Skip to main content

Advertisement

Log in

Traffic-related polycyclic aromatic hydrocarbons (PAHs) occurrence in a tropical environment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Traffic-related PAH emissions over the urban area of Natal, Brazil, have shown a significant increase because of automobile usage and have become a major concern due to their potential effects on human health and the environment. Therefore, this research measured PAH contamination on major roads and river compartments in a tropical catchment (Pitimbu River) over an expanding urban area. Road PAH concentrations spanned from 692 to 2098 ng g−1 and suggest the predominance of heavy (diesel-powered) and light-duty (gasoline plus alcohol-powered) vehicle emission sources. High concentrations of naphthalene (515 ng g−1) and acenaphthylene (145 ng g−1) were found in river sediments, indicating oil-related spillage and low-temperature combustion sources. Diagnostic ratios indicated the prevalence of biomass, coal and petroleum combustion processes and refined oil products. The ecological risk assessment indicated an ecological contamination risk ranging between low and moderate because of naphthalene and acenaphthylene concentrations higher than ERL threshold values. Toxicity risks caused by PAHs were assessed by using the BaP-equivalent carcinogenic power (BaPE). Results indicated that both RDS and riverbed sediment samples are at low toxicity risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhbarizadeh, R., Dobaradaran, S., Torkmahalleh, M. A., Saeedi, R., Aibaghi, R., & Ghasemi, F. F. (2021). Suspended fine particle matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible relationships and health implications. Environmental Research, 192, 110339. https://doi.org/10.1016/j.envres.2020.110339

    Article  CAS  Google Scholar 

  • Calvillo, S. J., Williams, E. S., & Brooks, B. W. (2015). Street dust: Implications for stormwater and air quality, and environmental management through street sweeping. Reviews of Environmental Contamination and Toxicology., 233, 71–128. https://doi.org/10.1007/978-3-319-10479-9_3

    Article  CAS  Google Scholar 

  • CETESB. Qualidade do Ar no Estado de São Paulo: Relatório. (2019). Companhia de Tecnologia de Saneamento Ambiental, São Paulo, Brasil. from https://cetesb.sp.gov.br/ar/publicacoes-relatorios/

  • Demir, T., Yenisoy-Karakas, S., & Karakas, D. (2019). PAHs, elemental and organic carbons in a highway tunnel atmosphere and road dust: Discrimination of diesel and gasoline emissions. Building and Environment, 160, 106166. https://doi.org/10.1016/j.buildenv.2019.106166

    Article  Google Scholar 

  • Dimosthenis, A. S., Spyros, P. K., Dimitrios, Z., Spyridoula, N., & Marianthi, K. (2015). Lung cancer risk from PAHs emitted from biomass combustion. Environmental Research, 137, 147–156. https://doi.org/10.1016/j.envres.2014.12.009

    Article  CAS  Google Scholar 

  • Drwal, E., Rak, A., & Gregoraszczuk, E. L. (2019). Review: Polycyclic aromatic hydrocarbons (PAHs)–Action on placental function and health risks in future life of newborns. Toxicology, 411, 133–142. https://doi.org/10.1016/j.tox.2018.10.003

    Article  CAS  Google Scholar 

  • Epa, U. S. (1996a). Method 3540C: Soxhlet extraction. US Environmental Protection Agency.

  • Epa, U. S. (1996b). Method 3630C: silica gel clean-up. US Environmental Protection Agency.

  • Epa, U. S. (1996c). Method 8270D: semivolatile organic compounds by gas chromatography/mass spectrometry (GC/MS). US Environmental Protection Agency.

  • Fang, X., Wu, L., Zhang, J., Wang, A., Zhang, Y., et al. (2019). Characteristics, emissions and source identifications of particle polycyclic aromatic hydrocarbons from traffic emissions using tunnel measurement. Transportation Research Part D: Transport and Environment, 67, 674–684. https://doi.org/10.1016/j.trd.2018.02.021

    Article  Google Scholar 

  • Franco, C. F. J., Resende, M. F., Furtado, L. A., Brasil, T. F., Eberlin, M. N., et al. (2017). Polycyclic aromatic hydrocarbons (PAHs) in street dust of Rio de Janeiro and Niterói, Brazil: Particle size distribution, sources and cancer risk assessment. Science of the Total Environment, 599–600, 305–313

    Article  Google Scholar 

  • Gál, B., Weiperth, A., Farkas, J., & Schmera, D. (2020). The effects of road crossings on stream macro-invertebrate density. Biodiversity and Conservation, 29, 729–745. https://doi.org/10.1007/s10531-019-01907-4

    Article  Google Scholar 

  • Gao, P., Zhao, Y., & Ni, H. (2018). Incidence of real-world automotive parent and halogenated PAH in urban atmosphere. Environmental Pollution, 237, 515–522. https://doi.org/10.1016/j.envpol.2018.02.077

