Skip to main content

Advertisement

Log in

Critical parameters affecting the thermal resistance of alkali-activated aluminosilicate wastes: Current understanding and future directions

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Many research articles and reviews have recognized alkali-activated materials (AAMs) as eco-friendly alternative binders to ordinary Portland cement (OPC) due to their economic andenvironmental advantages. However, few literature surveys reported the physical, mechanical and microstructural changes that occur after the exposure of AAMs to elevated temperatures. Owing to the wide diversity in the properties of aluminosilicates, alkali-activation conditions, and additives, a deep survey is needed to understand how different factors can affect the performance of AAMs under elevated temperatures. Therefore, this review extensively discusses the impact of recent critical parameters, including aluminosilicate compositions, aggregate type and mineral, micro, and nano additives, on the behavior of AAMs under thermal load. It can be concluded that regardless of alkali-activator type and concentration, alkali-activated fly ash shows higher thermal resistance than alkali-activated metakaolin and slag. Moreover, the presence of an adequate amount of calcium can increase the thermal stability of AAMs, while the iron has a varying effect on the thermal resistance of AAMs, either positively or negatively. Compared with all additives and aggregates, using waste glass and lightweight aggregates enhanced the thermal resistance of AAMs. Howerver, some types of aggregate having a binding ability which increase the residual strength after heat exposure. Considering the fineness of materials, evaluating the role of nano and micro materials on the properties of AAMs at high temperatures is reviewed. Based on this survey, several promising topics for future work are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

All data and materials will be available upon request.

References

  • Abbass AM, Abd Elrahman M, Sikora P, Strzałkowski J, Stephan D, Abdel-Gawwad HA (2023) From dolomite waste to katoite-based binder: synthesis, performance and characterization. J Build Eng 75:106971

    Article  Google Scholar 

  • Abdel-Gawwad HA (2021) Thermo-alkali activation of talc for the production of a novel white one-part alkali-activated magnesia-based cement. Construct Build Mater 306:124909

    Article  CAS  Google Scholar 

  • Abdel-Gawwad HA, Heikal M, Mohammed MS, Abd El-Aleem S, Hassan HS, Vásquez García SR, Alomayri T (2019) Sustainable disposal of cement kiln dust in the production of cementitious materials. J Clean Prod 232:1218–1229

    Article  CAS  Google Scholar 

  • Abdel-Gawwad HA, Mohammed AH, Arif MA, Shoukry H, Abadel AA, Al-Kroom H et al (2022) Role of magnesium chloride in the performance and phase composition of lead glass sludge foam. Mater Lett 320:132325

    Article  CAS  Google Scholar 

  • Abdel-Gawwad HA, Kassem S, Abadel A, Alghamdi H, Nehdi ML, Shoukry H (2023) Valorizing hazardous lead glass sludge and alumina flakes filling waste for the synthesis of geopolymer building bricks. Environ Sci Pollut Res 30(2):5267–5279

    Article  CAS  Google Scholar 

  • Abdulkareem OA, Al Bakri AM, Kamarudin H, Nizar IK, Ala’eddin AS (2014) Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Construct Build Mater 50:377–387

    Article  Google Scholar 

  • Abo-El-Enein SA, El-Hosiny FI, El-Gamal SMA, Amin MS, Ramadan M (2018) Gamma radiation shielding, fire resistance and physicochemical characteristics of Portland cement pastes modified with synthesized Fe2O3 and ZnO nanoparticles. Construct Build Mater 173:687–706

    Article  CAS  Google Scholar 

  • Aboulayt A, Gounni A, El Alami M, Hakkou R, Hannache H, Gomina M, Moussa R (2020) Thermo-physical characterization of a metakaolin-based geopolymer incorporating calcium carbonate: A case study. Mater Chem Phys 252:123266

    Article  CAS  Google Scholar 

  • Adesanya E, Karhu M, Ismailov A, Ohenoja K, Kinnunen P, Illikainen M (2021) Thermal behaviour of ladle slag mortars containing ferrochrome slag aggregates. Adv Cem Res 33:168–182. https://doi.org/10.1680/jadcr.19.00040

    Article  Google Scholar 

  • Akarken G, Cengiz U (2023) Fabrication and characterization of metakaolin-based fiber reinforced fire resistant geopolymer. Applied Clay Science 232:106786

    Article  CAS  Google Scholar 

  • Akçaözoğlu S, Çiflikli M, Bozkaya Ö, Atiş CD, Ulu C (2022) Examination of mechanical properties and microstructure of alkali activated slag and slag-metakaolin blends exposed to high temperatures. Structural Concrete 23(2):1273–1289

    Article  Google Scholar 

  • Ali SIA, Lublóy É (2022) Fire resistance properties of heavyweight magnetite concrete in comparison with normal basalt-and quartz-based concrete. J Therm Anal Calorim 147(21):11679–11691

    Article  CAS  Google Scholar 

  • Al-kroom H, Arif MA, Elkhoresy AH, El-Aleem SA, Mohammed AH, Elrahman MA, Abdel-Gawwad HA (2022) Synergistic positive effects of nano barium silicate on the hydration rate and phase composition of alkali-activated slag. J Build Eng 59:105109

    Article  Google Scholar 

  • Alomayri T, Adesina A, Das S (2021) Influence of amorphous raw rice husk ash as precursor and curing condition on the performance of alkali activated concrete. Case Stud Constr Mater 15:e00777

    Google Scholar 

  • Alonso MM, Rodríguez A, Puertas F (2018) Viability of the use of construction and demolition waste aggregates in alkali-activated mortars. Mater Constr 68(331):e164

    Article  Google Scholar 

  • Alventosa KML, Wild B, White CE (2022) The effects of calcium hydroxide and activator chemistry on alkali-activated metakaolin pastes exposed to high temperatures. Cem Concr Res 154:106742

    Article  CAS  Google Scholar 

  • Alzeer MI, Cheeseman C, Kinnunen P (2022) New synthetic glass-based supplementary cementitious materials derived from basalt composition. J Build Eng 46:103699

    Article  Google Scholar 

  • Ameri F, Shoaei P, Zareei SA, Behforouz B (2019) Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars. Construct Build Mater 222:49–63

