Skip to main content
Log in

Investigation of Microstructure and Thermomechanical Properties of Nano-TiO2 Admixed Geopolymer for Thermal Resistance Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the effect of nano-TiO2 on the thermomechanical properties of fly ash-based geopolymer prepared by using alkali activator solution in an SiO2/Na2O ratio of 1.1, cured at 80ºC for 24 h, is investigated. The integrity of geopolymer mortars at an elevated temperature was determined by estimating the retention of compressive strength and weight loss of sample subjected to elevated temperatures (30–800°C). Analytical tests such as x-ray diffraction (XRD), attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), dilatometry and thermogravimetric and differential thermal analysis (TGA/DTA) were performed on the geopolymer to ascertain structural and phase changes when the geopolymer is subjected to higher temperatures up to 800ºC. We observed that 2% n-TiO2 admixed mortars (M2) showed enhanced engineering properties at all temperatures studied. TGA/DTA studies confirmed the thermal stability of geopolymers up to 1200°C and the major mass loss occurs due to evaporation of water below 200°C. The mass loss was 7% for M2 and 12% for the control mortars (M1). The thermal expansion values are 1.1% for M1 and 0.04% for M2, respectively. This negligible thermal expansion value for M2 indicated the matrix thermal compatibility between the gel and aggregate to be good so as to retain structural integrity. n-TiO2 stimulates the nucleating sites during gel formation reaction by increasing the dissolution of Si4+ and Al3+ from the original fly ash, resulting in the generation of more amount of binding gel, as confirmed by ATR-FT-IR, XRD and SEM analysis, which may be the reason for the increase in the material’s strength on adding n-TiO2. Fly ash-based geopolymers can therefore be used as a fire-resistant binder, and fire resistance can be further enhanced by addition of n-TiO2. So these binders have a great potential for fire-resistant construction applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.L. Provis, A. Palomo and C. Shi, Advances in Understanding Alkali-Activated Materials, Cem. Concr. Res., 2015, 78A, p 110–125. https://doi.org/10.1016/j.cemconres.2015.04.013

    Article  CAS  Google Scholar 

  2. J.L. Provis, J.S.J. Van Deventer, Alkali-Activated Materials: State-of-the-Art Report, RILEMTC 224-AAM, Springer/RILEM, 2014

  3. C. Shi and J. Qian, High Performance Cementing Materials From Industrial Slags—A Review, Resour. Conserv. Recycle., 2014, 29, p 195–207. https://doi.org/10.1016/S0921-3449(99)00060-9

    Article  Google Scholar 

  4. C. Shi, A. FernAndez-JimEnez and A. Palomo, New Cements for the 21st Century: The Pursuit of an Alternative to Portland Cement, Cem. Concr. Res., 2011, 41, p 750–763. https://doi.org/10.1016/j.cemconres.2011.03.016

    Article  CAS  Google Scholar 

  5. S.D. Wang, X.C. Pu, K.L. Scrivener and P.L. Pratt, Alkali-Activated Slag Cement and Concrete: A Review of Properties and Problems, Adv. Cem. Res., 2005, 7, p 93–102. https://doi.org/10.1680/adcr.1995.7.27.93

    Article  Google Scholar 

  6. J Davidovits, Geopolymer Chemistry and Applications, Institut Géopolymère, Saint-Quentin, France, 28, 2008.

  7. P. Duxon, A. Fernandez-Jimenez, J. Provis, G. Luckey, A. Palomo and J. Van Deventer, Geopolymer Technology: The Current State of the Art, J. Mater. Sci., 2007, 42, p 2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  8. D.L.Y. Kong, J.G. Sanjayan and K.S. Crentsil, Comparative Performance of Geopolymers Made with Metakaolin and Fly Ash After Exposure to Elevated Temperatures, Cem. Concr. Res., 2007, 37, p 1583–1589. https://doi.org/10.1016/j.cemconres.2007.08.021

    Article  CAS  Google Scholar 

  9. S. Donatello, C. Kuenzel, A. Palomo and A. Fernandez-Jimenez, High Temperature Resistance of a Very High Volume Fly Ash Cement Paste, Cem. Concrete. Comp., 2014, 45, p 234–242. https://doi.org/10.1016/j.cemconcomp.2013.09.010

