(a)pyrene by a dioxygenase enzyme system of the freshwater green alga Selenastrum capricornutum. Biochem Biophys Res Commun 152:540–544

    Article  CAS  Google Scholar 

  • Wei Y, Jin Y, Zhang W (2020) Treatment of high-concentration wastewater from an oil and gas field via a paired sequencing batch and ceramic membrane reactor. Int J Environ Res Public Health 17(6):1–11. https://doi.org/10.3390/ijerph17061953

    Article  CAS  Google Scholar 

  • Wen Y, Li C, Song X, Yang Y (2020) Biodegradation of phenol by Rhodococcus sp. strain SKC: characterization and kinetics study. Molecules 25:16. https://doi.org/10.3390/molecules25163665

    Article  CAS  Google Scholar 

  • Wong-Ng J, Celani A, Vergassola M (2018) Exploring the function of bacterial chemotaxis. Curr Opin Microbiol 45:16–21. https://doi.org/10.1016/j.mib.2018.01.010

    Article  CAS  Google Scholar 

  • Xia WX, Li JC, Zheng XL, Bi XJ, Shao JL (2006) Enhanced biodegradation of diesel oil in seawater supplemented with nutrients. Eng Life Sci 6(1):80–85

    Article  CAS  Google Scholar 

  • Xie B, Bishop S, Stessman D, Wright D, Spalding MH, Halverson LJ (2013) Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. ISME J 7:1544–1555. https://doi.org/10.1038/ismej.2013.43

    Article  CAS  Google Scholar 

  • Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H (2018) Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a Perspective analysis. Front Microbiol 9:2885. https://doi.org/10.3389/fmicb.2018.02885

    Article  Google Scholar 

  • Xue J, Wu Y, Liu Z, Li M, Sun X, Wang H, Liu B (2017) Characteristic assessment of diesel-degrading bacteria immobilized on natural organic carriers in marine environment: the degradation activity and nutrient. Sci Rep 7(1):8635. https://doi.org/10.1038/s41598-017-08832-y

    Article  CAS  Google Scholar 

  • Yadav BK, Hassanizadeh SM (2011) An overview of biodegradation of LNAPLs in coastal (semi)-arid environment. Water Air Soil Pollut 220:225–239. https://doi.org/10.1007/s11270-011-0749-1

    Article  CAS  Google Scholar 

  • Yan ZG, Pan JF, Gao F, An Z, Liu H, Huang Y, Wang X (2019) Seawater quality criteria derivation and ecological risk assessment for oil pollution in China. Mar Pollut Bull 33:14225–14230. https://doi.org/10.1016/j.marpolbul.2019.02.033

    Article  CAS  Google Scholar 

  • Yang Y, Liu M, Wang L, Fu J, Yan C, Zhou JL (2011) Sorption behavior of phenanthrene in Yangtze estuarine sediments: sequential separation. Mar Pollut Bull 62(5):1025–1031. https://doi.org/10.1016/j.marpolbul.2011.02.033

    Article  CAS  Google Scholar 

  • Yang Y, Liu Y, Nana L, Shi K, Xue J, Gao Y, Xiao X (2020) Isolation, enhanced growth, and degradation characterization of a strain marine petroleum degrading bacteria. Environ Technol Innov 18:100796. https://doi.org/10.1016/j.eti.2020.100796

    Article  Google Scholar 

  • Yong JJJY, Chew KW, Khoo KS, Show PL, Chang J-S (2021) Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnol Adv 47:107684. https://doi.org/10.1016/j.biotechadv.2020.107684

    Article  CAS  Google Scholar 

  • Yu Z, Hu Z, Xu Q, Zhang M, Yuan N, Liu J, Meng Q, Yin J (2020) The LuxI/ LuxR-type quorum sensing system regulates degradation of polycyclic aromatic hydrocarbons via two mechanisms. Int J Mol Sci 21(15):5548. https://doi.org/10.3390/ijms21155548

    Article  CAS  Google Scholar 

  • Zada S, Zhoua H, Xie J, Hu Z, Ali S, Sajad W, Wang H (2021) Bacterial degradation of pyrene: biochemical reactions and mechanisms. Int Biodeterior Biodegradation 162:105233

