Skip to main content
Log in

Emission profiles, source identifications, and health risk of polycyclic aromatic hydrocarbons (PAHs) in a road tunnel located in Xi’an, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Understanding the sources and characteristics of PM2.5-bound PAHs from traffic-related pollution can provide valuable data for mitigating air contamination from traffic in local urban regions. However, little information on PAHs is available regarding the typical arterial highway—Qinling Mountains No.1 tunnel in Xi’an. We estimated the profiles, sources, and emission factors of PM2.5-bound PAHs in this tunnel. The total PAH concentrations were 22.78 ng·m−3 and 52.80 ng·m−3 at the tunnel middle and exit, which were 1.09 and 3.84 times higher than that at the tunnel entrance. Pyr, Flt, Phe, Chr, BaP, and BbF were the dominant PAH species (representing approximately 78.01% of total PAHs). The four rings PAHs were dominant (58%) among the total PAH concentrations in PM2.5. The results demonstrated that diesel and gasoline vehicles exhaust emissions contributed 56.81% and 22.60% to the PAHs, respectively, while the corresponding value for together brakes, tyre wear, and road dust was 20.59%. The emission factors of total PAHs were 29.35 μg·veh−1·km−1, and emission factors of 4 rings PAHs were significantly higher than those of the other PAHs. The sum of ILCR was estimated to be 1.41×10−4, which accorded with acceptable level of cancer risk (10−6–10−4), PAHs should not ignored as they still affect the public health of inhabitants. This study shed light on PAH profiles and traffic-related sources in the tunnel, thereby facilitating the assessment of control measures targeting PAHs in local areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alves CA, Vicente AMP, Gomes J, Nunes T, Duarte M, Bandowe BAM (2016) Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated-PAHs, nitrated-PAHs and azaarenes) in size-fractionated particles emitted in an urban road tunnel. Atmos Res 180:128–137

    Article  CAS  Google Scholar 

  • Apiratikul R, Ongpiachan S, Deelaman W (2021) Spatial distribution, sources and quantitative human health risk assessments of polycyclic aromatic hydrocarbons in urban and suburban soils of Chile. Environ Geochem Hlth 43(12)

  • Baran A, Tarnawski M, Urbański K, Klimkowicz-Pawlas A, Spałek I (2017) Concentration, sources and risk assessment of PAHs in bottom sediments. Environ Sci Pollut Res 24:23180–23195

    Article  CAS  Google Scholar 

  • Callen MS, Lopez JM, Mastral AM (2010) Seasonal variation of benzo(a)pyrene in the Spanish airborne PM10. Multivariate linear regression model applied to estimate BaP concentrations. J Hazard Mater 180:648–655

    Article  CAS  Google Scholar 

  • Cao SQ, Han YL (2012) Research on fire disaster fire-fighting simulation system of large-long tunnel. Appl Mech Mater 220:2662–2667

    Article  Google Scholar 

  • Cao ZG, Zhao LC, Shi YM, Feng JL, Wang SH, Zhang YJ, Yan GX, Zhang X, Wang XF, Shen MH, Wang YS (2017) PAH contamination in road dust from a moderate city in North China: the significant role of traffic emission. Human Ecol Risk Assess: Int J 23(5):1072–1085

    Article  CAS  Google Scholar 

  • Chang JR, Shen JN, Tao J, Li N, Xu CY, Li YP, Liu Z (2019) The impact of heating season factors on eight PM2.5-bound polycyclic aromatic hydrocarbon (PAH) concentrations and cancer risk in Beijing. Sci Total Environ 688:1413–1421

    Article  CAS  Google Scholar 

  • Cowie CT, Rose N, Ezz W, Xuan W, Waterman AC, Belousova E, Toelle BG, Sheppeard V, Marks GB (2012) Respiratory health before and after the opening of a road traffic tunnel: a planned evaluation. Plos One 7:1–13