    Article  CAS  Google Scholar 

  10. F. Qu, W. Li, Z. Tao et al., High Temperature Resistance of Fly Ash/GGBFS-Based Geopolymer Mortar with Load-Induced Damage, Mater Struct, 2020, 53, p 111. https://doi.org/10.1617/s11527-020-01544-2

    Article  CAS  Google Scholar 

  11. A.M. Rashad and S.R. Zeedan, The Effect of Activator Concentration on the Residual Strength of Alkali Activated Fly Ash Pastes Subjected to Thermal Load, Constr. Build. Mater., 2011, 25, p 3098–3107. https://doi.org/10.1016/j.conbuildmat.2010.12.044

    Article  Google Scholar 

  12. S.A. Bernal, D.E. Mejía, R. Gutierrez and J.L. Provis, Engineering and Durability Properties of Concretes Based on Alkali-Activated Granulated Blast Furnace Slag/Metakaolin Blends, Constr. Build. Mater., 2012, 33, p 99–108. https://doi.org/10.1016/j.conbuildmat.2012.01.017

    Article  Google Scholar 

  13. S.J. Chithambaram, S. Kumar and M.M. Prasad, Thermo-Mechanical Characteristics of Geopolymer Mortar, Constr. Build. Mater., 2019, 213, p 100–108.

    Article  CAS  Google Scholar 

  14. S.M. Park, J.G. Jang, N.K. Lee and H.K. Lee, Physiochemical Properties of Binder Gel in Alkali Activated Fly Ash/Slag Exposed to High Temperature, Cem. Concr. Res., 2016, 89, p 72–79. https://doi.org/10.1016/j.cemconres.2016.08.004

    Article  CAS  Google Scholar 

  15. L.Y.K. Daniel and J.G. Sanjayan, Damage Behavior of Geopolymer Composites Exposed to Elevated Temperatures, Cem. Concrete. Comp., 2008, 30, p 986–991. https://doi.org/10.1016/j.cemconcomp.2008.08.001

    Article  CAS  Google Scholar 

  16. C. Shi, P.V. Krivenko and D.M. Roy, Alkali-Activated Cements and Concrete, Taylor & Francis, London, 2006.

    Book  Google Scholar 

  17. A. Fernández-Jiménez, A. Palomo and M. Criado, Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model, Cem. Concr. Res., 2005, 35(6), p 1204–1209.

    Article  Google Scholar 

  18. H.T. Nguyen, S.M. Gallardo, T. Bacanif, Q.M. Hirofumi Hinode, M.H. Do, M.A Do Promentilla, Evaluating Thermal Properties of Geopolymer Produced from Red Mud, Rice Husk Ash and Diatomaceous Earth, 6th Regional Conference on Chemical Engineering 49 (2013).

  19. M. RashadAlaa, Effects of ZnO2, ZrO2, CuO3, CuO, CaCO3, SF, FA, Cement and Geothermal Silica Waste Nanoparticles on Properties of Cementitious Materials—A Short Guide for Civil Engineer, Constr. Build. Mater., 2013, 48, p 1120–1123. https://doi.org/10.1016/j.conbuildmat.2013.06.083

    Article  Google Scholar 

  20. A. Nazari and S. Riahi, The Role of SiO2 Nanoparticles and Ground Granulated Blast Furnace Slag Admixtures on Physical, Thermal and Mechanical Properties of Self Compacting Concrete, Mater. Sci. Eng.: A, 2011, 528, p 2149–2157.

    Article  Google Scholar 

  21. Z. Min-Hong, I. Jahidul and P. Sulapha, Use of Nano-Silica to Increase Early Strength and Reduce Setting Time of Concretes with high Volumes of Slag, Cem. Concr. Compos., 2012, 34, p 650–662. https://doi.org/10.1016/j.cemconcomp.2012.02.005

    Article  CAS  Google Scholar 

  22. O. Meral and S. Remzi, Effect of Nano-SiO2, Nano-Al2O3 and Nano-Fe2O3 Powders on Compressive Strengths and Capillary Water Absorption of Cement Mortar Containing Fly Ash: A Comparative Study, Energy Build., 2013, 58, p 292–301. https://doi.org/10.1016/j.enbuild.2012.12.014

    Article  Google Scholar 

  23. F. Shaikh and S. Haque, Behaviour of Carbon and Basalt Fibres Reinforced Fly Ash Geopolymer at Elevated Temperatures, Int. J. Concr. Struct. Mater., 2018, 12(1), p 1–12.

