Skip to main content

Advertisement

Log in

Exploring the bioremediation capability of petroleum-contaminated soils for enhanced environmental sustainability and minimization of ecotoxicological concerns

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular–weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

Abbreviations

AHCs:

Aromatic hydrocarbons

BTEX:

Benzene, toluene, ethylbenzene, and xylenes

BC/g-C3N4 :

Biochar/graphite carbon nitride

Ca:

Calcium

CaCO3 :

Calcium carbonate

CO2 :

Carbon dioxide

FABC:

FeCl3-attapulgite-biochar composite

HC:

Hydrocarbon

HCs:

Hydrocarbons

Mg:

Magnesium

N:

Nitrogen

PHC:

Petroleum hydrocarbon

PHCs:

Petroleum hydrocarbons

P:

Phosphorus

PGPB:

Plant growth–promoting bacteria

PAHs:

Polycyclic aromatic hydrocarbons

K:

Potassium

PW:

Produced water

RL:

Rhamnolipid

TOC:

Total organic carbon

TPH:

Total petroleum hydrocarbon

TPHs:

Total petroleum hydrocarbons

References

  • Abdullah SRS, Al-Baldawi IA, Almansoory AF et al (2020) Plant-assisted remediation of hydrocarbons in water and soil: application, mechanisms, challenges and opportunities. Chemosphere 247:125932

    Article  CAS  Google Scholar 

  • Abideen Z, Waqif H, Munir N et al (2022) Algal-mediated nanoparticles, phycochar, and biofertilizers for mitigating abiotic stresses in plants: a review. Agronomy 12:1788

    Article  CAS  Google Scholar 

  • Abou Khalil C, Prince VL, Prince RC et al (2021) Occurrence and biodegradation of hydrocarbons at high salinities. Sci Total Environ 762:143165

    Article  CAS  Google Scholar 

  • Acevedo F, Pizzul L, del Pilar CM et al (2011) Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus anthracophyllum discolor. J Hazard Mater 185:212–219

    Article  CAS  Google Scholar 

  • Addis SD, Formel SK, Kim YJ et al (2022) Alterations of endophytic microbial community function in Spartina alterniflora as a result of crude oil exposure. Biodegradation 33:87–98

    Article  CAS  Google Scholar 

  • Adekunle IM (2011) Bioremediation of soils contaminated with Nigerian petroleum products using composted municipal wastes. Bioremediat J 15:230–241

    Article  CAS  Google Scholar 

  • Adeniji AO, Okaiyeto K, George MJ et al (2022) A systematic assessment of research trends on polycyclic aromatic hydrocarbons in different environmental compartments using bibliometric parameters. Environ Geochem Health 1–21

  • Adenipekun CO, Isikhuemhen OS (2008) Bioremediation of engine oil polluted soil by the tropical white rot fungus, Lentinus squarrosulus Mont. (Singer). Pak J Biol Sci 11:1634–1637

    Article  CAS  Google Scholar 

  • Adesipo AA, Freese D, Nwadinigwe AO (2020) Prospects of in-situ remediation of crude oil contaminated lands in Nigeria. Sci African 8:e00403

    Google Scholar 

  • Ahmad Bhat S, Kuriqi A, Dar MUD et al (2022) Application of biochar for improving physical, chemical, and hydrological soil properties: a systematic review. Sustainability 14:11104

    Article  CAS  Google Scholar 

  • Ahmad Z, Zhang X, Imran M et al (2021) Production, functional stability, and effect of rhamnolipid biosurfactant from Klebsiella sp. on phenanthrene degradation in various medium systems. Ecotoxicol Environ Saf 207:111514

    Article  CAS  Google Scholar 

  • Akujobi CO, Onyeagba RA, Nwaugo VO, Odu NN (2011) Protein and Chlorophyll contents of" Solanum melongena" on diesel oil polluted soil amended with nutrient supplements. Curr Res J Biol Sci 3:516–520

    CAS  Google Scholar 

  • Al-Moaikal RMS, Shukry WM, Azzoz MM, Al-Hawas GHS (2012) Effect of crude oil on germination, growth and seed protein profile of Jojoba (Simmodsia chinensis). Plant Sci J 1:20–35

    Google Scholar 

  • Al-Dossary MA, Abood SA, Al-Saad HT (2020) Factors affecting polycyclic aromatic hydrocarbon biodegradation by Aspergillus flavus. Remediat J 30:17–25

    Article  Google Scholar 

  • Alegbeleye OO, Opeolu BO, Jackson VA (2017) Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environ Manage 60:758–783

    Article  Google Scholar 

  • Ali APDHH, Abd Ali BA (2008) Effects of crude oil on the growth of horsetail tree (Casuarina equisetifolia). J kerbala Univ 6

  • Ali MH, Khan MI, Bashir S et al (2021) Biochar and Bacillus sp. MN54 assisted phytoremediation of diesel and plant growth promotion of maize in hydrocarbons contaminated soil. Agronomy 11:1795

    Article  CAS  Google Scholar 

  • Ali MH, Sattar MT, Khan MI et al (2020) Enhanced growth of mungbean and remediation of petroleum hydrocarbons by Enterobacter sp. MN17 and biochar addition in diesel contaminated soil. Appl Sci 10:8548

    Article  CAS  Google Scholar 

  • An X, Li W, Lan J, Di X (2022) Study on the desorption behavior and bioavailability of polycyclic aromatic hydrocarbons in different rocky desertification soils. Polish J Environ Stud 31

  • Antizar-Ladislao B, Beck AJ, Spanova K et al (2007) The influence of different temperature programmes on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated soil by in-vessel composting. J Hazard Mater 144:340–347

    Article  CAS  Google Scholar 

  • Asemoloye MD, Jonathan SG, Jayeola AA, Ahmad R (2017) Mediational influence of spent mushroom compost on phytoremediation of black-oil hydrocarbon polluted soil and response of Megathyrsus maximus Jacq. J Environ Manage 200:253–262

    Article  CAS  Google Scholar 

  • Atagana HI (2006) Fungal bioremediation of PAHs in the presence of heavy metals in soil. In: Proceedings of the International Conference on Remediation of Chlorinated and Recalcitrant Compounds, United States

  • Atagana HI (2003) Bioremediation of creosote-contaminated soil: a pilot-scale landfarming evaluation. World J Microbiol Biotechnol 19:571–581

    Article  CAS  Google Scholar 

  • Atakpa EO, Zhou H, Jiang L et al (2022) Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria. Chemosphere 290:133337

    Article  CAS  Google Scholar 

  • Aydin S, Karaçay HA, Shahi A et al (2017) Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol Rev 31:61–72