    Article  CAS  Google Scholar 

  • Amran M, Fediuk R, Klyuev S, Qader DN (2022) Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder. Case Stud Constr Mater 17:e01550

    Google Scholar 

  • Arce A, Komkova A, Van De Sande J, Papanicolaou CG, Triantafillou TC (2022) Optimal Design of Ferronickel Slag Alkali-Activated Material for High Thermal Load Applications Developed by Design of Experiment. Materials 15(13):4379

    Article  CAS  Google Scholar 

  • Baduge SK, Mendis P, San Nicolas R, Nguyen K, Hajimohammadi A (2019) Performance of lightweight hemp concrete with alkali-activated cenosphere binders exposed to elevated temperature. Construct Build Mater 224:158–172

    Article  Google Scholar 

  • Bafti A, Rukavina M, Mandić V, Panžić I, Pavić L, Krajnc A, Volavšek J (2023) Monitoring of the conductivity properties with respect to the development of geopolymer network. Ceram Int 49(14):24598–24610

    Article  Google Scholar 

  • Bakharev T (2006) Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem Concr Res 36:1134–1147. https://doi.org/10.1016/j.cemconres.2006.03.022

    Article  CAS  Google Scholar 

  • Bernal SA, Rodríguez ED, De Gutiíerrez RM, Gordillo M, Provis JL (2011) Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J Mater Sci 46:5477–5486

    Article  CAS  Google Scholar 

  • Bernal SA, Provis JL, Walkley B, Nicolas SR, Gehman JD, Brice DG, Kilcullen AR, Duxon P, Deventer JS (2013) Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res 53:127–144

    Article  CAS  Google Scholar 

  • Bernal SA, Rodríguez ED, Mejía de Gutiérrez R, Provis JL (2015) Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Mater Constr 65(318):e049

    Article  Google Scholar 

  • Bhattacharya M, Basak T (2017) Susceptor-assisted enhanced microwave processing of ceramics-a review. Crit Rev Solid State Mater Sci 42(6):433–469

    Article  CAS  Google Scholar 

  • Bualuang T, Jitsangiam P, Suwan T, Rattanasak U, Tangchirapat W, Thongmunee S (2021) Influence of asphalt emulsion inclusion on Fly Ash/hydrated lime alkali-activated material. Materials 14(22):7017

    Article  CAS  Google Scholar 

  • Burciaga-Díaz O, Escalante-García JI (2017) Comparative performance of alkali activated slag/metakaolin cement pastes exposed to high temperatures. Cem Concr Compos 84:157–166

    Article  Google Scholar 

  • Burciaga-Díaz O, Magallanes-Rivera RX, Escalante-García JI (2013) Alkali-activated slag-metakaolin pastes: strength, structural, and microstructural characterization. J Sustain Cem-Based Mater 2(2):111–127

    Google Scholar 

  • Burciaga-Díaz O, Escalante-García JI, Magallanes-Rivera RX (2015) Compressive strength and microstructural evolution of metakaolin geopolymers exposed at high temperature. Alcompat J 5(1):54e72

    Google Scholar 

  • Cai R, Ye H (2021) Clinkerless ultra-high strength concrete based on alkali-activated slag at high temperatures. Cem Concr Res 145:106465

    Article  CAS  Google Scholar 

  • Carey T. (2013) Chemical Control of Thermal Expansion in Zeolites with the LTA Topology, http://etheses.bham.ac.uk/4258/1/Carey13PhD.pdf.

  • Çelikten S, Sarıdemir M, Deneme İÖ (2019) Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature. Construct Build Mater 217:50–61

    Article  Google Scholar 

  • Cheng T.W., Chiu J.P., Fire-resistant geopolymer produce by granulated blast furnace slag, Miner Eng. 16 (2003) 205–210, https://doi.org/10.1016/S0892-6875(03)00008-6.

  • Cheyad SM, Hilo AN, Al-Gasham TS (2022) Comparing the abrasion resistance of conventional concrete and geopolymer samples. Mater Today: Proc 56:1832–1839

    Article  CAS  Google Scholar 

  • Chindaprasirt P, Sriopas B, Phosri P, Yoddumrong P, Anantakarn K, Kroehong W (2022a) Hybrid high calcium fly ash alkali-activated repair material for concrete exposed to sulfate environment. J Build Eng 45:103590

    Article  Google Scholar 

  • Chindaprasirt P, Sukontasukkul P, Sata V, Cao T (2022b) Fire resistance of recycled aggregate alkali-activated concrete. In: Handbook of advances in alkali-activated concrete. Woodhead Publishing Series in Civil and Structural Engineering, pp 489–506

  • Chindaprasirt P, Lao-un J, Zaetang Y, Wongkvanklom A, Phoo-ngernkham T, Wongsa A, Sata V (2022c) Thermal insulating and fire resistance performances of geopolymer mortar containing auto glass waste as fine aggregate. J Build Eng 60:105178

    Article  Google Scholar 

  • Choubi SS, Akgul CM (2022) High temperature exposure of alkali-activated coal fly ashes. J Build Eng 59:105081

    Article  Google Scholar 

  • Cong P, Cheng Y, Ge W, Zhang A (2022) Mechanical, microstructure and reaction process of calcium carbide slag-waste red brick powder based alkali-activated materials (CWAAMs). J Clean Prod 331:129845

    Article  CAS  Google Scholar 

  • Coppola B, Tardivat C, Richaud S, Tulliani JM, Montanaro L, Palmero P (2020) Alkali-activated refractory wastes exposed to high temperatures: development and characterization. J Eur Ceram Soc 40(8):3314–3326

    Article  CAS  Google Scholar 

  • Das SK, Mishra J, Mustakim SM, Adesina A, Kaze CR, Das D (2022) Sustainable utilization of ultrafine rice husk ash in alkali activated concrete: Characterization and performance evaluation. J Sustain Cem-Based Mater 11(2):142–160

    Google Scholar 

  • Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Thermal Anal 37(8):1633e1656

    Article  Google Scholar 

  • Davidovits J (2020) Geopolymer chemistry and applications. In: The manufacture of geopolymer cements, 4th edn. Institut Géopolymère Saint-Quentin, France, pp 589–618