    Article  Google Scholar 

  24. P. Behera, V. Baheti, J. Militky and P. Louda, Elevated Temperature Properties of Basalt Microfibril Filled Geopolymer Composites, Constr. Build. Mater., 2018, 163, p 850–860.

    Article  CAS  Google Scholar 

  25. S. Ishak, H.S. Lee, J.K. Singh, M.A.M. Ariffin, N.H.A.S. Lim and H.M. Yang, Performance of Fly Ash Geopolymer Concrete Incorporating Bamboo Ash at Elevated Temperature, Materials, 2019, 12(20), p 3404.

    Article  CAS  Google Scholar 

  26. H. Assaedi, F. Shaikh and I. Low, Characterizations of Flax Fabric Reinforced Nanoclay-Geopolymer Composites, Compos. B Eng., 2016, 95, p 412–422. https://doi.org/10.1016/j.compositesb.2016.04.007

    Article  CAS  Google Scholar 

  27. M. Oltulu and R. Shahin, Single and Combined Effects of Nano-SiO2, Nano-Al2O3 and Nano-Fe2O3 Powders on Compressive Strength and Capillary Permeability of Cement Mortar Containing Silica Fume, Mater. Sci. Eng A., 2011, 528, p 7012–7019. https://doi.org/10.1016/j.msea.2011.05.054

    Article  CAS  Google Scholar 

  28. H. Assaedi, F.U.A. Shaikh and I. Low, Effect of Nano-Clay on Mechanical and Thermal Properties of Geopolymer, Integr. Med. Res., 2016, 4, p 19–28. https://doi.org/10.1016/j.jascer.2015.10.004

    Article  Google Scholar 

  29. P. Duan, C. Yan, W. Luo and W. Zhou, Effects of Adding Nano-TiO2 on Compressive Strength, Drying Shrinkage, Carbonation and Microstructure of Fluidized Bed Fly Ash Based Geopolymer Paste, Constr. Build. Mater., 2016, 106, p 115–125. https://doi.org/10.1016/j.conbuildmat.2015.12.095

    Article  CAS  Google Scholar 

  30. P. Timakul, W. Rattanaprasit and P. Aungkavattana, Enhancement of Compressive Strength and Thermal Shock resistance of Fly Ash-Based Geopolymer Composites, Constr. Build. Mater., 2016, 121, p 653–658. https://doi.org/10.1016/j.conbuildmat.2016.06.037

    Article  CAS  Google Scholar 

  31. Z. Zidi, M. Ltifi and I. Zafar, Synthesis and Attributes of Nano-SiO2 Local Metakaolin Based-Geopolymer, J. Build. Eng., 2021, 33, p 101586.

    Article  Google Scholar 

  32. Z. Zidi, M. Ltifi, Z. Ben Ayadi, L. EL Mir and X.R. Nóvoa, Effect of Nano-ZnO on Mechanical and Thermal Properties of Geopolymer, J. Asian Ceram. Soc., 2020, 8(1), p 1–9. https://doi.org/10.1080/21870764.2019.1693682

    Article  Google Scholar 

  33. O.H. Li, L. Yun-Ming, H. Cheng-Yong, R. Bayuaji, M.M.A.B. Abdullah, F.K. Loong, T.S. Jin, N.H. Teng, M. Nabiałek, B. Jeż and N.Y. Sing, Evaluation of the Effect of Silica Fume on Amorphous Fly Ash Geopolymers Exposed to Elevated Temperature, Magnetochemistry, 2021, 7(1), p 9.

    Article  CAS  Google Scholar 

  34. M. Sivasakthi, R. Jeyalakshmi, N.P. Rajamane and R. Jose, Thermal and structural micro analysis of micro silica blended fly ash based geopolymer composites, J. Non-Crystall. Solids, 2018, 499, p 117–130. https://doi.org/10.1016/j.jnoncrysol.2018.07.027

    Article  CAS  Google Scholar 

  35. ASTM E 831-03. Standard test method for linear thermal expansion of solid materials by thermomechanical analysis. ASTM International, 2003, 15.