    Article  Google Scholar 

  • Babu AG, Reja SI, Akhtar N, et al (2019) Bioremediation of polycyclic aromatic hydrocarbons (PAHs): current practices and outlook. Microb Metab xenobiotic Compd 189–216

  • Baek K-H, Kim H-S, Oh H-M et al (2004) Effects of crude oil, oil components, and bioremediation on plant growth. J Environ Sci Heal Part A 39:2465–2472

    Article  Google Scholar 

  • Baghaie AH, Daliri A (2020) The effect of organic chelates and gibberellic acid on petroleum hydrocarbons degradation in the soil co-contaminated with Ni and crude oil under canola cultivation. مجله مدیریت و مهندسی بهداشت محیط 7:15–22

  • Bakina LG, Polyak YM, Gerasimov AO et al (2022) Mutual effects of crude oil and plants in contaminated soil: a field study. Environ Geochem Health 44:69–82

    Article  CAS  Google Scholar 

  • Baldantoni D, Morelli R, Bellino A et al (2017) Anthracene and benzo (a) pyrene degradation in soil is favoured by compost amendment: perspectives for a bioremediation approach. J Hazard Mater 339:395–400

    Article  CAS  Google Scholar 

  • Barati M, Safarzadeh S, Mowla D et al (2022) The ameliorating effect of poultry manure and its biochar on petroleum-contaminated soil remediation at two times of cultivation. J Chem Heal Risks 12:33–46

    CAS  Google Scholar 

  • Basumatary B, Bordoloi S, Sarma HP (2012) Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water Air Soil Pollut 223:3373–3383

    Article  CAS  Google Scholar 

  • Bezza FA, Chirwa EMN (2015) Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem Eng J 101:168–178

    Article  CAS  Google Scholar 

  • Bhattacharya A (2022) Plant growth hormones in plants under low-temperature stress: a review. Physiol Process plants under low Temp Stress 517–627

  • Bhattacharya A, Bhattacharya A (2021) Role of plant growth hormones during soil water deficit: a review. Soil water deficit physiol issues plants 489–583

  • Bhattacharya S, Das A, Prashanthi K et al (2014) Mycoremediation of Benzo [a] pyrene by Pleurotus ostreatus in the presence of heavy metals and mediators. 3 Biotech 4:205–211

    Article  Google Scholar 

  • Bilal M, Iqbal HMN (2020) Microbial bioremediation as a robust process to mitigate pollutants of environmental concern. Case Stud Chem Environ Eng 2:100011

    Article  Google Scholar 

  • Birolli WG, de Santos DA, Alvarenga N et al (2018) Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237. Mar Pollut Bull 129:525–533

    Article  CAS  Google Scholar 

  • Bonfá MRL, Pereira RM, Piubeli FA, Durrant LR (2023) Microbial bioremediation of petroleum hydrocarbons in moderate to extreme environments and application of “omics” techniques to evaluate bioremediation approaches and efficiency. Waste Manag 156–172

  • Cao H, Wang C, Liu H et al (2020) Enzyme activities during Benzo [a] pyrene degradation by the fungus Lasiodiplodia theobromae isolated from a polluted soil. Sci Rep 10:1–11

    CAS  Google Scholar 

  • Cao Y, Yang B, Song Z et al (2016) Wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil. Ecotoxicol Environ Saf 130:248–255

    Article  CAS  Google Scholar 

  • Carolin CF, Kumar PS, Joshiba GJ et al (2021) Sustainable strategy for the enhancement of hazardous aromatic amine degradation using lipopeptide biosurfactant isolated from Brevibacterium casei. J Hazard Mater 408:124943

    Article  Google Scholar 

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333

    Article  CAS  Google Scholar 

  • Chen B, Ding J (2012) Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium. J Hazard Mater 229:159–169

    Article  Google Scholar 

  • Chen B, Huang J, Yuan K et al (2016a) Direct evidences on bacterial growth pattern regulating pyrene degradation pathway and genotypic dioxygenase expression. Mar Pollut Bull 105:73–80

    Article  CAS  Google Scholar 

  • Chen S, Yin H, Tang S et al (2016b) Metabolic biotransformation of copper–benzo [a] pyrene combined pollutant on the cellular interface of Stenotrophomonas maltophilia. Bioresour Technol 204:26–31

    Article  CAS  Google Scholar 

  • Chen W, Kong Y, Li J et al (2020) Enhanced biodegradation of crude oil by constructed bacterial consortium comprising salt-tolerant petroleum degraders and biosurfactant producers. Int Biodeterior Biodegradation 154:105047

    Article  CAS  Google Scholar 

  • Cheng KY, Lai KM, Wong JWC (2008) Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere 73:791–797

    Article  CAS  Google Scholar 

  • Cheng L, Wang Y, Cai Z et al (2017) Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species. Int J Phytoremediation 19:300–308

    Article  CAS  Google Scholar 

  • Cheng S, Chen T, Xu W et al (2020) Application research of biochar for the remediation of soil heavy metals contamination: a review. Molecules 25:3167

    Article  CAS  Google Scholar 

  • Chettri B, Singha NA, Singh AK (2021) Efficiency and kinetics of Assam crude oil degradation by Pseudomonas aeruginosa and Bacillus sp. Arch Microbiol 203:5793–5803

    Article  CAS  Google Scholar 

  • Chi Z, Hou L, Li H et al (2021) Indigenous bacterial community and function in phenanthrene-polluted coastal wetlands: potential for phenanthrene degradation and relation with soil properties. Environ Res 199:111357

    Article  CAS  Google Scholar 

  • Couto MNF, Basto MCP, Vasconcelos MTSD (2013) Biological remediation of petroleum hydrocarbons in soil: suitability of different technologies applied in mesocosm and microcosm trials. Fungi as Bioremediators 203–226

  • da Silva AF, Banat IM, Robl D, Giachini AJ (2022) Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: recent advances and emerging technologies. Bioprocess Biosyst Eng 1–36

  • de Almeida FF, Freitas D, Motteran F et al (2021) Bioremediation of polycyclic aromatic hydrocarbons in contaminated mangroves: understanding the historical and key parameter profiles. Mar Pollut Bull 169:112553

    Article  Google Scholar 

  • Deebika P, Merline Sheela A, Ilamathi R (2021) Biochar and compost-based phytoremediation of crude oil contaminated soil. Indian J Sci Technol 14:220–228

    Article  CAS  Google Scholar 

  • Deng J, Wang H, Zhan H et al (2022) Catalyzed degradation of polycyclic aromatic hydrocarbons by recoverable magnetic chitosan immobilized laccase from Trametes versicolor. Chemosphere 301:134753