  • Dener M, Karatas M, Mohabbi M (2021) High temperature resistance of self-compacting alkali activated slag/portland cement composite using lightweight aggregate. Construct Build Mater 290:123250

    Article  CAS  Google Scholar 

  • Dhasindrakrishna K, Ramakrishnan S, Pasupathy K, Sanjayan J (2022) Synthesis and performance of intumescent alkali-activated rice husk ash for fire-resistant applications. J Build Eng 51:104281

    Article  Google Scholar 

  • Dombrowski K, Weil A, Buchwald M (2007) The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J Mater Sci 42(9):3033–3043. https://doi.org/10.1007/s10853-006-0532-7

    Article  CAS  Google Scholar 

  • Dran'kov A et al (2022) Hydrothermal synthesis, structure and sorption performance to cesium and strontium ions of nanostructured magnetic zeolite composites. Nucl Eng Technol 54(6):1991–2003

    Article  CAS  Google Scholar 

  • Duan P, Yan C, Zhou W (2017) Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cem Concr Compos 78:108–119

    Article  CAS  Google Scholar 

  • Dupuy C, Gharzouni A, Texier-Mandoki N, Bourbon X, Rossignol S (2018) Thermal resistance of argillite-based alkali-activated materials. Part 1: Effect of calcination processes and alkali cation. Mater Chem Phys 217:323–333

    Article  CAS  Google Scholar 

  • Duxson P, Lukey GC, Van Deventer JSJ (2007) Physical evolution of Na-geopolymer derived from metakaolin up to 1000°C. J Mater Sci 42:3044–3054. https://doi.org/10.1007/s10853-006-0535-4

    Article  CAS  Google Scholar 

  • Esparham A (2022) A review of the features of geopolymer cementitious composites for use in green construction and sustainable urban development. Cent Asian J Environ Sci Technol Innov 3(3):64–74

    Google Scholar 

  • Fernández-Jiménez A, Palomo A, Criado M (2006) Alkali activated fly ash binders. A comparative study between sodium and potassium activators [Activacíon alcalina de cenizas volantes, Estudio comparativo entre activadores sódicos y pótasicos]. Mater Construccíon 56:51–65. https://doi.org/10.3989/mc.2006.v56.i281.92

    Article  Google Scholar 

  • Fernández-Jiménez A, Pastor JY, Martín A, Palomo A (2010) High-temperature resistance in alkali-activated cement. J Am Ceram Soc 93:3411–3417. https://doi.org/10.1111/j.1551-2916.2010.03887.x

    Article  CAS  Google Scholar 

  • Ferreira FA, Desir JM, de Lima GES, Pedroti LG, de Carvalho JMF, Lotero A, Consoli NC (2023) Evaluation of mechanical and microstructural properties of eggshell lime/rice husk ash alkali-activated cement. Construct Build Mater 364:129931

    Article  CAS  Google Scholar 

  • Firdous R, Nikravan M, Mancke R et al (2022) Assessment of environmental, economic and technical performance of geopolymer concrete: a case study. J Mater Sci 57:18711–18725. https://doi.org/10.1007/s10853-022-07820-6

    Article  CAS  Google Scholar 

  • Fu C, Ye H, Zhu K, Fang D, Zhou J (2020) Alkali cation effects on chloride binding of alkali-activated fly ash and metakaolin geopolymers. Cem Concr Compos 114:103721

    Article  CAS  Google Scholar 

  • Gao Z, Zhang P, Wang J, Wang K, Zhang T (2022) Interfacial properties of geopolymer mortar and concrete substrate: Effect of polyvinyl alcohol fiber and nano-SiO2 contents. Construct Build Mater 315:125735

    Article  CAS  Google Scholar 

  • Giosuè C, Mobili A, Di Perna C, Tittarelli F (2019) Performance of lightweight cement-based and alkali-activated mortars exposed to high-temperature. Construct Build Mater 220:565–576

    Article  Google Scholar 

  • Han Q, Zhang P, Wu J, Jing Y, Zhang D, Zhang T (2022) Comprehensive review of the properties of fly ash-based geopolymer with additive of nano-SiO2. Nanotechnol Rev 11(1):1478–1498

    Article  CAS  Google Scholar 

  • Huang Y, Lin Z (2010) Effect of sodium hydroxide on the properties of phosphogypsum based cement. Journal of Wuhan University of Technology-Mater. Sci Ed 25(2):342–345

    CAS  Google Scholar 

  • Humur G, Çevik A (2022) Effects of hybrid fibers and nanosilica on mechanical and durability properties of lightweight engineered geopolymer composites subjected to cyclic loading and heating–cooling cycles. Construct Build Mater 326:126846

    Article  CAS  Google Scholar 

  • Huseien GF, Sam ARM, Mirza J, Tahir MM, Asaad MA, Ismail M, Shah KW (2018) Waste ceramic powder incorporated alkali activated mortars exposed to elevated Temperatures: Performance evaluation. Construct Build Mater 187:307–317

    Article  CAS  Google Scholar 

  • Ismail I, Bernal SA, Provis JL, Nicolas RS, Hamdan S, Deventer JS (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos 45:125–135

    Article  CAS  Google Scholar 

  • JaiSai T (2022) Physical properties and acid resistance of geopolymer mortar prepared from synthetic water containing hydrochloric acid. Mater Today: Proc 60:33–39

    Article  CAS  Google Scholar 

  • Jeon D, Jun Y, Jeong Y, Oh JE (2015) Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated class F fly ash system. Cem Concr Res 67:215–225

    Article  CAS  Google Scholar 

  • Jha B, Singh DN (2016) Fly Ash Zeolites: Innovations, applications and directions. https://doi.org/10.1007/978-981-10-1404-8

    Book  Google Scholar 

  • Jiang X, Xiao R, Ma Y, Zhang M, Bai Y, Huang B (2020) Influence of waste glass powder on the physico-mechanical properties and microstructures of fly ash-based geopolymer paste after exposure to high temperatures. Construct Build Mater 262:120579

    Article  CAS  Google Scholar 

  • Junaid MT, Khennane A, Kayali O, Sadaoui A, Picard D, Fafard M (2014) Aspects of the deformational behaviour of alkali activated fly ash concrete at elevated temperatures. Cem Concr Res 60:24–29