    Article  Google Scholar 

  • Dat ND, Chang MB (2017) Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Sci Total Environ 609:682–693

    Article  CAS  Google Scholar 

  • Delgado-Saborit JM, Stark C, Harrison RM (2011) Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environ Int 37(2):383–392

    Article  CAS  Google Scholar 

  • Demir S, Saral A, Ertürk F, Ertürk F, Kuzu SL, Goncaloğlu BI, Demir G (2012) Effect of diurnal changes in VOC source strengths on performances of receptor models. Environ Sci Pollut Res 19:1503–1514

    Article  CAS  Google Scholar 

  • Drotikova T, Dekhtyareva A, Kallenborn R, Albinet A (2021) Polycyclic aromatic hydrocarbons (pahs) and their nitrated and oxygenated derivatives in the arctic boundary layer: seasonal trends and local anthropogenic influence. Atmos Chem Phys 21(18):14351–14370

    Article  CAS  Google Scholar 

  • El-Fadel M, Hashisho Z (2001) Vehicular emissions in roadway tunnels: a critical review. Crit Rev Environ Sci Technol 31:125–174

    Article  CAS  Google Scholar 

  • European Commission (2001) Polycyclic aromatic hydrocarbons (PAH) position paper (July 2001) (Prepared by the Working Group on Polycyclic Aromatic Hydrocarbons)

  • Fang XZ, Wu L, Zhang QJ, Zhang J, Wang AX, Zhang YJ, Zhao JB, Mao HJ (2019) Characteristics, emissions and source identifications of particle polycyclic aromatic hydrocarbons from traffic emissions using tunnel measurement. Trans Res D-Tr E 67:674–684

    Article  Google Scholar 

  • Franco V, Kousoulidou M, Muntean M, Ntziachristos L, Hausberger S, Dilara P (2013) Road vehicle emission factors development: a review. Atmos Environ 70:84–97

    Article  CAS  Google Scholar 

  • Gao P, Liu S, Feng YJ, Lin N, Lu BY, Zhang JB, Mao HJ (2015) Concentrations of polycyclic aromatic hydrocarbons in resuspendable fraction of settled bus dust and its implications for human exposure. Environ Pollut 198:1–7

    Article  CAS  Google Scholar 

  • Han L, Zhou W, Li WF, Qian YG (2020) China’s complex urban air pollution: an improved understanding with ground operational measurements. Integr Environ Asses 16(3):306–313

    Article  CAS  Google Scholar 

  • Hao XW, Zhang X, Cao XY, Shen XB, Shi JC, Yao ZL (2018) Characterization and carcinogenic risk assessment of polycyclic aromatic and nitro-polycyclic aromatic hydrocarbons in exhaust emission from gasoline passenger cars using on-road measurements in Beijing, China. Sci Total Environ 654:347–355

  • Harrison RM, Tilling R, Callen Romero MS, Harrad S, Jarvis K (2003) A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmos Environ 37:2391–e2402

    Article  CAS  Google Scholar 

  • He LY, Hu M, Zhang YH, Huang XF, Yao TT (2008) Fine particle emissions from on-road vehicles in the Zhujiang tunnel. China Environ Sci Technol 42:4461–4466

    Article  CAS  Google Scholar 

  • Ho KF, Ho SSH, Lee SC, Cheng Y, Chow JC, Watson JG, Louie PKK, Tian L (2009) Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel. Hong Kong Atmos Environ 43(40):6343–6351

    Article  CAS  Google Scholar 

  • Hou C, Shao LY, Hu W, Zhang DZ, Zhao CM, Xing JP, Huang XF, Hu M (2018) Characteristics and aging of traffic-derived particles in a highway tunnel at a coastal city in southern China. Sci Total Environ 619:1385–1393

    Article  Google Scholar 

  • Hsiao TH, Chou LT, Pan SY, Young LH, Chi KH, Chen AY (2021) Chemically and temporally resolved oxidative potential of urban fine particulate matter. Environ Pollut 291:118206