    Article  CAS  Google Scholar 

  • Dhar K, Subashchandrabose SR, Venkateswarlu K et al (2020) Anaerobic microbial degradation of polycyclic aromatic hydrocarbons: a comprehensive review. Rev Environ Contam Toxicol 251:25–108

    CAS  Google Scholar 

  • Di Meglio LG, Busalmen JP, Pegoraro CN, Nercessian D (2020) Biofilms of Halobacterium salinarum as a tool for phenanthrene bioremediation. Biofouling 36:564–575

    Article  Google Scholar 

  • Dike CC, Hakeem IG, Rani A et al (2022) The co-application of biochar with bioremediation for the removal of petroleum hydrocarbons from contaminated soil. Sci Total Environ 157753

  • dos Santos VS, de Souza IF, Silva EP et al (2023) Hydrocarbons and environmental pollution: Metagenomics application as a key tool for bioremediation. In: Metagenomics to Bioremediation. Elsevier, pp 455–476

  • Durval IJB, Mendonça AHR, Rocha IV et al (2020) Production, characterization, evaluation and toxicity assessment of a Bacillus cereus UCP 1615 biosurfactant for marine oil spills bioremediation. Mar Pollut Bull 157:111357

    Article  CAS  Google Scholar 

  • Durval IJB, Resende AHM, Figueiredo MA et al (2019) Studies on biosurfactants produced using Bacillus cereus isolated from seawater with biotechnological potential for marine oil-spill bioremediation. J Surfactants Deterg 22:349–363

    Article  CAS  Google Scholar 

  • Edeh IG, Mašek O (2022) The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. Eur J Soil Sci 73:e13138

    Article  CAS  Google Scholar 

  • Ehiagbonare JE, Obayuwana S, Aborisade WT, Asogwa I (2011) Effect of unspent and spent diesel fuel on two agricultural crop plants: Arachis hypogea and Zea mays. Sci Res Essays 6:2296–2301

    CAS  Google Scholar 

  • Ekundayo EO, Emede TO, Osayande DI (2001) Effects of crude oil spillage on growth and yield of maize (Zea mays L.) in soils of midwestern Nigeria. Plant Foods Hum Nutr 56:313–324

    Article  CAS  Google Scholar 

  • Ezekoye CC, Chikere CB, Okpokwasili GC (2018) Fungal diversity associated with crude oil-impacted soil undergoing in-situ bioremediation. Sustain Chem Pharm 10:148–152

    Article  Google Scholar 

  • Feng L, Jiang X, Huang Y et al (2021) Petroleum hydrocarbon-contaminated soil bioremediation assisted by isolated bacterial consortium and sophorolipid. Environ Pollut 273:116476

    Article  CAS  Google Scholar 

  • Fulekar MH, Pathak B, Fulekar J, Godambe T (2013) Bioremediation of organic pollutants using Phanerochaete chrysosporium. Fungi as bioremediators 135–157

  • García-Delgado C, Alfaro-Barta I, Eymar E (2015) Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil. J Hazard Mater 285:259–266

    Article  Google Scholar 

  • García-Sánchez M, Košnář Z, Mercl F et al (2018) A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicol Environ Saf 147:165–174

    Article  Google Scholar 

  • Gaur S, Gupta S, Jain A (2021) Characterization and oil recovery application of biosurfactant produced during bioremediation of waste engine oil by strain Pseudomonas aeruginosa gi| KP 16392| isolated from Sambhar salt lake. Bioremediat J 25:308–325

    Article  CAS  Google Scholar 

  • Ghorbannezhad H, Moghimi H, Dastgheib SMM (2022) Biodegradation of high molecular weight hydrocarbons under saline condition by halotolerant Bacillus subtilis and its mixed cultures with Pseudomonas species. Sci Rep 12:13227

    Article  CAS  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 1369

  • Ghosh P, Mukherji S (2021) Elucidation of substrate interaction effects in multicomponent systems containing 3-ring homocyclic and heterocyclic polynuclear aromatic hydrocarbons. Environ Sci Process Impacts 23:1394–1404

    Article  CAS  Google Scholar 

  • Gonzalez-Garay A, Bui M, Freire Ordóñez D et al (2022) Hydrogen production and its applications to mobility. Annu Rev Chem Biomol Eng 13:501–528

    Article  Google Scholar 

  • Govarthanan M, Khalifa AY, Kamala-Kannan S et al (2020) Significance of allochthonous brackish water Halomonas sp. on biodegradation of low and high molecular weight polycyclic aromatic hydrocarbons. Chemosphere 243:125389

    Article  CAS  Google Scholar 

  • Govarthanan M, Mythili R, Kamala-Kannan S et al (2019) In-vitro bio-mineralization of arsenic and lead from aqueous solution and soil by wood rot fungus, Trichoderma sp. Ecotoxicol Environ Saf 174:699–705

    Article  CAS  Google Scholar 

  • Guo S, Liu X, Tang J (2022) Enhanced degradation of petroleum hydrocarbons by immobilizing multiple bacteria on wheat bran biochar and its effect on greenhouse gas emission in saline-alkali soil. Chemosphere 286:131663

    Article  CAS  Google Scholar 

  • Gupta PK, Ranjan S, Gupta SK (2019) Phycoremediation of petroleum hydrocarbon-polluted sites: application, challenges, and future prospects. Appl Microalgae Wastewater Treat Vol 1 Domest Ind Wastewater Treat 145–162

  • Gupta S, Pathak B (2020a) Mycoremediation of polycyclic aromatic hydrocarbons. In: Abatement of environmental pollutants. Elsevier, pp 127–149

  • Gupta S, Pathak B (2020b) Bioremediation of polycyclic aromatic hydrocarbons (PAHs): an overview. Bioremediation Technol 63–90

  • Haider FU, Ejaz M, Cheema SA et al (2021) Phytotoxicity of petroleum hydrocarbons: sources, impacts and remediation strategies. Environ Res 197:111031

    Article  CAS  Google Scholar 

  • Hasnain M, Abideen Z, Anthony Dias D, et al (2022) Utilization of saline water enhances lipid accumulation in green microalgae for the sustainable production of biodiesel. BioEnergy Res 1–14

  • Hasnain M, Munir N, Abideen Z et al (2023a) Applying silver nanoparticles to enhance metabolite accumulation and biodiesel production in new algal resources. Agriculture 13:73

    Article  CAS  Google Scholar 

  • Hasnain M, Munir N, Abideen Z et al (2023b) Biochar-plant interaction and detoxification strategies under abiotic stresses for achieving agricultural resilience: a critical review. Ecotoxicol Environ Saf 249:114408