    Article  CAS  Google Scholar 

  • Kaja AM, Lazaro A, Yu QL (2018) Effects of Portland cement on activation mechanism of class F fly ash geopolymer cured under ambient conditions. Construct Build Mater 189:1113–1123. https://doi.org/10.1016/j.conbuildmat.2018.09.065

    Article  CAS  Google Scholar 

  • Kalinkin AM, Nath SK, Kalinkina EV, Kumar S (2023) Chapter 9 -Geopolymerization of coal fly ash: effect of milling and mechanical activation. In: Managing mining and minerals processing wastes. Elsevier, pp 189–208. https://doi.org/10.1016/B978-0-323-91283-9.00009-2

  • Kantarci F, Türkmen İ, Ekinci E (2021) Improving elevated temperature performance of geopolymer concrete utilizing nano-silica, micro-silica and styrene-butadiene latex. Construct Build Mater 286:122980

    Article  CAS  Google Scholar 

  • Khater HM, El Gawwad HAA (2015) Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT. Adv Nano Res 3(4):225

    Article  Google Scholar 

  • Khater HM, Gharieb M (2022) Synergetic effect of nano-silica fume for enhancing physico-mechanical properties and thermal behavior of MK-geopolymer composites. Construct Build Mater 350:128879

    Article  CAS  Google Scholar 

  • Khoury GA (1992) Compressive strength of concrete at high temperatures: a reassessment. Mag Concr Res 44(161):291–309

    Article  CAS  Google Scholar 

  • Klima KM, Schollbach K, Brouwers HJH, Yu Q (2022) Thermal and fire resistance of Class F fly ash based geopolymers–a review. Construct Build Mater 323:126529

    Article  CAS  Google Scholar 

  • Kohout J, Koutník P, Hájková P, Kohoutová E, Soukup A (2022) Effect of Different Types of Aluminosilicates on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Polymers 14(22):4838

    Article  CAS  Google Scholar 

  • Koksal F, Bayraktar OY, Bodur B, Benli A, Kaplan G (2022) Insulating and fire‐resistant performance of slag and brick powder based one‐part alkali‐activated lightweight mortars. Structural Concrete, pp 1–19. https://doi.org/10.1002/suco.202200607

  • Kong DLY, Sanjayan JG (2010) Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res 40:334–339

    Article  CAS  Google Scholar 

  • Kong DL, Sanjayan JG, Sagoe-Crentsil K (2007) Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res 37(12):1583–1589

    Article  CAS  Google Scholar 

  • Kong DLY, Sanjayan JG, Sagoe-Crentsil K (2008) Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures. J Mater Sci 43:824–831

    Article  CAS  Google Scholar 

  • Korniejenko K, Kejzlar P, Louda P (2022) The influence of the material structure on the mechanical properties of geopolymer composites reinforced with short fibers obtained with additive technologies. Int J Mol Sci 23:2023

    Article  CAS  Google Scholar 

  • Kosanovic C, Subotic B, Smit I (1998) Thermally induced phase transformations in cation-exchanged zeolites 4A, 13X and synthetic mordenite and their amorphous derivatives obtained by mechanochemical treatment. Thermochim Acta 317(1):25–37. https://doi.org/10.1016/S0040-6031(98)00353-0

    Article  CAS  Google Scholar 

  • Lahoti M, Wong KK, Tan KH, Yang EH (2018) Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure. Mater Des 154:8–19

    Article  CAS  Google Scholar 

  • Lee NK, Lee HK (2015) Reactivity and reaction products of alkali-activated, fly ash/slag paste. Construct Build Mater 81:303–312

    Article  Google Scholar 

  • Lee N, Koh K, An G, Ryu G (2017) Influence of binder composition on the gel structure in alkali activated fly ash/slag pastes exposed to elevated temperatures. Ceram Int 43(2):2471–2480

    Article  CAS  Google Scholar 

  • Li YL, Zhao XL, Raman RS, Al-Saadi S (2018) Thermal and mechanical properties of alkali-activated slag paste, mortar and concrete utilising seawater and sea sand. Construct Build Mater 159:704–724

    Article  CAS  Google Scholar 

  • Li Z, Nedeljković M, Chen B, Ye G (2019) Mitigating the autogenous shrinkage of alkali-activated slag by metakaolin. Cem Concr Res 122:30–41

    Article  CAS  Google Scholar 

  • Li F, Chen D, Yang Z, Lu Y, Zhang H, Li S (2022) Effect of mixed fibers on fly ash-based geopolymer resistance against carbonation. Construct Build Mater 322:126394

    Article  CAS  Google Scholar 

  • Likes L, Markandeya A, Haider MM, Bollinger D, McCloy JS, Nassiri S (2022) Recycled concrete and brick powders as supplements to Portland cement for more sustainable concrete. J Clean Prod 364:132651

    Article  CAS  Google Scholar 

  • Lin W, Zhou F, Luo W, You L (2021) Effect of alkali cation type on compressive strength and thermal performance of the alkali-activated omphacite tailing. Construct Build Mater 306:124647

    Article  CAS  Google Scholar 

  • Ling TC, Poon CS, Kou SC (2012) Influence of recycled glass content and curing conditions on the properties of self-compacting concrete after exposure to elevated temperatures. Cem Concr Compos 34:265–272

    Article  CAS  Google Scholar 

  • Long Q, Liu Y, Zhao Q, Zhou M, Li B (2023) Effects of GGBFS: FA ratio and humid-heat-treating on the mechanical performance and microstructure of the steel slag-based ternary geopolymer. Constr Build Mater 392:131750. https://doi.org/10.1016/j.conbuildmat.2023.131750

    Article  CAS  Google Scholar 

  • Lu J-X, Poon CS (2018) Use of waste glass in alkali activated cement mortar. Constr Build Mater 160:399–407. https://doi.org/10.1016/j.conbuildmat.2017.11.080

    Article  CAS  Google Scholar 

  • Luhar S, Chaudhary S, Luhar I (2018) Thermal resistance of fly ash based rubberized geopolymer concrete. J Build Eng 19:420–428