    Article  CAS  Google Scholar 

  • Huang YH, Yu Y, Yam YS, Zhou JL, Lei CW, Organ B, Zhuang Y, Lei CW, Organ B, Mok WC, Chan EFC (2020) Statistical evaluation of on-road vehicle emissions measurement using a dual remote sensing technique. Environ Pollut 267:115456

  • Jain S, Sharma SK, Mandal TK, Saxena M (2018) Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology 37:107–118

    Article  CAS  Google Scholar 

  • Jiang Y, Tan Y, Yang JC, Karavalakis G, Johnson KC, Yoon S, Herner J, Durbin TD (2021) Understanding elevated real-world NOx emissions: “heavy-duty diesel” engine certification testing versus in-use vehicle testing. Fuel 307:121771

    Article  Google Scholar 

  • Keyte IJ, Albinet A, Harrison RM (2016) On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and nitro- derivative compounds measured in road tunnel environments. Sci Total Environ 566:1131–1142

    Article  Google Scholar 

  • Keyte IJ, Harrison RM, Lammel G (2013) Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons–a review. Chem Soc Rev 42:9333–9391

    Article  CAS  Google Scholar 

  • Khanal R, Furumai H, Nakajima F, Yoshimura C (2018) Carcinogenic profile, toxicity and source apportionment of polycyclic aromatic hydrocarbons accumulated from urban road dust in Tokyo. Japan Ecotoxicol Environ Saf 165:440–449

    Article  CAS  Google Scholar 

  • Kong S, Li X, Li L, Yin Y, Chen K, Yuan L, Zhang Y, Shan Y, Ji Y (2015) Variation of polycyclic aromatic hydrocarbons in atmospheric PM2.5, during winter haze period around 2014 Chinese spring festival at Nanjing: insights of source changes, air mass direction and firework particle injection. Sci Total Environ 520:59–72

    Article  CAS  Google Scholar 

  • Lan CH, Huang YL, Ho SH, Peng CY (2014) Volatile organic compound identification and characterization by PCA and mapping at a high-technology science park. Environ Pollut 193:156–164

    Article  CAS  Google Scholar 

  • Lawrence S, Sokhi R, Ravindra K, Mao H, Prain HD, Bull ID (2013) Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos Environ 77:548–557

    Article  CAS  Google Scholar 

  • Lin YC, Li YC, Amesho KTT, Chou FC, Cheng PC (2019b) Characterization and quantification of PM2.5 emissions and PAHs concentration in PM2.5 from the exhausts of diesel vehicles with various accumulated mileages. Sci Total Environ 660:188–198

    Article  CAS  Google Scholar 

  • Lin YC, Li YC, Shangdiar S, Chou FC, Sheu YT, Cheng PC (2019a) Assessment of PM2.5 and PAH content in PM2.5 emitted from mobile source gasoline-fueled vehicles in concomitant with the vehicle model and mileages. Chemosphere 226:502–508

    Article  CAS  Google Scholar 

  • Liu FL, Xiang P (2017) Characteristics of temporal and spatial distribution of soil PAHs after fire disturbance. Chin J Soil Sci 47:973–979

    Google Scholar 

  • Liu Y, Beckingham B, Ruegner H, Li Z, Ma LM, Schwientek M, Xie H, Zhao JF, Grathwohl P (2013) Comparison of sedimentary PAHs in the Rivers of Ammer (Germany) and Liangtan (China): differences between early- and newly industrialized countries. Environ Sci Technol 47:701–709

    Article  CAS  Google Scholar 

  • Liu Y, Chen L, Zhao JF, Huang QH, Zhu ZL, Gao HW (2008) Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai, China. Environ Pollut 154:298–305

    Article  CAS  Google Scholar 

  • Liu Y, Chen L, Zhao JF, Wei YP, Pan ZY, Meng XZ, Huang QH, Li WY (2010) Polycyclic aromatic hydrocarbons in the surface soil of Shanghai, China: concentrations, distribution and sources. Org Geochem 41:355–362