    Article  CAS  Google Scholar 

  • Hassan S, Khurshid Z, Bhat SA et al (2022) Marine bacteria and omic approaches: a novel and potential repository for bioremediation assessment. J Appl Microbiol 133:2299–2313

    Article  CAS  Google Scholar 

  • Hentati D, Chebbi A, Hadrich F et al (2019) Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicol Environ Saf 167:441–449

    Article  CAS  Google Scholar 

  • Hentati D, Cheffi M, Hadrich F et al (2021) Investigation of halotolerant marine Staphylococcus sp. CO100, as a promising hydrocarbon-degrading and biosurfactant-producing bacterium, under saline conditions. J Environ Manage 277:111480

    Article  CAS  Google Scholar 

  • Hoang SA, Lamb D, Seshadri B et al (2021a) Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils. J Hazard Mater 401:123282

    Article  CAS  Google Scholar 

  • Hoang SA, Sarkar B, Seshadri B et al (2021b) Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: a review. J Hazard Mater 416:125702

    Article  CAS  Google Scholar 

  • Huang R, Tian W, Liu Q et al (2016) Enhanced biodegradation of pyrene and indeno (1, 2, 3-cd) pyrene using bacteria immobilized in cinder beads in estuarine wetlands. Mar Pollut Bull 102:128–133

    Article  CAS  Google Scholar 

  • Huang X-D, El-Alawi Y, Gurska J et al (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  • Hung C-M, Chen C-W, Huang C-P et al (2022) Algae-derived metal-free boron-doped biochar as an efficient bioremediation pretreatment for persistent organic pollutants in marine sediments. J Clean Prod 336:130448

    Article  CAS  Google Scholar 

  • Hunter RD, Ekunwe SIN, Dodor DE et al (2005) Bacillus subtilis is a potential degrader of pyrene and benzo [a] pyrene. Int J Environ Res Public Health 2:267–271

    Article  CAS  Google Scholar 

  • Hussain F, Hussain I, Khan AHA et al (2018a) Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ Exp Bot 153:80–88

    Article  CAS  Google Scholar 

  • Hussain I, Puschenreiter M, Gerhard S et al (2018b) Rhizoremediation of petroleum hydrocarbon-contaminated soils: improvement opportunities and field applications. Environ Exp Bot 147:202–219

    Article  CAS  Google Scholar 

  • Hussain R, Ravi K (2021) Investigating unsaturated hydraulic conductivity and water retention characteristics of compacted biochar-amended soils for potential application in bioengineered structures. J Hydrol 603:127040

    Article  Google Scholar 

  • Jabbar NM, Alardhi SM, Mohammed AK et al (2022) Challenges in the implementation of bioremediation processes in petroleum-contaminated soils: a review. Environ Nanotechnol Monit Manag 18:100694

    CAS  Google Scholar 

  • Jakhar AM, Aziz I, Kaleri AR, et al (2022) Nano-fertilizers: a sustainable technology for improving crop nutrition and food security. NanoImpact 100411

  • Jimoh AA, Ikhimiukor OO, Adeleke R (2022) Prospects in the bioremediation of petroleum hydrocarbon contaminants from hypersaline environments: a review. Environ Sci Pollut Res 29:35615–35642

    Article  CAS  Google Scholar 

  • Kadri T, Magdouli S, Rouissi T, Brar SK (2018) Ex-situ biodegradation of petroleum hydrocarbons using Alcanivorax borkumensis enzymes. Biochem Eng J 132:279–287

    Article  CAS  Google Scholar 

  • Kalami R, Pourbabaee A-A (2021) Investigating the potential of bioremediation in aged oil-polluted hypersaline soils in the south oilfields of Iran. Environ Monit Assess 193:1–20

    Article  Google Scholar 

  • Kalhor AX, Movafeghi A, Mohammadi-Nassab AD et al (2017) Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Mar Pollut Bull 123:286–290

    Article  Google Scholar 

  • Kalvandi S, Garousin H, Pourbabaee AA, Farahbakhsh M (2022) The release of petroleum hydrocarbons from a saline-sodic soil by the new biosurfactant-producing strain of Bacillus sp. Sci Rep 12:19770

    Article  CAS  Google Scholar 

  • Kazemzadeh S, Naghavi NS, Emami-Karvani Z et al (2020) Production of glycolipid biosurfactant during crude oil degradation by the novel indigenous isolated Achromobacter kerstersii LMG3441. Water Sci Technol 82:2134–2147

    Article  CAS  Google Scholar 

  • Ke L, Luo L, Wang P et al (2010) Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Bioresour Technol 101:6950–6961

    Article  CAS  Google Scholar 

  • Kebede G, Tafese T, Abda EM et al (2021) Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: mechanisms and impacts. J Chem 2021:1–17

    Article  Google Scholar 

  • Khan SR, Kumar JIN, Banker M, Kumar RN (2015a) Ex-situ studies on biodegradation of artificially enriched kerosene and diesel soils by fungal isolates. Soil Sediment Contam an Int J 24:796–810

    Article  CAS  Google Scholar 

  • Khan SR, Nirmal JI, Kumar RN, Patel JG (2015b) Biodegradation of kerosene: study of growth optimization and metabolic fate of P. janthinellum SDX7. Brazilian J Microbiol 46:397–406

    Article  Google Scholar 

  • Khilji SA, Munir N, Aziz I, et al (2022) Application of algal nanotechnology for leather wastewater treatment and heavy metal removal efficiency. Sustainability 14

  • Kim J-S, Min K-A, Cho K-S, Lee I-S (2007) Enhanced bioremediation and modified bacterial community structure by barnyard grass in diesel-contaminated soil. Environ Eng Res 12:37–45

    Article  Google Scholar 

  • Kirso U, Irha N (1998) Role of algae in fate of carcinogenic polycyclic aromatic hydrocarbons in the aquatic environment. Ecotoxicol Environ Saf 41:83–89

    Article  CAS  Google Scholar 

  • Kołtowski M, Oleszczuk P (2015) Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment. Ecol Eng 75:79–85

    Article  Google Scholar 

  • Kostka JE, Joye SB, Overholt W, et al (2020) Biodegradation of petroleum hydrocarbons in the deep sea. In: Deep Oil Spills. Springer, pp 107–124

  • Koul B, Chaudhary R, Taak P (2021) Extremophilic microbes and their application in bioremediation of environmental contaminants. In: Microbe Mediated Remediation of Environmental Contaminants. Elsevier, pp 115–128

  • Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL (2018) Diversity and niche of archaea in bioremediation. Archaea 2018

  • Kudakwashe M, Qiang LIU, Shuai WU, Yanfei Y (2022) Plant-and microbe-assisted biochar amendment technology for petroleum hydrocarbon remediation in saline-sodic soils: a review. Pedosphere 32:211–221