    Article  Google Scholar 

  • Ma H, Wu C (2022) Mechanical and microstructural properties of alkali-activated fly ash-slag material under sustained moderate temperature effect. Cem Concr Compos 134:104744

    Article  CAS  Google Scholar 

  • Malik MA, Sarkar M, Xu S, Li Q (2019) Effect of PVA/SiO2 NPs additive on the structural, durability, and fire resistance properties of geopolymers. Appl Sci 9(9):1953

    Article  CAS  Google Scholar 

  • Martin A, Pastor JY, Palomo A, Jiménez AF (2015) Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers). Construct Build Mater 93:1188–1196

    Article  Google Scholar 

  • Mastali M, Shaad KM, Abdollahnejad Z et al (2020) Towards sustainable bricks made with fiber-reinforced alkali-activated desulfurization slag mortars incorporating carbonated basic oxygen furnace aggregates. Construct Build Mater 232:117258

    Article  CAS  Google Scholar 

  • Mills J, Mondal P, Wagner N (2022) Structure-property relationships and state behavior of alkali-activated aluminosilicate gels. Cem Concr Res 151:106618

    Article  CAS  Google Scholar 

  • Mohammed MS, ElKady H, Abdel-Gawwad HA (2021) Utilization of construction and demolition waste and synthetic aggregates. J Build Eng 43:103207

    Article  Google Scholar 

  • Natarajan P, Sivasakthi M, Revathi T, Jeyalakshmi R (2022) A comparative study on fly ash pozzolanic cement mortar and ambient-cured alkali-activated fly ash–GGBS cement mortar after exposure to elevated temperature. Innov Infrastruct Solut 7(1):1–11

    Article  Google Scholar 

  • Newaz KMN, Kumar SP (2020) Effect of waste glass fine aggregate on the strength, durability and high temperature resistance of alkali-activated fly ash and GGBFS blended mortar. Construct Build Mater 263:120177

    Article  Google Scholar 

  • Nodehi M, Ozbakkaloglu T, Gholampour A (2022) Effect of supplementary cementitious materials on properties of 3D printed conventional and alkali-activated concrete: A review. Autom Constr 138:104215

    Article  Google Scholar 

  • Nuaklong P, Jongvivatsakul P, Pothisiri T et al (2020) Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J Clean Prod 252:119797

    Article  CAS  Google Scholar 

  • Nuaklong P, Boonchoo N, Jongvivatsakul P, Charinpanitkul T, Sukontasukkul P (2021) Hybrid effect of carbon nanotubes and polypropylene fibers on mechanical properties and fire resistance of cement mortar. Construct Build Mater 275:122189

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Majhi S, Sarker PK, Mukherjee A (2023) Microstructure and residual properties of raw and ground ferronickel slag incorporated self-compacting concrete exposed to elevated temperatures. Construct Build Mater 362:129707

    Article  CAS  Google Scholar 

  • Ouda AS, Gharieb M (2021) Behavior of alkali-activated pozzocrete-fly ash paste modified with ceramic tile waste against elevated temperatures and seawater attacks. Construct Build Mater 285:122866

    Article  CAS  Google Scholar 

  • Ouedraogo E, Roosefid M, Prompt N, Deteuf C (2011) Refractory concretes uniaxial compression behaviour under high temperature testing conditions. J Eur Ceram Soc 31:2763–2774

    Article  CAS  Google Scholar 

  • Pan Z, Sanjayan JG (2012) Factors influencing softening temperature and hot-strength of geopolymers. Cem Concr Compos 34(2):261–264. https://doi.org/10.1016/j.cemconcomp.2011.09.019

    Article  CAS  Google Scholar 

  • Pan Z, Tao Z, Cao YF, Wuhrer R, Murphy T (2018a) Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature. Cem Concr Compos 86:9–18

    Article  CAS  Google Scholar 

  • Pan Z, Tao Z, Cao YF, Wuhrer R (2018b) Measurement and prediction of thermal properties of alkali-activated fly ash/slag binders at elevated temperatures. Mater Struct 51(4):1–13

    Article  Google Scholar 

  • Panasenko AE et al (2022) A novel approach for rice straw agricultural waste utilization: Synthesis of solid aluminosilicate matrices for cesium immobilization. Nucl Eng Technol 54(9):3250–3259

    Article  CAS  Google Scholar 

  • Panitsa OA, Kioupis D, Kakali G (2022) Thermal and microwave synthesis of silica fumebased solid activator for the one-part geopolymerization of fly ash. Environ Sci Pollut Res 29(39):59513–59523. https://doi.org/10.1007/s11356-022-20081-9

    Article  CAS  Google Scholar 

  • Papynov EK et al (2018) A complex approach to assessing porous structure of structured ceramics obtained by SPS technique. Mater Charact 145:294–302

    Article  CAS  Google Scholar 

  • Papynov EK et al (2021) SrAl2Si2O8 ceramic matrices for 90Sr immobilization obtained via spark plasma sintering-reactive synthesis. Nucl Eng Technol 53(7):2289–2294

    Article  CAS  Google Scholar 

  • Park SM, Jang JG, Lee NK, Lee HK (2016) Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures. Cem Concr Res 89:72–79

    Article  CAS  Google Scholar 

  • Perez-Cortes P, Cabrera-Luna K, Escalante-Garcia JI (2021) Alkali-activated limestone/metakaolin cements exposed to high temperatures: Structural changes. Cement and Concrete Composites 122:104147

    Article  CAS  Google Scholar 

  • Peys A, Douvalis AP, Siakati C, Rahier H, Blanpain B (2019) The influence of air and temperature on the reaction mechanism and molecular structure of fe-silicate inorganic polymers. J Non Cryst Solids 526:119675. https://doi.org/10.1016/j.jnoncrysol.2019.119675

    Article  CAS  Google Scholar 

  • Phoo-ngernkham T, Maegawa A, Mishima N, Hatanaka S, Chindaprasirt P (2015) Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. Construct Build Mater 91:1–8

    Article  Google Scholar 

  • Ponomar V, Adesanya E, Ohenoja K, Illikainen M (2022) High-temperature performance of slag-based Fe-rich alkali-activated materials. Cem Concr Res 161:106960

