Skip to main content

Advertisement

Log in

Molecular insights into rare earth element (REE)-mediated phytotoxicity and its impact on human health

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Rare earth elements (REEs) that include 15 lanthanides, scandium, and yttrium are a special class of elements due to their remarkable qualities such as magnetism, corrosion resistance, luminescence, and electroconductivity. Over the last few decades, the implication of REEs in agriculture has increased substantially, which was driven by rare earth element (REE)-based fertilizers to increase crop growth and yield. REEs regulate different physiological processes by modulating the cellular Ca2+ level, chlorophyll activities, and photosynthetic rate, promote the protective role of cell membranes, and increase the plant’s ability to withstand various stresses and other environmental factors. However, the use of REEs in agriculture is not always beneficial because REEs regulate plant growth and development in dose-dependent manner and excessive usage of them negatively affects plants and agricultural yield. Moreover, increasing applications of REEs together with technological advancement is also a rising concern as they adversely impact all living organisms and disturb different ecosystems. Several animals, plants, microbes, and aquatic and terrestrial organisms are subject to acute and long-term ecotoxicological impacts of various REEs. This concise overview of REEs’ phytotoxic effects and implications on human health offers a context for continuing to sew fabric scraps to this incomplete quilt’s many layers and colors. This review deals with the applications of REEs in different fields, specifically agriculture, the molecular basis of REE-mediated phytotoxicity, and the consequences for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adeel M, Lee JY, Zain M et al (2019) Cryptic footprints of rare earth elements on natural resources and living organisms. Environ Int 127:785–800. https://doi.org/10.1016/j.envint.2019.03.022

    Article  CAS  Google Scholar 

  • Ahmad J, Yasmeen R, Irfan M et al (2023) Assessment of health risk, genotoxicity, and thiol compounds in Trigonella foenum-graecum (Fenugreek) under arsenic stress. Environ Sci Pollut Res 30:884–898

    Article  CAS  Google Scholar 

  • Alonso E, Sherman AM, Wallington TJ, et al (2012) Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol 46:3406–3414

  • Amyot M, Clayden MG, MacMillan GA et al (2017) Fate and trophic transfer of rare earth elements in temperate lake food webs. Environ Sci Technol 51:6009–6017

    Article  CAS  Google Scholar 

  • Ascenzi P, Bettinelli M, Boffi A et al (2020) Rare earth elements (REE) in biology and medicine. Rend Lincei Sci Fis e Nat 31:821–833

    Article  Google Scholar 

  • Bengtsson G (2021) Hypothetical soil thresholds for biological effects of rare earth elements. J Agric Sci 13:1. https://doi.org/10.5539/jas.v13n5p1

    Article  Google Scholar 

  • Blissett RS, Smalley N, Rowson NA (2014) An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content. Fuel 119:236–239

    Article  CAS  Google Scholar 

  • Bouslimi H, Ferreira R, Dridi N et al (2021) Effects of barium stress in Brassica juncea and Cakile maritima: the indicator role of some antioxidant enzymes and secondary metabolites. Phyton (B Aires) 90:145–158. https://doi.org/10.32604/phyton.2020.011752

    Article  Google Scholar 

  • Brioschi L, Steinmann M, Lucot E et al (2013) Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE. Plant Soil 366:143–163. https://doi.org/10.1007/s11104-012-1407-0

    Article  CAS  Google Scholar 

  • Brown PH, Rathjen AH, Graham RD, Tribe DE (1990) Rare earth elements in biological systems. In: Gschneidner KA Jr, Eyring L (eds) Handbook on the Physical and Chemical of Rare Earths. Elsevier, Amsterdam, pp 423–452

    Google Scholar 

  • Burda K, Strzałka KS, Schmid GH (1995) Europium- and dysprosium-ions as probes for the study of calcium binding sites in photosystem II. Zeitschrift fur Naturforsch - Sect C J Biosci 50:220–230. https://doi.org/10.1515/znc-1995-3-410