    Article  CAS  Google Scholar 

  • Gbeddy, G., Egodawatta, P., Goonetilleke, A., Akortia, E., & Glover, E. T. (2021). Influence of photolysis on source characterization and health risk of polycyclic aromatic hydrocarbons (PAHs), and carbonyl-, nitro, hydroxy-PAHs in urban road dust. Environmental Pollution, 269, 116103. https://doi.org/10.1016/j.envpol.2020.116103

    Article  CAS  Google Scholar 

  • Huang, G., Zhang, M., Liu, C., Li, L., & Chen, Z. (2018). Heavy metal(oid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces. Science of the Total Environment, 635, 913–925. https://doi.org/10.1016/j.scitotenv.2018.04.210

    Article  CAS  Google Scholar 

  • Lawal, A. T., & Fantke, P. (2017). Polycyclic aromatic hydrocarbons. A review. Cogent Environmental Science, 3, 1339841. https://doi.org/10.1080/23311843.2017.1339841

    Article  CAS  Google Scholar 

  • Lawrence, S., Sokhi, R., & Ravindra, K. (2016). Quantification of vehicle fleet PM10 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques. Environmental Pollution, 210, 419–428. https://doi.org/10.1016/j.envpol.2016.01.011

    Article  CAS  Google Scholar 

  • Lin, Y., Li, Y., Shangdiar, S., Chou, F., Sheu, Y., & Cheng, P. (2019). Assessment of PM2.5 and PAH content in PM2.5 emitted from mobile source gasoline-fueled vehicles in concomitant with the vehicle model and mileages. Chemosphere, 226, 502–508. https://doi.org/10.1016/j.chemosphere.2019.03.137

    Article  CAS  Google Scholar 

  • Liu, L., Liu, A., Li, D., Zhang, L., & Guan, Y. (2016). Characterizing polycyclic aromatic hydrocarbon build-up process on urban road surfaces. Environmental Pollution, 214, 185–193. https://doi.org/10.1016/j.envpol.2016.04.014

    Article  CAS  Google Scholar 

  • Liu, Y., Chen, L., Huang, Q., Li, W., Tang, Y., et al. (2009). Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai. China. Science of the Total Environment, 407(8), 2931–2938. https://doi.org/10.1016/j.scitotenv.2008.12.046

    Article  CAS  Google Scholar 

  • Liu, Y., Gao, Y., Yu, N., Zhang, C., Wang, S., et al. (2015). Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle portioning. Chemosphere, 134, 52–59. https://doi.org/10.1016/j.chemosphere.2015.03.065

    Article  CAS  Google Scholar 

  • Lubecki, L., Oen, A., Breedveld, G., & Zamojska, A. (2019). Vertical profiles of sedimentary polycyclic aromatic hydrocarbons and black carbon in the Gulf of Gdansk (Poland) and Oslofjord/Drammensfjord (Norway), and their relation to regional energy transitions. Science of the Total Environment, 646, 336–346. https://doi.org/10.1016/j.scitotenv.2018.07.300

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., Smorong, D. E., Lindskoog, R. A., & Sloane, G. (2003). Development and evaluation of numerical sediment quality assessment guidelines for Florida inland water. Technical Report.

  • Mazarji, M., Minkina, T., Sushkova, S., Antonenko, E., Mandzhieva, S., Dudnikova, T., et al. (2020). Impact of humic acid on degradation of benzo(a)pyrene polluted Haplic Chernozem triggered by modified Fenton-like process. Environmental Research, 190(109948), 1–10

    Google Scholar 

  • Nguyen, T.C. (2016). Pollutants in road-deposited sediments: characteristics, mobility, bioavailability and remediation. Thesis, School of Civil and Environmental Engineering, Faculty of Engineering & Information Technology, University of Technology Sydney, New South Wales, Australia. https://opus.lib.uts.edu.au/handle/10453/43470

  • Nogueira, T, Cordeiro, D.S., Munoz, R.A.A., Fornaro, A., Miguel, A.H., et al. (2015). Bioethanol and biodiesel as vehicular fuels in Brazil – assessment of atmospheric impacts from the long period of biofuels use. In Biofuels – status and perspective (pp. 377–412), Intech Publications.

  • Piscitello, A., Bianco, C., Casasso, A., & Sethi, R. (2021). Non-exhaust traffic emissions: sources, characterization, and mitigation measures. Science of the Total Environment, 766, 144440. https://doi.org/10.1016/j.scitotenv.2020.144440

    Article  CAS  Google Scholar 

  • Polukarova, M., Markiewicz, A., Bjorklund, K., Stromvall, A., Galfi, H., et al. (2020). Organic pollutants, nano- and microparticles in street sweeping road dust and washwater. Environment International, 135, 105337. https://doi.org/10.1016/j.envint.2019.105337

    Article  CAS  Google Scholar 

  • Ravindra, K., Sokhi, R., & Grieken, R. V. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42, 2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010

    Article  CAS  Google Scholar 

  • Salem, H. A., Gemail, K. S., & Nosair, A. M. (2021). A multidisciplinary approach for delineating wastewater flow paths in shallow groundwater aquifers: A case study in the southeastern part of the Nile Delta. Egypt. Journal of Contaminant Hydrology, 236, 103701. https://doi.org/10.1016/j.jconhyd.2020.103701