    Article  CAS  Google Scholar 

  • Liu YP, Wu JG, Yu DY, Ma Q (2018) The relationship between urban form and air pollution depends on seasonality and city size. Environ Sci Pollut Res Int 25:1–14

    Google Scholar 

  • Luo M, Ji YY, Ren YQ, Gao FH, Zhang H, Zhang LH, Yu YQ, Li H (2021) Characteristics and health risk assessment of PM2.5-bound PAHs during heavy air pollution episodes in winter in urban area of Beijing, China. Atmos 12(3):323

    Article  CAS  Google Scholar 

  • Mabahwi NAB, Leh OLH, Omar D (2014) Human health and wellbeing: human health effect of air pollution. Procedia Soc. Behav Sci 153:221–e229

    Google Scholar 

  • Majumdar D, Rajaram B, Meshram S, ChalapatiRao CV (2012) PAHs in road dust: ubiquity, fate, and summary of available data. Crit Rev Environ Sci Technol 42:1191–1232

    Article  CAS  Google Scholar 

  • Mancilla Y, Mendoza A (2012) A tunnel study to characterize PM2.5 emissions from gasoline-powered vehicles in Monterrey, Mexico. Atmos Environ 59(7):449–460

    Article  CAS  Google Scholar 

  • Mari M, Harrison RM, Schuhmacher M, Domingo JL, Pongpiachan S (2010) Inferences over the sources and processes affecting polycyclic aromatic hydrocarbons in the atmosphere derived from measured data. Sci Total Environ 408:2387–2393

    Article  CAS  Google Scholar 

  • Marinello S, Lolli F, Gamberini R (2020) Roadway tunnels: a critical review of air pollutant concentrations and vehicular emissions. Trans Res D-Tr E 86:102478

    Article  Google Scholar 

  • Maskey S, Chae H, Lee K, Dan NP, Khoi TT, Park K (2016) Morphological and elemental properties of urban aerosols among PM events and different traffic systems. J Hazard Mater 317:108–118

    Article  CAS  Google Scholar 

  • Mastral AM, Garcia T, Callen MS, Murillo R, Navarro MV, Lopez JM (2002) Sorbent characteristics influence on the adsorption of PAC: I. PAH adsorption with the same number of rings. Fuel Process Technol 77:373–379

    Article  Google Scholar 

  • Ministry of Environmental Protection of the People's Republic of China (MEP) (2010) Environmental monitoring-technical guideline on drawing and revising analytical method standards, inspection and quarantine of the People’s Republic of China. Other environmental protection standards (HJ168-2010). http://kjs.mee.gov.cn/hjbhbz/bzwb/other/qt/201003/W020130129580168669966.pdf

  • Mishra N, Ayoko GA, Morawska L (2016) Atmospheric polycyclic aromatic hydrocarbons in the urban environment: occurrence, toxicity and source apportionment. Environ Pollut 208:110–117

    Article  CAS  Google Scholar 

  • Mon EE, Phay N, Agusa T, Bach LT, Yeh HM, Huang CH, Nakata H (2020) Polycyclic aromatic hydrocarbons (PAHs) in road dust collected from Myanmar, Japan, Taiwan, and Vietnam. Arch Environ Contam Toxicol 78:34–45

    Article  CAS  Google Scholar 

  • Muñoz Serrano J, Carranco Ortiz B, Salmón Muñóz J, Amador González S (2010) Registro Estatal de Cáncer; Guadalajara, Mexico,  Available online: https://ssj.jalisco.gob.mx/registros/51. Accessed 20 Jan 2018

  • Nguyen TC, Loganathan P, Nguyen TV, Vigneswaran S, Kandasamy J, Slee D, Stevenson G, Naidu R (2014) Polycyclic aromatic hydrocarbons in road-deposited sediments, water sediments, and soils in Sydney, Australia: comparisons of concentration distribution, sources and potential toxicity. Ecotoxicol Environ Saf 104:339–348