  36. C. Alonso and L. Fernandez, Dehydration and Rehydration Processes of Cement Paste Exposed to High Temperature Environments, J. Mater. Sci., 2004, 39, p 3015–3024. https://doi.org/10.1023/B:JMSC.0000025827.65956.18

    Article  CAS  Google Scholar 

  37. G. Debicki, R. Haniche and F. Delhomme, An Experimental Method for Assessing the Spalling Sensitivity of Concrete Mixture Submitted to High Temperature, Cem. Concr. Compos., 2012, 34, p 958–963. https://doi.org/10.1016/j.cemconcomp.2012.04.002

    Article  CAS  Google Scholar 

  38. S. Donatello, C. Kuenzel, A. Palomo and A. Fernandez-Jimenez, High Temperature Resistance of a Very High Volume Fly Ash Cement Paste, Cem. Concr. Compos., 2014, 45, p 234–242. https://doi.org/10.1016/j.cemconcomp.2013.09.010

    Article  CAS  Google Scholar 

  39. J. Temuujin, A. Van Riessen and K.J.D. MacKenzie, Preparation and Characterization of Fly Ash Based Geopolymer Mortars, Constr. Build. Mater., 2010, 24, p 1906–1910. https://doi.org/10.1016/j.conbuildmat.2010.04.012

    Article  Google Scholar 

  40. K.K. Mandal, S. Thokchom and M. Roy, Effect of Na2O Content on Performance of Fly Ash Geopolymers at Elevated Temperature, Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng., 2011, 5, p 7–13.

    Google Scholar 

  41. D.L. Kong and J.G. Sanjayan, Effect of Elevated Temperatures on Geopolymer Paste, Mortar and Concrete, Cem. Concr. Res., 2010, 40(2), p 334–339. https://doi.org/10.1016/j.cemconres.2009.10.017

    Article  CAS  Google Scholar 

  42. J.G.S. Van Jaarsveld, J.S.J. Van Deventer and G.C. Lukey, The Characterisation of Source Materials in Fly Ash-Based Geopolymers, Mater. Lett., 2003, 57(7), p 1272–1280. https://doi.org/10.1063/1.5003524

    Article  CAS  Google Scholar 

  43. D. Hou, Y. Zhang, T. Yang, J. Zhang, H. Pei, J. Zhang, J. Jiang and T. Li, Molecular Structure, Dynamics, and Mechanical Behavior of Sodium Aluminosilicate Hydrate (NASH) Gel at Elevated Temperature: A Molecular Dynamics Study, Phys. Chem. Chem. Phys., 2018, 20(31), p 20695–20711.

    Article  CAS  Google Scholar 

  44. J.G.S. Van Jaarsveld, J.S.J. Van Deventer and A. Schwartzman, The potential use of geopolymeric materials to immobilise toxic metals: Part II Material and Leaching Characteristics, Miner. Eng., 1999, 12(1), p 75–91. https://doi.org/10.1016/S0892-6875(98)00121-6

    Article  Google Scholar 

  45. A. Fernández-Jiménez and A. Palomo, Characterisation of fly ashes. Potential Reactivity as Alkaline Cements, Fuel, 2003, 82, p 2259–2265. https://doi.org/10.1016/S0016-2361(03)00194-7

    Article  CAS  Google Scholar 

  46. A. Palomo, P.F.G. Banfill, A. Fernandéz-Jiménez and D.S. Swift, Properties of Alkali-Activated Fly Ashes Determined from Rheological Measurements, Adv. Cem. Res., 2005, 17, p 143–151. https://doi.org/10.1680/adcr.2005.17.4.143

    Article  CAS  Google Scholar 

  47. A. Fernandez-Jimenez, A.G. de la Torre, A. Palomo, G. Lopez-Olmo, M.M. Alonso and M.A.G. Aranda, Alkali Activated Fly Ash Binders. Part II the degree of reaction, Fuel, 2006, 85, p 625–634.