    Article  CAS  Google Scholar 

  • Calabrese EJ (2013) Hormetic mechanisms. Crit Rev Toxicol 43:580–606. https://doi.org/10.3109/10408444.2013.808172

    Article  CAS  Google Scholar 

  • Cao Z, Stowers C, Rossi L et al (2017) Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environ Sci Nano 4:1086–1094

    Article  CAS  Google Scholar 

  • Carpenter D, Boutin C, Allison JE et al (2015) Uptake and effects of six rare earth elements (REEs) on selected native and crop species growing in contaminated soils. PLoS One 10:e0129936

  • Chakhmouradian AR, Wall F (2012) Rare earth elements: minerals, mines, magnets(and more). Elements 8(5):333–340

    Article  CAS  Google Scholar 

  • Chen S, Zhao B, Wang X et al (2004) Promotion of the growth of Crocus sativus cells and the production of crocin by rare earth elements. Biotechnol Lett 26:27–30

    Article  CAS  Google Scholar 

  • Chen WJ, Gu YH, Zhao GW et al (2000) Effects of rare earth ions on activity of RuBPcase in tobacco. Plant Sci 152:145–151. https://doi.org/10.1016/S0168-9452(99)00235-6

    Article  CAS  Google Scholar 

  • Chen Y, Luo Y, Qiu N et al (2015) Ce3+ induces flavonoids accumulation by regulation of pigments, ions, chlorophyll fluorescence and antioxidant enzymes in suspension cells of Ginkgo biloba L. Plant Cell Tissue Organ Cult 123:283–296. https://doi.org/10.1007/s11240-015-0831-2

    Article  CAS  Google Scholar 

  • Cremazy A, Brix KV, Wood CM (2019) Science of the total environment using the biotic ligand model framework to investigate binary metal interactions on the uptake of Ag , Cd , Cu , Ni , Pb and Zn in the freshwater snail Lymnaea stagnalis. Sci Total Environ 647:1611–1625. https://doi.org/10.1016/j.scitotenv.2018.07.455

    Article  CAS  Google Scholar 

  • d’Aquino L, de Pinto MC, Nardi L et al (2009) Effect of some light rare earth elements on seed germination, seedling growth and antioxidant metabolism in Triticum durum. Chemosphere 75:900–905. https://doi.org/10.1016/j.chemosphere.2009.01.026

    Article  CAS  Google Scholar 

  • Das T, Sharma A, Talukder G (1988) Effects of lanthanum in cellular systems. Biol Trace Elem Res 18:201–228

  • Dave G, Xiu R (1991) Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch Environ Contam Toxicol 21:126–134

    Article  CAS  Google Scholar 

  • Diatloff E, Smith FW, Asher CJ (2008) Effects of lanthanum and cerium on the growth and mineral nutrition of corn and mungbean. Ann Bot 101:971–982. https://doi.org/10.1093/aob/mcn021

    Article  CAS  Google Scholar 

  • Dridi N, Brito P, Bouslimi H et al (2022) Physiological and biochemical behaviours and antioxidant response of Helianthus annuus under lanthanum and cerium stress. Sustain 14:1–15. https://doi.org/10.3390/su14074153

    Article  CAS  Google Scholar 

  • Duan G, Cui H, Yang Y et al (2020) Interactions among soil biota and their applications in synergistic bioremediation of heavy-metal contaminated soils. Sheng wu Gong Cheng xue bao= Chinese. J Biotechnol 36:455–470

    CAS  Google Scholar 

  • Duarte ACO, de OC, Ramos SJ et al (2018) Lanthanum content and effects on growth, gas exchanges, and chlorophyll index in maize plants. Acta Sci - Biol Sci 40:1–6. https://doi.org/10.4025/actascibiolsci.v40i1.38469

    Article  CAS  Google Scholar 

  • El-Ramady HRH (2008) A contribution on the bio-actions of rare earth elements in the soil/plant environment. Institut für Pfanzenbau und Bodenkunde, Julius Kühn-Institut, Quedlinburg, Germany, PhD Diss