    Article  CAS  Google Scholar 

  • Raj PA, Sarath D, Nagarajan P, Shashikala AP (2023) Behaviour of geopolymer concrete at elevated temperature-a comprehensive review. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2023.03.521

  • Rakhimova NR (2020) A review of calcined clays and ceramic wastes as sources for alkali-activated materials. Geosystem Eng 23(5):287–298

    Article  Google Scholar 

  • Rakhimova NR (2022) Recent advances in blended alkali-activated cements: A review. Eur J Environ Civ Eng 26(10):4596–4618

    Article  Google Scholar 

  • Ramadan M, Amin MS, Waly SA, Mohsen A (2021) Effect of high gamma radiation dosage and elevated temperature on the mechanical performance of sustainable alkali-activated composite as a cleaner product. Cem Concr Compos 121:104087

    Article  CAS  Google Scholar 

  • Ramagiri KK, Kar A (2020) Effect of high-temperature on the microstructure of alkali-activated binder. Mater Today: Proc 28:1123–1129

    Article  CAS  Google Scholar 

  • Rashad AM (2015) Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles. J Clean Prod 87:717–725

    Article  CAS  Google Scholar 

  • Rashad AM (2019) A short manual on natural pumice as a lightweight aggregate. Journal of Building Engineering 25:100802

    Article  Google Scholar 

  • Rashad AM (2020) An investigation on alkali-activated slag pastes containing quartz powder subjected to elevated temperatures. Revista de la construcción 19(1):42–51

    Article  Google Scholar 

  • Rashad AM, Khalil MH (2013) A preliminary study of alkali-activated slag blended with silica fume under the effect of thermal loads and thermal shock cycles. Construct Build Mater 40:522–532

    Article  Google Scholar 

  • Rashad AM, Ouda AS (2016) An investigation on alkali-activated fly ash pastes modified with quartz powder subjected to elevated temperatures. Construct Build Mater 122:417–425

    Article  CAS  Google Scholar 

  • Rashad AM, Ouda AS (2019) Thermal resistance of alkali-activated metakaolin pastes containing nano-silica particles. J Therm Anal Calorim 136(2):609–620

    Article  CAS  Google Scholar 

  • Rashad AM, Essa GM (2020) Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature. Cem Concr Compos 111:103617

    Article  CAS  Google Scholar 

  • Rashad AM, Sadek DM, Hassan HA (2016) An investigation on blast-furnace stag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures. J Clean Prod 112:1086–1096

    Article  CAS  Google Scholar 

  • Rashad AM, Essa GMF, Abdel-Gawwad HA (2022) An investigation of alkali-activated slag pastes containing recycled glass powder under the effect of elevated temperatures. Environ Sci Pollut Res 29(19):28647–28660

    Article  CAS  Google Scholar 

  • Rickard W et al (2012) Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition. J Non Cryst Solids 358:1830–1839

    Article  CAS  Google Scholar 

  • Rickard WDA, Van Riessen A, Walls P (2010) Thermal character of geopolymers synthesized from class F Fly ash containing high concentrations of iron and α-quartz. Int J Appl Ceram Technol 7:81–88

    Article  CAS  Google Scholar 

  • Rickard WDA, Gluth GJG, Pistol K (2016) In-situ thermo-mechanical testing of fly ash geopolymer concretes made with quartz and expanded clay aggregates. Cem Concr Res 80:33–43

    Article  CAS  Google Scholar 

  • Tajuelo RE, Garbev K, Merz D, Black L, I.G. (2017) Richardson, Thermal stability of C-S-H phases and applicability of Richardson and Groves’ and Richardson C-(A)-S-H(I) models to synthetic C-S-H. Cem Concr Res 93:45–56. https://doi.org/10.1016/j.cemconres.2016.12.005

    Article  CAS  Google Scholar 

  • Rovnaník P, Šafránková K (2016) Thermal behaviour of metakaolin/fly ash geopolymers with chamotte aggregate. Materials 9(7):535

    Article  Google Scholar 

  • Rovnaník P, Bayer P, Rovnaníková P (2013) Characterization of alkali activated slag paste after exposure to high temperatures. Construct Build Mater 47:1479–1487

    Article  Google Scholar 

  • Rovnaníková P, Bayer P, Rovnaník P, Novák J (2005) Properties of alkali-activated aluminosilicate materials with fire-resistant aggregate after high temperature loading. In: Cement combinations for durable concrete: proceedings of the international conference held at the University of Dundee, Scotland, UK on 5–7 July 2005. Thomas Telford Publishing, pp 277–286. https://doi.org/10.1680/ccfdc.34013.0030

  • Saleh AA, Abdel-Gawwad HA, Abd EL-Moghny MG, El-Deab MS (2021) The sustainable utilization of weathered cement kiln dust in the cleaner production of alkali activated binder incorporating glass sludge. Construct Build Mater 300:124308

    Article  CAS  Google Scholar 

  • Salih MA, Farzadnia N, Demirboga R, Ali AAA (2022) Effect of elevated temperatures on mechanical and microstructural properties of alkali-activated mortar made up of POFA and GGBS. Construct Build Mater 328:127041

    Article  Google Scholar 

  • Sandanayake M, Law D, Sargent P (2022) A new framework for assessing the environmental impacts of circular economy friendly soil waste-based geopolymer cements. Build Environ 210:108702

    Article  Google Scholar 

  • Sarıdemir M, Çelikten S (2020) Investigation of fire and chemical effects on the properties of alkali-activated lightweight concretes produced with basaltic pumice aggregate. Construct Build Mater 260:119969

    Article  Google Scholar 

  • Sarker PK, Kelly S, Yao Z (2014) Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Materials & Design 63:584–592

    Article  CAS  Google Scholar 

  • Sasui S, Kim G, Nam J, van Riessen A, Hadzima-Nyarko M, Choe G, Suh D, Jinwuth W (2022) Effects of waste glass sand on the thermal behavior and strength of fly ash and GGBS based alkali activated mortar exposed to elevated temperature. Construct Build Mater 316:125864