    Article  CAS  Google Scholar 

  • Nogueira T, Kamigauti LY, Pereira GM, Gavidia-Calderon ME, Ibarra-Espinosa S, de Oliveira GL, de Miranda RM, Vasconcellos PD, de Freitas ED, Andrade MD (2021) Evolution of vehicle emission factors in a megacity affected by extensive biofuel use: results of tunnel measurements in Sao Paulo, Brazil. Environ Sci Technol 55(10):6677–6687

    Article  CAS  Google Scholar 

  • Oliveira C, Martins N, Tavares J, Pio C, Cerqueira M, Matos M, Silva H, Oliverira C, Camões F (2011) Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere 83(11):1588–1596

    Article  CAS  Google Scholar 

  • Oliveira M, Slezakova K, Delerue-Matos C, Pereira MDC, Morais S (2015) Exposure to polycyclic aromatic hydrocarbons and assessment of potential risks in preschool children. Environ Sci Pollut Res 22(18):13892–13902

    Article  CAS  Google Scholar 

  • Onay TT, Copty NK, Gökçe HB, Sarıkurt DA, Mumcu M, Arioglu E (2019) Air quality impact assessment for the Eurasia Tunnel in Istanbul, Turkey. Environ Monit Assess 191:195

    Article  Google Scholar 

  • Pandey PK, Patel KS, Lenicek J (1999) Polycyclic aromatic hydrocarbons: need for assessment of health risks in India? Study of an urban-industrial location in India. Environ Monit Assess 59(3):287–319

    Article  CAS  Google Scholar 

  • Park J, Shin M, Lee J, Lee J (2021) Estimating the effectiveness of vehicle emission regulations for reducing NOx from lightduty vehicles in Korea using on-road measurements. Sci Total Environ 767:144250

  • Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul Korea. Atmos Environ 36:2917–2924

    Article  CAS  Google Scholar 

  • Pereira GM, Nogueira T, Kamigauti LY, dos Santos DM, Nascimento EQM, Martins JV, Vicente A, Artaxo P, Alves C, Vasconcellos PD (2023) Particulate matter fingerprints in biofuel impacted tunnels in South America’s largest metropolitan area. Sci Total Environ 856:2

    Article  Google Scholar 

  • Pierson WR, Brachaczek WW (1982) Particulate matter associated with vehicles on the road. II Aerosol Sci Technol 2:1–40

    Article  Google Scholar 

  • Pierson WR, Gertler AW, Robinson NF, Sagebiel JC, Zielinska B, Bishop GA, Stedman DH, Zweidinger RB, Ray WD (1996) Real-world automotive emissions—summary of studies in the Fort McHenry and Tuscarora mountain tunnels. Atmos Environ 30:2233–2256

    Article  CAS  Google Scholar 

  • Pietikainen M, Valiheikki A, Oravisjarvi K, Kolli T, Huuhtanen M, Niemi S, Virtanen S, Karhu T, Keiskia RL (2015) Particle and NOx emissions of a non-road diesel engine with an SCR unit: the effect of fuel. Renew Energy 77:377–385

    Article  CAS  Google Scholar 

  • Ping W, Cao JJ, Shen ZX, Han YM, Lee SC, Huang Y, Zhu CS, Wang QY, Xu HM, Huang RJ (2015) Spatial and seasonal variations of PM2.5 mass and species during 2010 in Xi’an, China. Sci Total Environ 508:477–487

    Article  Google Scholar 

  • Preuss R, Angerer J, Drexler H (2003) Naphthalene—an environmental and occupational toxicant. Int Arch Occup Environ Health 76(8):556–576

    Article  CAS  Google Scholar 

  • Qiu ZW, Liu WY, Gao HO, Li JH (2019) Variations in exposure to in-vehicle particle mass and number concentrations in different road environments. J Air Waste Manage 69(8):988–1002