    Article  CAS  Google Scholar 

  • Santos, P. R. S., Moreira, L. F. F., Fernandes, G. J. T., & Moraes, E. P. (2019). Tropical climate effect on the toxic heavy metal pollutant course of road-deposited sediments. Environmental Pollution, 251, 766–772. https://doi.org/10.1016/j.envpol.2019.05.043

    Article  CAS  Google Scholar 

  • Sushkova, S., Minkina, T., Deryabkina, I., Rajput, V., Antonenko, E., Nazarenko, O., Yadav, B. K., Hakki, E., Mohan, D., et al. (2019). Environmental pollution of soil with PAHs in energy producing plants zone. Science of the Total Environment, 655, 232–241. https://doi.org/10.1016/j.scitotenv.2018.11.080

    Article  CAS  Google Scholar 

  • Sushkova, S., Minkina, T., Tarigholizadeh, S., Antonenko, E., Konstantinova, E., Gülser, C., Dudnikova, T., Barbashev, A., Kızılkaya, R., et al. (2020). PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination. Eurasian Journal of Soil Science, 9(3), 242–253

    CAS  Google Scholar 

  • Vagge, G., Cutroneo, L., Castellano, M., Canepa, G., Bertolotto, , et al. (2018). The effects of dredging and environmental conditions on concentrations of polycyclic aromatic hydrocarbons in the water column. Marine Pollution Bulletim, 135, 704–713. https://doi.org/10.1016/j.marpolbul.2018.08.006

    Article  CAS  Google Scholar 

  • Wang, Q., Chu, L., Peng, F., Li, J., Chen, H., et al. (2020). Contribution of aquatic products consumption to total human exposure to PAHs in eastern China: the source matters. Environmental Pollution, 266, 1. https://doi.org/10.1016/j.envpol.2020.115339

    Article  CAS  Google Scholar 

  • Wei, H., Guangbin, L., Yong, T., & Qin, Z. (2015). Emission of polycyclic aromatic hydrocarbons from different types of motor vehicles’ exhaust. Environment and Earth Science, 74, 5557–5564. https://doi.org/10.1007/s12665-015-4570-9

    Article  CAS  Google Scholar 

  • Yang, X., Liu, S., Gao, Y., Zhao, W., Liu, Y., et al. (2020). Levels, sources and toxicity risks of polycyclic aromatic hydrocarbons at an island site in the Gulf of Tonkin. International Journal of Environmental Research and Public Health, 17(4), 1338. https://doi.org/10.3390/ijerph17041338

    Article  CAS  Google Scholar 

  • Zhang, J., Wu, J., Hua, P., Zhao, Z., Wu, L., et al. (2017). The influence of land use on source apportionment and risk assessment of polycyclic aromatic hydrocarbons in road-deposited sediment. Environmental Pollution, 229, 705–714. https://doi.org/10.1016/j.envpol.2017.07.019

    Article  CAS  Google Scholar 

  • Zhao, T., Yang, L., Huang, Q., Zhang, W., Duan, S., et al. (2020). PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated-PAHs (NPAHs) emitted by gasoline vehicles: Characterization and health risk assessment. Science of Total Environment, 727, 138631. https://doi.org/10.1016/j.scitotenv.2020.138631

    Article  CAS  Google Scholar 

  • Zhao, T., Yang, L., Huang, Q., Zhang, Y., Bie, S., et al. (2020). PM2.5- bound polycyclic aromatic hydrocarbons (PAHs) and their derivatives (nitrated-PAHs and oxygenated-PAHs) in a road tunnel located in Qingdao, China: characteristics, sources and emission factors. Science of the Total Environment, 720, 137521. https://doi.org/10.1016/j.scitotenv.2020.137521

    Article  CAS  Google Scholar 

  • Zielinska, B., Sagebiel, J., Arnott, W. P., Rogers, C. F., Kelly, K. E., et al. (2004). Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions. Environmental Science and Technology, 28, 2557–2567. https://doi.org/10.1021/es030518d

    Article  CAS  Google Scholar 

Download references

Funding

The research was funded by CAPES – Ministry of Education of Brazil/Brazilian Government.

Author information

Authors and Affiliations

Authors

Contributions

Paula Rafaela Silva dos Santos, Field work/ Laboratory processes/ Manuscript. Lucio Flavio Ferreira Moreira, Research design/Field work/Result analysis/Manuscript. Edgar Perin Moraes, Results analysis/Manuscript. Mirna Ferreira de Farias, Laboratory processes. Yldeney Silva Domingos, Laboratory processes.

Corresponding author

Correspondence to Lucio Flavio Ferreira Moreira.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, P.R.S., Moreira, L.F.F., Moraes, E.P. et al. Traffic-related polycyclic aromatic hydrocarbons (PAHs) occurrence in a tropical environment. Environ Geochem Health 43, 4577–4587 (2021). https://doi.org/10.1007/s10653-021-00947-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00947-6

Keywords

Navigation