    Article  Google Scholar 

  • Kumari M, Ghosh P, Thakur IS (2020) Evaluation of a biosurfactant producing bacterial strain Pseudomonas sp. ISTPY2 for efficient pyrene degradation and landfill soil bioremediation through soil microcosm and proteomic studies. Bioresour Technol Reports 12:100607

    Article  Google Scholar 

  • Kundu D, Dutta D, Mondal S, et al (2020) Application of potential biological agents in green bioremediation technology: case studies. In: Waste Management: Concepts, Methodologies, Tools, and Applications. IGI Global, pp 1192–1216

  • Kungwani N, Shukla SK, Rao TS, Das S (2022) Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons: current status and future perspectives. Microb Biodegrad Bioremediation 547–570

  • Lee Y-Y, Seo Y, Ha M et al (2021) Evaluation of rhizoremediation and methane emission in diesel-contaminated soil cultivated with tall fescue (Festuca arundinacea). Environ Res 194:110606

    Article  CAS  Google Scholar 

  • Lei A-P, Hu Z-L, Wong Y-S, Tam NF-Y (2007) Removal of fluoranthene and pyrene by different microalgal species. Bioresour Technol 98:273–280

    Article  CAS  Google Scholar 

  • Li H, Li X, Yu T, et al (2019) Study on extreme microbial degradation of petroleum hydrocarbons. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p 12040

  • Li X, Yao S, Bolan N et al (2022) Combined maize straw-biochar and oxalic acids induced a relay activity of abundant specific degraders for efficient phenanthrene degradation: Evidence based on the DNA-SIP technology. Environ Pollut 310:119867

    Article  CAS  Google Scholar 

  • Liduino VS, Servulo EFC, Oliveira FJS (2018) Biosurfactant-assisted phytoremediation of multi-contaminated industrial soil using sunflower (Helianthus annuus L.). J Environ Sci Heal Part A 53:609–616

    Article  CAS  Google Scholar 

  • Lin H, Yang Y, Shang Z et al (2022a) Study on the enhanced remediation of petroleum-contaminated soil by biochar/g-C3N4 composites. Int J Environ Res Public Health 19:8290

    Article  CAS  Google Scholar 

  • Lin M-S, Huang C-Y, Lin Y-C et al (2022b) Green remediation technology for total petroleum hydrocarbon-contaminated soil. Agronomy 12:2759

    Article  CAS  Google Scholar 

  • Lin M, Li F, Wang W, Rong X (2022c) Interfacial chemical behaviors and petroleum hydrocarbon removal performances of the biochar-mineral composites prepared by one-step pyrolysis. Colloids Surfaces A Physicochem Eng Asp 655:130217

    Article  CAS  Google Scholar 

  • Liu C-J, Deng S-G, Hu C-Y, et al (2023) Applications of bioremediation and phytoremediation in contaminated soils and waters: CREST publications during 2018–2022. Crit Rev Environ Sci Technol 1–10

  • Liu W-C, Wu B-B, Li X-S et al (2015) Degradation characteristics of naphthalene with a Pseudomonas aeruginosa strain isolated from soil contaminated by diesel. Huan Jing ke Xue=Huanjing Kexue 36:712–718

    Google Scholar 

  • Liu Z, Dugan B, Masiello CA, Gonnermann HM (2017) Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 12:e0179079

    Article  Google Scholar 

  • Luhach J, Chaudhry S (2012) Effect of diesel fuel contamination on seed germination and growth of four agricultural crops. Univers J Environ Res Technol 2

  • Luo C, Hu X, Bao M et al (2022) Efficient biodegradation of phenanthrene using Pseudomonas stutzeri LSH-PAH1 with the addition of sophorolipids: alleviation of biotoxicity and cometabolism studies. Environ Pollut 301:119011

    Article  CAS  Google Scholar 

  • Luo L, Wang P, Lin L et al (2014) Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae. Process Biochem 49:1723–1732

    Article  CAS  Google Scholar 

  • Ma K-Y, Sun M-Y, Dong W et al (2016) Effects of nutrition optimization strategy on rhamnolipid production in a Pseudomonas aeruginosa strain DN1 for bioremediation of crude oil. Biocatal Agric Biotechnol 6:144–151

    Article  Google Scholar 

  • Ma X, Li T, Fam H et al (2018) The influence of heavy metals on the bioremediation of polycyclic aromatic hydrocarbons in aquatic system by a bacterial–fungal consortium. Environ Technol 39:2128–2137

    Article  CAS  Google Scholar 

  • Ma Y-L, Lu W, Wan L-L, Luo N (2015) Elucidation of fluoranthene degradative characteristics in a newly isolated Achromobacter xylosoxidans DN002. Appl Biochem Biotechnol 175:1294–1305

    Article  CAS  Google Scholar 

  • Magalhães MOL, do Amaral Sobrinho NMB, Zonta E et al (2014) The effects of oil well drill cuttings on soil and rice plant development (Oryza sativa) under two redox conditions. Bull Environ Contam Toxicol 92:311–316

    Article  Google Scholar 

  • Mahjoubi M, Cappello S, Souissi Y et al (2018) Microbial bioremediation of petroleum hydrocarbon–contaminated marine environments. Recent Insights Pet Sci Eng 325:325–350

    Google Scholar 

  • Mahmud T, Sabo IA, Lambu ZN et al (2022) Hydrocarbon degradation potentials of fungi: a review. J Environ Bioremediation Toxicol 5:50–56

    Article  Google Scholar 

  • Maletić S, Beljin J, Tamindžija D et al (2021) Bioremediation perspective of historically contaminated sediment with polycyclic aromatic hydrocarbons. Int J Sediment Res 36:479–488

    Article  Google Scholar 

  • Mallick S, Chakraborty J, Dutta TK (2011) Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Crit Rev Microbiol 37:64–90

    Article  CAS  Google Scholar 

  • Mao J, Guan W (2016) Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH-contaminated soil. Acta Agric Scand Sect B—Soil Plant Sci 66:399–405

    CAS  Google Scholar 

  • Meena KR, Dhiman R, Singh K et al (2021) Purification and identification of a surfactin biosurfactant and engine oil degradation by Bacillus velezensis KLP2016. Microb Cell Fact 20:1–12

    Article  Google Scholar 

  • Meng L, Bao M, Sun P (2018) Construction of long-chain alkane degrading bacteria and its application in bioremediation of crude oil pollution. Int J Biol Macromol 119:524–532

    Article  CAS  Google Scholar 

  • Merkl N, Schultze-Kraft R, Arias M (2005) Influence of fertilizer levels on phytoremediation of crude oil-contaminated soils with the tropical pasture grass Brachiaria brizantha (Hochst. ex a. rich.) stapf. Int J Phytoremediation 7:217–230