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Viana M, Rodriguez S, Artíñano B, Salvador P, Garcia do Santos S, Fernandezpatie R, Ruiz CR, Delarosa J, Sanchezdelacampa A, Menendez M, Gil JI (2004) Speciation and origin of PM10 and PM2.5 in Spain. J Aerosol Sci 35(9):1151–e1172

    Article  CAS  Google Scholar 

  • Raj A, Prada IDC, Amer AA, Chung SH (2012) A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons. Combust Flame 159:500–515

    Article  CAS  Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  CAS  Google Scholar 

  • Ravindra K, Wauters E, Tyagi SK, Mor S, Van Grieken R (2006) Assessment of air quality after the implementation of compressed natural gas (CNG) as fuel in public transport in Delhi, India. Environ Monit Assess 115:405–417

    Article  CAS  Google Scholar 

  • Riccio A, Chianese E, Monaco D, Costagliola MA, Perretta G, Prati MV, Agrillo G, Esposito A, Gasbarra D, Shindler L, Brusasca G, Nanni A, Pozzi C, Magliulo V (2016) Real-world automotive particulate matter and PAH emission factors and profile concentrations: results from an urban tunnel experiment in Naples. Italy Atmos Environ 141:379–387

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BR (1993) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavyduty diesel trucks. Environ Sci Technol 27:636–651

    Article  CAS  Google Scholar 

  • Samburova V, Zielinska B, Khlystov A (2017) Do 16 polycyclic aromatic hydrocarbons represent PAH air toxicity? Toxics 5(3):17

    Article  Google Scholar 

  • Santos LO, Santos AG, de Andrade JB (2018) Methodology to examine polycyclic aromatic hydrocarbons (PAHs) nitrated PAHs and oxygenated PAHs in sediments of the Paraguacu River (Bahia, Brazil). Mar Pollut Bull 136:248–e256

    Article  CAS  Google Scholar 

  • Sarigiannis DА, Karakitsios SP, Zikopoulos D, Nikolaki S, Kermenidou M (2015) Lung cancer risk from PAHs emitted from biomass combustion. Environ Res 137:147–e156

    Article  CAS  Google Scholar 

  • Schneider IL, Teixeira EC, Silva Oliveira LF, Wiegand F (2015) Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos Pollut Res 6:877–885

    Article  CAS  Google Scholar 

  • Sei K, Wang Q, Tokumura M, Hossain A, Raknuzzaman M, Miyake Y, Amagai T (2021) Occurrence, potential source, and cancer risk of PM2.5-bound polycyclic aromatic hydrocarbons and their halogenated derivatives in Shizuoka, Japan, and Dhaka, Bangladesh. Environ Res 196:110909

    Article  CAS  Google Scholar 

  • Seo JG, Park JS, Park JH, Park SW (2021) Emission factor development for light-duty vehicles based on real-world emissions using emission map-based simulation. Environ Pollut 270:116081

    Article  CAS  Google Scholar 

  • Shahne MZ, Arhami M, Hosseini VE, Haddad I (2022) Particulate emissions of real-world light-duty gasoline vehicle fleet in Iran. Environ Pollut 292:118303

    Article  CAS  Google Scholar 

  • Shi YF, Lu YH, Zhang YC, Su XT, Wu QH, Lei HF, Fang LC, Zhang FB, Liu ZN, Han J, Mai BX (2021) Investigation into polycyclic aromatic hydrocarbons in sediments of Wei River Basin. Water Air Soil Pollut 232:476

    Article  CAS  Google Scholar 

  • Sicre M, Marty J, Saliot A, Aparicio X, Grimalt J, Albaiges J (1987) Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmos Environ 21:2247–2259

    Article  CAS  Google Scholar 

  • Song CB, Liu Y, Sun LN, Zhang QJ, Mao HJ (2021) Emissions of volatile organic compounds (VOCs) from gasoline- and liquified natural gas (LNG)-fueled vehicles in tunnel studies. Atmos Environ 234:117626