    Article  CAS  Google Scholar 

  48. S. Kumar, R. Kumar, T.C. Alex, A. Bandopadhyay and S.P. Mehrotra, Influence of Reactivity of Fly Ash on Geopolymerisation, Adv. Appl. Ceram., 2007, 106, p 120–127. https://doi.org/10.1179/174367607X159293

    Article  CAS  Google Scholar 

  49. J.L. Provis, R.M. Harrex, S.A. Bernal, P. Duxson and J.S.J. Van Deventer, Dilatometry of Geopolymers as a Means of Selecting Desirable Fly Ash Sources, J. Non-Cryst. Solids., 2012, 358, p 1930–1937. https://doi.org/10.1016/j.jnoncrysol.2012.06.001

    Article  CAS  Google Scholar 

  50. J.L. Provis, C.Z. Yong, P. Duxson and J.S.J. Van Deventer, Correlating Mechanical and Thermal Properties of Sodium Silicate-fly Ash Geopolymers, Colloids. Surf A: Physicochem. Eng. Aspects, 2009, 336, p 57–63. https://doi.org/10.1016/j.colsurfa.2008.11.019

    Article  CAS  Google Scholar 

  51. W.D. Rickard, J. Temuujin and A. Van Riessen, Thermal Analysis of Geopolymer Pastes Synthesised from Five Fly Ashes of Variable Composition, J. Non-Cryst. Solids., 2012, 358, p 1830–1839. https://doi.org/10.1016/j.jnoncrysol.2012.05.032

    Article  CAS  Google Scholar 

  52. K.Onaran Materials science (Malzeme Bilimi). I˙ stanbul, Turkey: Science Technical Press; 1993 (p. 174) [In Turkish].

  53. A.G. London, The Thermal Properties of Lightweight Concretes, Int. J. Cem. Compos. Lightw. Concr., 1979, 1, p 71–85. https://doi.org/10.1016/0262-5075(79)90013-7

    Article  Google Scholar 

  54. X. Fu and D.D.L. Chung, Effect of admixtures on the thermal and thermomechanical behavior of cement paste, ACI Mater. Jour., 1999, 96, p 455–461.

    CAS  Google Scholar 

  55. K. Zheng, L. Chen and M. Gbozee, Thermal Stability of Geopolymers used as Supporting Materials for TiO2 Film Coating Through Sol-gel Process: Feasibility and Improvement, Const. Build. Mater., 2016, 25, p 1114–1126. https://doi.org/10.1016/j.conbuildmat.2016.09.007

    Article  CAS  Google Scholar 

  56. W.K.W. Lee and J.S.J. Van Deventer, The Use of Infrared Spectroscopy to Study Geopolymerisation of Heterogeneous Amorphous Aluminosilicates, Langmuir, 2003, 19, p 8726–8734. https://doi.org/10.1021/la026127e

    Article  CAS  Google Scholar 

  57. F. Skvara, L. Kopecky, V. Amilauer and Z. Bitnaar, Material and Structural Characterization of Alkali Activated Low-Calcium Brown Coal Fly Ash, J. Hazard. Mater., 2009, 168, p 711–720. https://doi.org/10.1016/j.jhazmat.2009.02.089

    Article  CAS  Google Scholar 

  58. A. Palomo, M.W. Grutzeck and M.T. Blanco, Alkali-Activated Fly Ashes: A Cement for the Future, Cem. Concr. Res., 1999, 29, p 1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9

    Article  CAS  Google Scholar 

  59. E. Prud’homme, P. Michaud, E. Joussein, A. Smith, C. Peyratout, I. Sobrados, J. Sanz and S. Rossignol, Geomaterial Foams: Role Assignment of Raw Materials in the Network Formation, J. Sol-gel Sci. Technol., 2012, 61(2), p 436–448. https://doi.org/10.1007/s10971-011-2644-z

    Article  CAS  Google Scholar 

  60. M. Criado, A. Fernández-Jiménez and A. Palomo, Alkali Activation of Fly Ash: Effect of the SiO2/Na2O ratio: Part I: FTIR study, Microp. Mesop. Mater., 2007, 106(1–3), p 180–191. https://doi.org/10.1016/j.micromeso.2007.02.055

    Article  CAS  Google Scholar 

  61. J.L. Provis, G.C. Lukey and J.S.J. Van Deventer, Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results, Chem. Mater., 2005, 2005(17), p 3075–3085. https://doi.org/10.1021/cm050230i

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Science and Technology under TDP section [Grant no DST/TSG/STS/2012/20].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sivasakthi.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivasakthi, M., Jeyalakshmi, R. & Rajamane, N.P. Investigation of Microstructure and Thermomechanical Properties of Nano-TiO2 Admixed Geopolymer for Thermal Resistance Applications. J. of Materi Eng and Perform 30, 3642–3653 (2021). https://doi.org/10.1007/s11665-021-05708-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05708-1

Keywords

Navigation