    Article  CAS  Google Scholar 

  • Molina L, Segura A (2021) Biochemical and metabolic plant responses toward polycyclic aromatic hydrocarbons and heavy metals present in atmospheric pollution. Plants 10:2305

    Article  CAS  Google Scholar 

  • Montenegro IPDFM (2015) Autochthonous bioaugmentation-a strategy for enhanced phytoremediation/bioremediation of mixed contamination in saltmarshes

  • Moradi B, Kissen R, Maivan HZ et al (2020) Assessment of oxidative stress response genes in Avicennia marina exposed to oil contamination–polyphenol oxidase (PPOA) as a biomarker. Biotechnol Reports 28:e00565

    Article  Google Scholar 

  • Moreira ITA, Oliveira OMC, Triguis JA et al (2011) Phytoremediation using Rizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchem J 99:376–382

    Article  CAS  Google Scholar 

  • Mukherjee AK, Bhagowati P, Biswa BB et al (2017) A comparative intracellular proteomic profiling of Pseudomonas aeruginosa strain ASP-53 grown on pyrene or glucose as sole source of carbon and identification of some key enzymes of pyrene biodegradation pathway. J Proteomics 167:25–35

    Article  CAS  Google Scholar 

  • Mukome FND, Buelow MC, Shang J et al (2020) Biochar amendment as a remediation strategy for surface soils impacted by crude oil. Environ Pollut 265:115006

    Article  CAS  Google Scholar 

  • Mulinari J, Junior FWR, de Oliveira CRS, et al (2021) Biochar as a tool for the remediation of agricultural soils. Biocharits Appl Bioremediation 281–303

  • Munir N, Hasnain M, Roessner U, Abideen Z (2022) Strategies in improving plant salinity resistance and use of salinity resistant plants for economic sustainability. Crit Rev Environ Sci Technol 52(12):2150–2196

  • Munir N, Tariq R, Abideen Z, et al (2023) Efficient detoxification of textile wastewater by applying Chenopodium album nanoparticles and its application in simulated metal-bearing effluents removal. Environ Sci Pollut Res 1–17

  • Naeem U, Qazi MA (2020) Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environ Sci Pollut Res 27:27370–27382

    Article  CAS  Google Scholar 

  • Nassar HN, Abu Amr SS, El-Gendy NS (2021) Biodesulfurization of refractory sulfur compounds in petro-diesel by a novel hydrocarbon tolerable strain Paenibacillus glucanolyticus HN4. Environ Sci Pollut Res 28:8102–8116

    Article  CAS  Google Scholar 

  • Njoku KL, Akinola MO, Taiwo BG (2009) Effect of gasoline diesel fuel mixture on the germination and the growth of Vigna unguiculata (Cowpea). African J Environ Sci Technol 3

  • Nkereuwem ME, Amoo AO, Adeleye AO et al (2021) Biostimulatory influence of biochar on degradation of petroleum hydrocarbon impacted soil. Indones J Soc Environ Issues 2:227–234

    Google Scholar 

  • Noori MT, Thatikayala D, Min B (2022) Bioelectrochemical remediation for the removal of petroleum hydrocarbon contaminants in soil. Energies 15:8457

    Article  CAS  Google Scholar 

  • Obasi SE, Obasi NA, Nwankwo EO et al (2021) Effects of organic manures bioremediation on growth performance of Maize (Zea mays L.) in crude oil polluted soil. Int J Recycl Org Waste Agric 10:415–426

    Google Scholar 

  • Othman AR, Ismail NS, Abdullah SRS et al (2022) Potential of indigenous biosurfactant-producing fungi from real crude oil sludge in total petroleum hydrocarbon degradation and its future research prospects. J Environ Chem Eng 10:107621

    Article  CAS  Google Scholar 

  • Oyedeji AA, Kayode J (2020) Phytoremediation: assessment of Afzelia africana germination and growth performance in crude oil contaminated soil. Fed Univ Wukari Trends Sci Technol J 5:403–406

    Google Scholar 

  • Pang A, Rutter A, Gainer A, et al (2023) Assessment of heavily weathered petroleum hydrocarbon-impacted soils to native soil invertebrates from a Canadian subarctic site. J Soils Sediments 1–10

  • Parthipan P, Cheng L, Rajasekar A, Angaiah S (2021) Microbial surfactants are next‐generation biomolecules for sustainable remediation of polyaromatic hydrocarbons. Biosurfactants a Sustain Futur Prod Appl Environ Biomed 139–158

  • Patel AB, Shaikh S, Jain KR et al (2020) Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Front Microbiol 11:562813

    Article  Google Scholar 

  • Patel AK, Singhania RR, Pal A et al (2022) Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases. Sci Total Environ 817:153054

    Article  CAS  Google Scholar 

  • Patel K, Patel M (2020) Improving bioremediation process of petroleum wastewater using biosurfactants producing Stenotrophomonas sp. S1VKR-26 and assessment of phytotoxicity. Bioresour Technol 315:123861

    Article  CAS  Google Scholar 

  • Pourfadakari S, Ghafari S, Takdastan A, Jorfi S (2021) A salt resistant biosurfactant produced by moderately halotolerant Pseudomonas aeruginosa (AHV-KH10) and its application for bioremediation of diesel-contaminated sediment in saline environment. Biodegradation 32:327–341

    Article  CAS  Google Scholar 

  • Prartono T, Dwinovantyo A, Syafrizal S, Syakti AD (2022) Potential use of deep-sea sediment bacteria for oil spill biodegradation: a laboratory simulation. Microorganisms 10:1616

    Article  CAS  Google Scholar 

  • Procópio L (2020) Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm. Appl Microbiol Biotechnol 104:6397–6411

    Article  Google Scholar 

  • Rabani MS, Habib A, Gupta MK (2020) Polycyclic aromatic hydrocarbons: toxic effects and their bioremediation strategies. Bioremediation Biotechnol Vol 4 Tech Noxious Subst Remediat 65–105

  • Rafique HM, Khan MY, Asghar HN, et al (2022) Converging alfalfa (Medicago sativa L.) and petroleum hydrocarbon acclimated ACC-deaminase containing bacteria for phytoremediation of petroleum hydrocarbon contaminated soil. Int J Phytoremediation 1–11

  • Rahman A, Agrawal S, Nawaz T et al (2020) A review of algae-based produced water treatment for biomass and biofuel production. Water 12:2351