    Article  CAS  Google Scholar 

  • Sayed DG, El-Hosiny FI, El-Gamal SMA, Hazem MM, Ramadan M (2022) Synergetic impacts of mesoporous α-Fe2O3 nanoparticles on the performance of alkali-activated slag against fire, gamma rays, and some microorganisms. Journal of Building Engineering 57:104947

    Article  Google Scholar 

  • Scheinherrová L, Keppert M, Černý R (2022) Chemical aspects of the application of basalt in cement composites. Construct Build Mater 350:128873

    Article  Google Scholar 

  • Sedaghatdoost A, Behfarnia K, Bayati M et al (2019) Influence of recycled concrete aggregates on alkali-activated slag mortar exposed to elevated temperatures. Journal of Building Engineering 26:100871

    Article  Google Scholar 

  • Segura IP, Luukkonen T, Yliniemi J et al (2022) Comparison of One-Part and Two-Part Alkali-Activated Metakaolin and Blast Furnace Slag. J Sustain Metall. https://doi.org/10.1007/s40831-022-00606-9

  • Shah KW, Huseien GF (2020) Bond strength performance of ceramic, fly ash and GBFS ternary wastes combined alkali-activated mortars exposed to aggressive environments. Construct Build Mater 251:119088

    Article  CAS  Google Scholar 

  • Shaikh F, Haque S (2018) Effect of nano silica and fine silica sand on compressive strength of sodium and potassium activators synthesised fly ash geopolymer at elevated temperatures. Fire Mater 42(3):324–335

    Article  CAS  Google Scholar 

  • Shen S et al (2022) Explore the synergic and coupling relationships of multiple industrial solid wastes in the preparation of alkali-activated materials under different curing regimes. Mater Today: Proc 19:100169

    Google Scholar 

  • Shichalin OO et al (2019) Spark plasma sintering of aluminosilicate ceramic matrices for immobilization of cesium radionuclides. Radiochemistry 61:185–191

    Article  CAS  Google Scholar 

  • Shichalin OO, Papynov EK, Nepomnyushchaya VA, Ivanets AI, Belov AA, Dran’kov AN, Yarusova SB et al (2022a) Hydrothermal synthesis and spark plasma sintering of NaY zeolite as solid-state matrices for cesium-137 immobilization. J Eur Ceram Soc 42(6):3004–3014

    Article  CAS  Google Scholar 

  • Shichalin OO et al (2022b) Synthesis and spark plasma sintering of solid-state matrices based on calcium silicate for 60Co immobilization. J Alloys Compd 912:165233

    Article  CAS  Google Scholar 

  • Sivasakthi M, Jeyalakshmi R, Rajamane NP (2021) Investigation of Microstructure and Thermomechanical Properties of Nano-TiO2 Admixed Geopolymer for Thermal Resistance Applications. J Mater Eng Perform 30(5):3642–3653

    Article  CAS  Google Scholar 

  • Song H, Wei L, Ji Y, Cao L, Cheng F (2018) Heavy metal fixing and heat resistance abilities of coal fly ash-waste glass based geopolymers by hydrothermal hot pressing. Adv Powder Technol 29(6):1487–1492

    Article  CAS  Google Scholar 

  • Song Q, Guo M-Z, Ling T-C (2022) A review of elevated-temperature properties of alternative binders: Supplementary cementitious materials and alkali-activated materials. Construct Build Mater 341:127894

    Article  CAS  Google Scholar 

  • Takeda H, Hashimoto S, Yokoyama H, Honda S, Iwamoto Y (2013) Characterization of zeolite in zeolite-geopolymer hybrid bulk materials derived from kaolinitic clays. Materials 6:1767–1778. https://doi.org/10.3390/ma6051767

    Article  CAS  Google Scholar 

  • Tayeh BA, Zeyad AM, Agwa IS, Amin M (2021) Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete. Case Stud Constr Mater 15:e00673

    Google Scholar 

  • Tian B, Ma W, Li X, Jiang D, Zhang C, Xu J, He C, Niu Y, Dan J (2023) Effect of ceramic polishing waste on the properties of alkali-activated slag pastes: Shrinkage, hydration and mechanical property. J Build Eng 63:105448

    Article  Google Scholar 

  • Tiffo E, Belibi PDB, Mbah JBB, Thamer A, Pougnong TE, Baenla J, Elimbi A (2021) Effect of various amounts of aluminium oxy-hydroxide coupled with thermal treatment on the performance of alkali-activated metakaolin and volcanic scoria. Sci Afr 14:e01015

    CAS  Google Scholar 

  • Tognonvi TM, Petlitckaia S, Gharzouni A, Fricheteau M, Texier-Mandoki N, Bourbon X, Rossignol S (2020) High-temperature, resistant, argillite-based, alkali-activated materials with improved post-thermal treatment mechanical strength. Clays Clay Miner 68(3):211–219

    Article  CAS  Google Scholar 

  • Tong KT, Vinai R, Soutsos MN (2018) Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders. J Clean Prod 201:272–286

    Article  CAS  Google Scholar 

  • Traven K, Češnovar M, Škapin SD, Ducman V (2021) High temperature resistant fly-ash and metakaolin-based alkali-activated foams. Ceram Int 47(17):25105–25120

    Article  CAS  Google Scholar 

  • Trincal V, Benavent V, Lahalle H, Balsamo B, Samson G, Patapy C, Jainin Y, Cyr M (2022) Effect of drying temperature on the properties of alkali-activated binders-Recommendations for sample preconditioning. Cem Concr Res 151:106617

    Article  CAS  Google Scholar 

  • Türker HT, Balçikanli M, Durmuş İH, Özbay E, Erdemir M (2016) Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level. Construct Build Mater 104:169–180

    Article  Google Scholar 

  • Türkmen İ, Karakoç MB, Kantarcı F, Maraş MM, Demirboğa R (2016) Fire resistance of geopolymer concrete produced from Elazığ ferrochrome slag. Fire Mater 40(6):836–847

    Article  Google Scholar 

  • Vasić MV, Terzić A, Radovanović Ž, Radojević Z, Warr LN (2022) Alkali-activated geopolymerization of a low illitic raw clay and waste brick mixture. An alternative to traditional ceramics. Appl Clay Sci 218:106410