    Article  Google Scholar 

  • Stogiannidis E, Laane R (2015) Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. Rev Environ Contamination Toxicol 234:49–133

    Article  CAS  Google Scholar 

  • Taghvaee S, Sowlata MH, Hassanvand S, Yunesian M, Naddaf K, Sioutas C (2018) Source-specific lung cancer risk assessment of ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in central Tehran. Environ Int 120:321–332

    Article  CAS  Google Scholar 

  • Trung NT, Anh HQ, Tue NM, Suzuki G, Takahashi S, Tanabe S, Khai NM, Hong TT, Dau PT, Thuy PC, Tuyen LH (2021) Polycyclic aromatic hydrocarbons in airborne particulate matter samples from hanoi, vietnam: particle size distribution, aryl hydrocarbon ligand receptor activity, and implication for cancer risk assessment. Chemosphere 280:130720

    Article  CAS  Google Scholar 

  • Tydlitat V, Kotlik B, Puncochar M, Mikesova M (2010) Comparison of the concentration profiles of 12 polycyclic aromatic hydrocarbons from different sources with monitoring data from Prague using a similarity measure. Polycyl Aromat Comp 30(4):208–221

    Article  CAS  Google Scholar 

  • US EPA (2002) Polycyclic Organic Matter, in: US EPA official web site, US Environmental Protection Agency, Washington DC: Office of Health and Environmental Assessment, available at: http://www3.epa.gov/ttn/atw//hlthef/polycycl.html. Accessed 30 Aug 2015 

  • USEPA (1989) Risk assessment guidance for Superfund. Volume I: human health evaluation manual (Part A), Interim Final. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response

  • Wang JX, Thomson M, Connolly T, Tong AZ (2016) Development of an analytical method for determining hindered phenolic antioxidants in exhaust emissions from light-duty vehicles. Atmos Pollut Res 7:326–332

  • Wang XL, Tao S, Xu FL, Dawson RW, Cao J, Li BG, Fang JY (2002) Modeling the fate of benzo a pyrene in the wastewater-irrigated areas of Tianjin with a fugacity model. J Environ Qual 31:896–903

    CAS  Google Scholar 

  • Wei C, Bandowe B, Han Y, Cao J, Wilcke W (2021) Polycyclic aromatic compounds (pahs, oxygenated pahs, nitrated pahs, and azaarenes) in air from four climate zones of china: occurrence, gas/particle partitioning, and health risks. Sci Total Environ 786:147234

    Article  CAS  Google Scholar 

  • Weiss M, Bonnel P, Kuhlwein J, Provenza A, Lambrecht U, Alessandrini S, Carriero M, Colombo R, Forni F, Lanappe G, Le Lijour P, Manfredi U, Montigny F, Sculati M (2012) Will Euro 6 reduce the NOx emissions of new diesel cars? - insights from on-road tests with portable emissions measurement systems (PEMS). Atmos Environ 62:657–665

    Article  CAS  Google Scholar 

  • WHO (2010) WHO Guidelines for Indoor Air Quality: Selected Pollutants

  • Wingfors H, Sjödin A, Haglund P, Brorström-Lundén E (2001) Characterisation and determination of profifiles of polycyclic aromatic hydrocarbons in a traffic tunnel in Gothenburg, Sweden. Atmos Environ 35(36):6361–6369

    Article  CAS  Google Scholar 

  • Woo SH, Lee SB, Kim KH, Lee GJ, Ryu SH, Kim JB, Bea GN (2014) On-road air pollution characteristics around a day-care center in Urban Area. J Korean Assoc Part Aerosol Res 10(2):61–75

    Article  Google Scholar 

  • Wu XG, Liu HY, Yuan ZJ, Wang SQ, Chen AF, He BB (2019) Concentration, exchange and source identification of polycyclic aromatic hydrocarbons in soil, air and tree bark from the Middle-Lower Yangtze Plain, China. Atmos Pollut Res 10(4):1276–1283