    Article  CAS  Google Scholar 

  • Rajkumari J, Bhuyan B, Das N, Pandey P (2019) Environmental applications of microbial extremophiles in the degradation of petroleum hydrocarbons in extreme environments. Environ Sustain 2:311–328

    Article  CAS  Google Scholar 

  • Rao MA, Simeone GDR, Scelza R, Conte P (2017) Biochar based remediation of water and soil contaminated by phenanthrene and pentachlorophenol. Chemosphere 186:193–201

    Article  CAS  Google Scholar 

  • Robinson SL, Novak JT, Widdowson MA et al (2003) Field and laboratory evaluation of the impact of tall fescue on polyaromatic hydrocarbon degradation in an aged creosote-contaminated surface soil. J Environ Eng 129:232–240

    Article  CAS  Google Scholar 

  • Rong R, Li Z, Zheng Y, Zhang F (2020) Effect of biochar on 17β-estradiol degradation in composted poultry manurE: residue and bioassay analysis. Waste Biomass Valor 11:4711–4720

    Article  CAS  Google Scholar 

  • Rostami S, Azhdarpoor A, Baghapour MA et al (2021) The effects of exogenous application of melatonin on the degradation of polycyclic aromatic hydrocarbons in the rhizosphere of Festuca. Environ Pollut 274:116559

    Article  CAS  Google Scholar 

  • Rostami S, Jaskulak M, Rostami M, et al (2022) Efficient biodegradation of polycyclic aromatic hydrocarbons in the rhizosphere using plant growth regulators and biological agents. Polycycl Aromat Compd 1–13

  • Saeed Q, Xiukang W, Haider FU et al (2021) Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. Int J Mol Sci 22:10529

    Article  CAS  Google Scholar 

  • Sandil S, Gowala N (2022) Willows: cost-effective tools for bioremediation of contaminated soils. In: Advances in Bioremediation and Phytoremediation for Sustainable Soil Management: Principles, Monitoring and Remediation. Springer, pp 183–202

  • Saravanan A, Jeevanantham S, Narayanan VA et al (2020) Rhizoremediation–a promising tool for the removal of soil contaminants: a review. J Environ Chem Eng 8:103543

    Article  CAS  Google Scholar 

  • Scelza R, Rao MA, Gianfreda L (2010) Properties of an aged phenanthrene-contaminated soil and its response to bioremediation processes. J Soils Sediments 10:545–555

    Article  CAS  Google Scholar 

  • Sebastian A, Nangia A, Prasad MNV (2020) Advances in agrochemical remediation using nanoparticles. In: Agrochemicals detection, treatment and remediation. Elsevier, pp 465–485

  • Shahsavari E, Poi G, Aburto-Medina A, et al (2017) Bioremediation approaches for petroleum hydrocarbon-contaminated environments. Enhancing cleanup Environ Pollut Vol 1 Biol approaches 21–41

  • Shahzad A, Siddiqui S, Bano A et al (2020) Hydrocarbon degradation in oily sludge by bacterial consortium assisted with alfalfa (Medicago sativa L.) and maize (Zea mays L.). Arab J Geosci 13:1–12

    Article  Google Scholar 

  • Shukla KP, Sharma S, Singh NK et al (2011) Nature and role of root exudates: efficacy in bioremediation. African J Biotechnol 10:9717–9724

    Google Scholar 

  • Shuona C, Hua Y, Jingjing C et al (2017) Physiology and bioprocess of single cell of Stenotrophomonas maltophilia in bioremediation of co-existed benzo [a] pyrene and copper. J Hazard Mater 321:9–17

    Article  Google Scholar 

  • Shylla L, Barik SK, Joshi SR (2021) Characterization and bioremediation potential of native heavy-metal tolerant bacteria isolated from rat-hole coal mine environment. Arch Microbiol 203:2379–2392

    Article  CAS  Google Scholar 

  • Sima NAK, Ebadi A, Reiahisamani N, Rasekh B (2019) Bio-based remediation of petroleum-contaminated saline soils: challenges, the current state-of-the-art and future prospects. J Environ Manage 250:109476

    Article  Google Scholar 

  • Singh V, Waris Z, Saha S, et al (2022) Role of biosurfactants on microbial degradation of oil-contaminated soils. In: Microbes and Microbial Biotechnology for Green Remediation. Elsevier, pp 423–441

  • Singha LP, Pandey P (2017) Glutathione and glutathione-S-transferase activity in Jatropha curcas in association with pyrene degrader Pseudomonas aeruginosa PDB1 in rhizosphere, for alleviation of stress induced by polyaromatic hydrocarbon for effective rhizoremediation. Ecol Eng 102:422–432

    Article  Google Scholar 

  • Sood N, Patle S, Lal B (2010) Bioremediation of acidic oily sludge-contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6. Environ Sci Pollut Res 17:603–610

    Article  CAS  Google Scholar 

  • Sui X, Wang X, Li Y, Ji H (2021) Remediation of petroleum-contaminated soils with microbial and microbial combined methods: advances, mechanisms, and challenges. Sustainability 13:9267

    Article  CAS  Google Scholar 

  • Sung K, Kim KS, Park S (2013) Enhancing degradation of total petroleum hydrocarbons and uptake of heavy metals in a wetland microcosm planted with Phragmites communis by humic acids addition. Int J Phytoremediation 15:536–549

    Article  CAS  Google Scholar 

  • Tang J, Niu X, Sun Q, Wang R (2009) Bioremediation of petroleum polluted soil by combination of rye grass with effective microorganisms. In: 2009 International Conference on Environmental Science and Information Application Technology. IEEE, pp 51–54

  • Tao K, Zhang X, Chen X et al (2019) Response of soil bacterial community to bioaugmentation with a plant residue-immobilized bacterial consortium for crude oil removal. Chemosphere 222:831–838

    Article  CAS  Google Scholar 

  • Tao W, Lin J, Wang W et al (2020) Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1. Ecotoxicol Environ Saf 189:109994

    Article  CAS  Google Scholar 

  • Trivedi P, Leach JE, Tringe SG et al (2020) Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18:607–621

    Article  CAS  Google Scholar 

  • Truskewycz A, Gundry TD, Khudur LS et al (2019) Petroleum hydrocarbon contamination in terrestrial ecosystems—fate and microbial responses. Molecules 24:3400

    Article  CAS  Google Scholar 

  • Ueno R, Wada S, Urano N (2006) Synergetic effects of cell immobilization in polyurethane foam and use of thermotolerant strain on degradation of mixed hydrocarbon substrate by Prototheca zopfii. Fish Sci 72:1027–1033

    Article  CAS  Google Scholar 

  • Ugochukwu UC, Okonkwo F, Sokari W et al (2021) Bioremediation strategy based on risk assessment of exposure to residual polycyclic aromatic hydrocarbons. J Environ Manage 280:111650