    Article  Google Scholar 

  • Wang MR, Jia DC, He PG, Zhou Y (2010) Influence of calcination temperature of kaolin on the structure and properties of final geopolymer. Mater Lett 64(22):2551–2554

    Article  CAS  Google Scholar 

  • Wang G, Tang Z, Gao Y, Liu P, Li Y, Li A, Chen X (2023) Phase change thermal storage materials for interdisciplinary applications. Chem Rev 123(11):6953–7024. https://doi.org/10.1021/acs.chemrev.2c00572

    Article  CAS  Google Scholar 

  • Wongsa A, Sata V, Nuaklong P, Chindaprasirt P (2018) Use of crushed clay brick and pumice aggregates in lightweight geopolymer concrete, Construct. Build Mater 188:1025–1034. https://doi.org/10.1016/j.conbuildmat.2018.08.176

    Article  CAS  Google Scholar 

  • Wongsa A, Wongkvanklom A, Tanangteerapong D, Chindaprasirt P (2020) Comparative study of fire-resistant behaviors of high-calcium fly ash geopolymer mortar containing zeolite and mullite. J Sustain Cem-Based Mater 9(5):307–321

    CAS  Google Scholar 

  • Xu J et al (2023) Evaluation of workability, microstructure and mechanical properties of recycled powder geopolymer reinforced by waste hydrophilic basalt fiber. J Clean Prod 396:136514

    Article  CAS  Google Scholar 

  • Yan ZH, Kodur V, Qi SL, Cao L, Wu B (2014) Development of metakaolin–fly ash based geopolymers for fire resistance applications. Construct Build Mater 55:38–45

    Article  Google Scholar 

  • Yang S, Ling TC, Cui H, Poon CS (2019) Influence of particle size of glass aggregates on the high temperature properties of dry-mix concrete blocks. Construct Build Mater 209:522–531

    Article  Google Scholar 

  • Yang HM, Zhang SM, Wang L, Chen P, Shao DK, Tang SW, Li JZ (2022) Highferrite Portland cement with slag: Hydration, microstructure, and resistance to sulfate attack at elevated temperature. Cem Concr Compos 130:104560

    Article  CAS  Google Scholar 

  • Yarusova SB et al (2022) Synthesis of amorphous KAlSi3O8 for cesium radionuclide immobilization into solid matrices using spark plasma sintering technique. Ceram Int 48(3):3808–3817

    Article  CAS  Google Scholar 

  • Ye J, Zhang W, Shi D (2014) Effect of elevated temperature on the properties of geopolymer synthesized from calcined ore-dressing tailing of bauxite and ground-granulated blast furnace slag. Construct Build Mater 69:41–48

    Article  CAS  Google Scholar 

  • Zhang B, He P, Poon CS (2020) Improving the high temperature mechanical properties of alkali activated cement (AAC) mortars using recycled glass as aggregates. Cem Concr Compos 112:103654

    Article  CAS  Google Scholar 

  • Zhang HY, Kodur V, Wu B, Yan J, Yuan ZS (2018) Effect of temperature on bond characteristics of geopolymer concrete. Construct Build Mater 163:277–285

    Article  CAS  Google Scholar 

  • Zhang G-Y, Bae S-C, Lin R-S, Wang X-Y (2021) Effect of Waste Ceramic Powder on the Properties of Alkali–Activated Slag and Fly Ash Pastes Exposed to High Temperature. Polymers 13(21):3797

    Article  CAS  Google Scholar 

  • Zhang DW, Sun XM, Zhao KF, Xu ZY, Li H (2022a) An application of alkali-activated fly-ash materials with low-compressive strength: Thermal stability at elevated temperatures. J Build Eng 61:105256

    Article  Google Scholar 

  • Zhang DW, Zhao KF, Peng SY, Sun XM, Xu ZY, Wang LL, Li H (2022b) Improvement of the thermal properties of alkali-activated fly ash after high temperature by the Fe-based solid wastes. Case Stud Constr Mater 17:e01303

    Google Scholar 

  • Zhang B et al (2023a) Hydrothermal Treatment of Biomass Feedstocks for Sustainable Production of Chemicals, Fuels, and Materials: Progress and Perspectives. Chem Rev

  • Zhang P, Han X, Guo J, Hu S (2023b) High-temperature behavior of geopolymer mortar containing nano-silica. Construct Build Mater 364:129983

    Article  CAS  Google Scholar 

  • Zhao R, Sanjayan JG (2011) Geopolymer and Portland cement concretes in simulated fire. Mag Concr Res 63(3):163–173

    Article  CAS  Google Scholar 

  • Zibouche F, Kerdjoudj H, d'Espinose de Lacaillerie J-B, Van Damme H (2009) Geopolymers from Algerian metakaolin. Influence of secondary minerals. Appl Clay Sci 43:453–458

    Article  CAS  Google Scholar 

  • Zuda L, Drchalová J, Rovnaník P, Bayer P, Keršner Z, Černý R (2010) Alkali-activated aluminosilicate composite with heat-resistant lightweight aggregates exposed to high temperatures: Mechanical and water transport properties. Cem Concr Compos 32(2):157–163

    Article  CAS  Google Scholar 

Download references

Funding

No funder

Author information

Authors and Affiliations

Authors

Contributions

Ahmed Abbas: Investigation; Writing - Original Draft

Mohamed Abd Elrahman: Supervision; Writing - Review & Editing

Hamdy A. Abdel-Gawwad: Visualization; Writing - Original Draft; Writing - Review & Editing

Dietmar Stephan:Conceptualization; Writing - Review & Editing; Supervision

Corresponding author

Correspondence to Hamdy A. Abdel-Gawwad.

Ethics declarations

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent to Publish

All authors agree about submission to the journal.

Competing Interests

The author declared that he has no Conflict of Interest to this work.

Additional information

Responsible Editor: George Z. Kyzas

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbass, A.M., Elrahman, M.A., Abdel-Gawwad, H.A. et al. Critical parameters affecting the thermal resistance of alkali-activated aluminosilicate wastes: Current understanding and future directions. Environ Sci Pollut Res 30, 84874–84897 (2023). https://doi.org/10.1007/s11356-023-28336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28336-9

Keywords

Navigation