    Article  CAS  Google Scholar 

  • Zaidi BR, Imam SH (1999) Factors affecting microbial degradation of polycyclic aromatic hydrocarbon phenanthrene in the Caribbean coastal water. Mar Pollut Bull 38(8):737–742. https://doi.org/10.1016/S0025-326X(99)00037-5

    Article  CAS  Google Scholar 

  • Zampolli J, Zeaiter Z, Di Canito A, Di Gennaro P (2019) Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus. Appl Microbiol Biotechnol 103(3):1069–1080. https://doi.org/10.1007/s00253-018-9539-7

    Article  CAS  Google Scholar 

  • Zeng Z, Liu Y, Zhong H, Xiao R, Zeng G, Liu Z, Cheng M, Lai C, Zhang C, Liu G, Qin L (2018) Mechanisms for rhamnolipids-mediated biodegradation of hydrophobic organic compounds. Sci Total Environ 634:1–11. https://doi.org/10.1016/j.scitotenv.2018.03.349

    Article  CAS  Google Scholar 

  • Zhang Z, Pen Y, Edyvean RG, Banwart SA, Dalgliesh RM, Geoghegan M (2010) Adhesive and conformational behavior of mycolic acid monolayers. Biochim Biophys Acta Biomembr 1798(9):1829–1839

    Article  CAS  Google Scholar 

  • Zhang Y, Qian H, Wang J, Si C, Chen Z, Dang J, Zhang Z (2017) Variations in the environmental characteristics of groundwater slightly contaminated with petroleum: effects of enhanced bioremediation in northeast China. Environ Earth Sci 76(2):1–8. https://doi.org/10.1007/s12665-017-6412-4

    Article  CAS  Google Scholar 

  • Zhang B, Lens PNL, Shi W, Zhang R, Zhang Z, Guo Y, Xian B, Cui F (2018a) Enhancement of aerobic granulation and nutrient removal by an algal–bacterial consortium in a lab-scale photobioreactor. Chem Eng J 334:2373–2382

    Article  CAS  Google Scholar 

  • Zhang Y, Gao W, Lin F, Han B, He C, Li Q, Gao X, Cui Z, Sun C, Zheng L (2018b) Study on immobilization of marine oil-degrading bacteria by carrier of algae materials. World J Microbiol Biotechnol 34(6):70. https://doi.org/10.1007/s11274-018-2438-3

    Article  CAS  Google Scholar 

  • Zhang B, Li W, Guo Y, Zhang Z, Shi W, Cui F, Lens PNL, Tay JH (2020) Microalgal-bacterial consortia: from interspecies interactions to biotechnological applications. Renew Sust Energ Rev 118:109563. https://doi.org/10.1016/j.rser.2019.109563

    Article  Google Scholar 

  • Zheng M, Wang W, Papadopoulos K (2020) Direct visualization of oil degradation and biofilm formation for the screening of crude oil-degrading bacteria. Bioremed Journal 24(1):60–70. https://doi.org/10.1080/10889868.2019.1671795

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are gratefully acknowledge the Basic Science Research Unite, Deanship of Scientific Research, Majmaah University, Kingdom of Saudi Arabia (Project No R-2021-171, signed dated 17/12/1442) for research funding assistance.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Mohammad Hazaimeh, Enas S. Ahmed. Writing—review and editing: Mohammad Hazaimeh, Enas S. Ahmed, Khalid O. Taha, and Edit age, a brand of Cactus Communications.

Corresponding author

Correspondence to Mohammad Daher Hazaimeh.

Ethics declarations

Ethical approval

NA

Consent to publish

All authors contributed to the research. Their contributions are attached in the author contribution file. They agreed to publish this research in Environmental Science and Pollution Research journal.

Consent of the participant

In this research, no living participant is involved. Therefore, this is not applicable.

Human and animal rights

This article does not contain any studies with human or animal subjects.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazaimeh, .D., Ahmed, E.S. Bioremediation perspectives and progress in petroleum pollution in the marine environment: a review. Environ Sci Pollut Res 28, 54238–54259 (2021). https://doi.org/10.1007/s11356-021-15598-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15598-4

Keywords

Navigation