    Article  CAS  Google Scholar 

  • Ugya YA, Hasan DB, Tahir SM et al (2021) Microalgae biofilm cultured in nutrient-rich water as a tool for the phycoremediation of petroleum-contaminated water. Int J Phytoremediation 23:1175–1183

    Article  CAS  Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286

    Article  CAS  Google Scholar 

  • Wan CK, Wong JWC, Fang M, Ye DY (2003) Effect of organic waste amendments on degradation of PAHs in soil using thermophillic composting. Environ Technol 24:23–30

    Article  CAS  Google Scholar 

  • Wei Z, Wang JJ, Gaston LA et al (2020) Remediation of crude oil-contaminated coastal marsh soil: Integrated effect of biochar, rhamnolipid biosurfactant and nitrogen application. J Hazard Mater 396:122595

    Article  CAS  Google Scholar 

  • Wollmann F, Dietze S, Ackermann J et al (2019) Microalgae wastewater treatment: biological and technological approaches. Eng Life Sci 19:860–871

    Article  CAS  Google Scholar 

  • Wong JWC, Wan CK, Fang M (2002) Pig manure as a co-composting material for biodegradation of PAH-contaminated soil. Environ Technol 23:15–26

    Article  CAS  Google Scholar 

  • Wu L, Zhang Y, Guo X et al (2022a) Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat Microbiol 7:1054–1062

    Article  CAS  Google Scholar 

  • Wu Y, Ding Q, Zhu Q et al (2018) Contributions of ryegrass, lignin and rhamnolipid to polycyclic aromatic hydrocarbon dissipation in an arable soil. Soil Biol Biochem 118:27–34

    Article  CAS  Google Scholar 

  • Wu Y, Liu X, Dong Q et al (2022b) Remediation of petroleum hydrocarbons-contaminated soil: analysis based on Chinese patents. Chemosphere 297:134173

    Article  CAS  Google Scholar 

  • Wyszkowski M, Wyszkowska J, Borowik A, Kordala N (2020) Contamination of soil with diesel oil, application of sewage sludge and content of macroelements in oats. Water Air Soil Pollut 231:1–12

    Article  Google Scholar 

  • Xia C, Liu Q, Zhao L et al (2022) Enhanced degradation of petroleum hydrocarbons in soil by FeS@ BC activated persulfate and its mechanism. Sep Purif Technol 282:120060

    Article  CAS  Google Scholar 

  • Young D, Rice J, Martin R et al (2015) Degradation of bunker C fuel oil by white-rot fungi in sawdust cultures suggests potential applications in bioremediation. PLoS ONE 10:e0130381

    Article  Google Scholar 

  • Yousaf S, Andria V, Reichenauer TG et al (2010) Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater 184:523–532

    Article  CAS  Google Scholar 

  • Zada S, Zhou H, Xie J et al (2021) Bacterial degradation of pyrene: biochemical reactions and mechanisms. Int Biodeterior Biodegradation 162:105233

    Article  CAS  Google Scholar 

  • Zahed MA, Matinvafa MA, Azari A, Mohajeri L (2022) Biosurfactant, a green and effective solution for bioremediation of petroleum hydrocarbons in the aquatic environment. Discov Water 2:5

    Article  Google Scholar 

  • Zarinkamar F, Reypour F, Soleimanpour S (2013) Effect of diesel fuel contaminated soil on the germination and the growth of Festuca arundinacea. Res J Chem Environ Sci 1:37–41

    Google Scholar 

  • Zhang B, Zhang L, Zhang X (2019a) Bioremediation of petroleum hydrocarbon-contaminated soil by petroleum-degrading bacteria immobilized on biochar. RSC Adv 9:35304–35311

    Article  CAS  Google Scholar 

  • Zhang C, Lu J, Wu J (2019b) Adsorptive removal of polycyclic aromatic hydrocarbons by detritus of green tide algae deposited in coastal sediment. Sci Total Environ 670:320–327

    Article  CAS  Google Scholar 

  • Zhang G, Guo X, Zhu Y et al (2018) The effects of different biochars on microbial quantity, microbial community shift, enzyme activity, and biodegradation of polycyclic aromatic hydrocarbons in soil. Geoderma 328:100–108

    Article  CAS  Google Scholar 

  • Zhang T, Liu Y, Zhong S, Zhang L (2020a) AOPs-based remediation of petroleum hydrocarbons-contaminated soils: efficiency, influencing factors and environmental impacts. Chemosphere 246:125726

    Article  CAS  Google Scholar 

  • Zhang X, Li R, Song J et al (2021) Combined phyto-microbial-electrochemical system enhanced the removal of petroleum hydrocarbons from soil: a profundity remediation strategy. J Hazard Mater 420:126592

    Article  CAS  Google Scholar 

  • Zhang X, Li R, Wang J et al (2022) Construction of conductive network using magnetite to enhance microflora interaction and petroleum hydrocarbons removal in plant-rhizosphere microbial electrochemical system. Chem Eng J 433:133600

    Article  CAS  Google Scholar 

  • Zhang X, Li X, Zhao X et al (2020b) Bioelectric field accelerates the conversion of carbon and nitrogen in soil bioelectrochemical systems. J Hazard Mater 388:121790

    Article  CAS  Google Scholar 

  • Zhang Z, Hou Z, Yang C et al (2011) Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresour Technol 102:4111–4116

    Article  CAS  Google Scholar 

  • Zhen M, Tang J, Li C, Sun H (2021) Rhamnolipid-modified biochar-enhanced bioremediation of crude oil-contaminated soil and mediated regulation of greenhouse gas emission in soil. J Soils Sediments 21:123–133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to the study conception and design. Material preparation, search, and collection of relevant articles and reviews were performed by Rida Zainab, Maria Hasnain, Faraz Ali, Daniel Anthony Dias, Ali El-Keblawy, and Zainul Abideen thoroughly checked the first draft and improved the manuscript critically. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Zainul Abideen.

Ethics declarations

Ethics approval

Not applicable.

The present study work was not conducted on human or experimental animals where national or international guidelines are used for the protection of human subjects and animal welfare.

Consent to participate

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that all the authors listed in the manuscript have been approved by all of us.

Consent for publication

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that all the authors listed in the manuscript have been approved.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Robert Duran

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainab, R., Hasnain, M., Ali, F. et al. Exploring the bioremediation capability of petroleum-contaminated soils for enhanced environmental sustainability and minimization of ecotoxicological concerns. Environ Sci Pollut Res 30, 104933–104957 (2023). https://doi.org/10.1007/s11356-023-29801-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-29801-1

Keywords

Navigation