    Article  CAS  Google Scholar 

  • Wu Y, Salamova A, Venier M (2020) Using diagnostic ratios to characterize sources of polycyclic aromatic hydrocarbons in the Great Lakes atmosphere. Sci Total Environ 761:143240

    Article  Google Scholar 

  • Wu Y, Salamova A, Venier M (2021) Using diagnostic ratios to characterize sources of polycyclic aromatic hydrocarbons in the Great Lakes atmosphere. Sci Total Environ 761:143240

    Article  CAS  Google Scholar 

  • Yang JY, Shi BX, Shi Y, Marvin S, Zheng Y, Xia GY (2019) Air pollution dispersal in high density urban areas: research on the triadic relation of wind, air pollution, and urban form. Sustain Cities Soc 54:101941

    Article  Google Scholar 

  • Zaciera M, Kurek J, Feist B, Pyta H (2017) The exposure profiles, correlation factors and comparison of PAHs and nitro-PAHs in urban and non-urban regions in suspended particulate matter in Poland. Polycyl Aromat Comp:374–382

  • Zhang H, Wang JF, Bao HY, Li J, Wu FY (2020) Polycyclic aromatic hydrocarbons in urban soils of Zhengzhou City, China: occurrence, source and human health evaluation. Bull Environ Contam Toxicol 105(3):446–452

    Article  CAS  Google Scholar 

  • Zhang YZ, Wu ZH, Gou KH, Wang RF, Wang J (2021) The impact of air pollution on outpatient visits of children with asthma in Xi’an, China. Wild Environ Med 32(1):47–54

    Article  Google Scholar 

  • Zhao T, Yang LX, Huang Q, Zhang Y, Bie SJ, Li JS, Zhang W, Duan SF, Gao HL, Wang WX (2020) PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and their derivatives (nitrated-PAHs and oxygenated-PAHs) in a road tunnel located in Qingdao, China: characteristics, sources and emission factors - sciencedirect. Sci Total Environ 720:137521

    Article  CAS  Google Scholar 

  • Zhen ZX, Yin Y, Chen K, Zhen XL, Zhang X, Jiang H, Wang HL, Kuang X, Cui Y, Dai MM, He C, Liu AK, Zhou FH (2021) Concentration and atmospheric transport of PM2.5-bound polycyclic aromatic hydrocarbons at Mount Tai, China. Sci Total Environ 786:147513

    Article  CAS  Google Scholar 

  • Zhu LZ, Wang J (2005) PAHs pollution from traffic sources in air of Hangzhou, China: trend and influencing factors. J Environ Sci 17(3):365–370

    CAS  Google Scholar 

  • Zielinska B, Sagebiel J, Arnott WP, Rogers CF, Kelly KE, Wagner DA, Lighty JS, Sarofim AF, Palmer G (2004) Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions. Environ Sci Technol 38:2557–2567

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for their comments.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Funding

This study is supported by National Key Research and Development Plan of China (2017YFC0212206) and the Science and Technology Foundation of Shaanxi Province, China (2016KTZDSF-02-01).

Author information

Authors and Affiliations

Authors

Contributions

JL: investigation, formal analysis, writing—original draft, and visualization. SD: funding acquisition, supervision, methodology, resources, and writing—review and editing. HT: investigation. YY: investigation. AT: formal analysis and supervision.

Corresponding author

Correspondence to Shunxi Deng.

Ethics declarations

Ethics approval

This is an observational study that no ethical approval is required.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Constantini Samara

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Deng, S., Tong, H. et al. Emission profiles, source identifications, and health risk of polycyclic aromatic hydrocarbons (PAHs) in a road tunnel located in Xi’an, China. Environ Sci Pollut Res 30, 85125–85138 (2023). https://doi.org/10.1007/s11356-023-27996-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27996-x

Keywords

Navigation