  • Emmanuel ESC, Anandkumar B, Natesan M, Maruthamuthu S (2010a) Efficacy of rare earth elements on the physiological and biochemical characteristics of Zea mays L. Aust J Crop Sci 4:289–294

    Google Scholar 

  • Emmanuel ESC, Ramachandran AM, Ravindran AD et al (2010b) Effect of some pare earth elements on dry matter partitioning, nodule formation and chlorophyll content in Arachis hypogaea L. plants. Aust J Crop Sci 4:670–675

    Google Scholar 

  • Evans CH (1983) Interesting and useful biochemical properties of lanthanides. Trends Biochem Sci 8:445–449

    Article  CAS  Google Scholar 

  • Fang J, Bai X-T, Qi L et al (2022) Rare-earth metal oxide nanoparticles decouple the linkage between soil bacterial community structure and function by selectively influencing potential keystone taxa. Environ Pollut 298:118863

    Article  CAS  Google Scholar 

  • Garcia-Jimenez A, Gomez-Merino FC, Tejeda-Sartorius O, Trejo-Tellez LI (2017) Lanthanum affects bell pepper seedling quality depending on the genotype and time of exposure by differentially modifying plant height, stem diameter and concentrations of chlorophylls, sugars, amino acids, and proteins. Front Plant Sci 8:308

  • Gao J, Feng L, Chen B et al (2022) The role of rare earth elements in bone tissue engineering scaffolds - a review. Compos Part B Eng 235:109758. https://doi.org/10.1016/j.compositesb.2022.109758

    Article  CAS  Google Scholar 

  • Gao Y, Huang W, Zhu L, Chen J (2012) Effects of LaCl3 on the growth and photosynthetic characteristics of Fny-infected tobacco seedlings. J Rare Earths 30:725–730. https://doi.org/10.1016/S1002-0721(12)60119-7

    Article  CAS  Google Scholar 

  • Gomez-Aracena J, Riemersma RA, Gutiérrez-Bedmar M et al (2006) Toenail cerium levels and risk of a first acute myocardial infarction: the EURAMIC and heavy metals study. Chemosphere 64:112–120

    Article  CAS  Google Scholar 

  • Gong B, He E, Qiu H et al (2019) Phytotoxicity of individual and binary mixtures of rare earth elements (Y, La, and Ce) in relation to bioavailability. Environ Pollut 246:114–121. https://doi.org/10.1016/j.envpol.2018.11.106

    Article  CAS  Google Scholar 

  • Gong B, He E, Xia B et al (2020) Ecotoxicology and environmental safety bioavailability and phytotoxicity of rare earth metals to Triticum aestivum under various exposure scenarios. Ecotoxicol Environ Saf 205:111346. https://doi.org/10.1016/j.ecoenv.2020.111346

    Article  CAS  Google Scholar 

  • Gonzalez V, Vignati DAL, Leyval C, Giamberini L (2014) Environmental fate and ecotoxicity of lanthanides: are they a uniform group beyond chemistry? Environ Int 71:148–157

    Article  CAS  Google Scholar 

  • Guo X-S, Zhou Q, Zhu X-D et al (2007) Migration of a rare earth element cerium (III) in horseradish. Acta Chim Sin 65:1922

    CAS  Google Scholar 

  • Gustin MC, Zhou X-L, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765

    Article  CAS  Google Scholar 

  • Gwenzi W, Mangori L, Danha C et al (2018) Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci Total Environ 636:299–313. https://doi.org/10.1016/j.scitotenv.2018.04.235

    Article  CAS  Google Scholar 

  • Hachez C, Zelazny E, Chaumont F (2006) Modulating the expression of aquaporin genes in planta: a key to understand their physiological functions? Biochim Biophys Acta (BBA)-Biomembranes 1758:1142–1156

    Article  CAS  Google Scholar 

  • Hanana H, Kowalczyk J, Andre C, Gagne F (2021) Insights on the toxicity of selected rare earth elements in rainbow trout hepatocytes. Comp Biochem Physiol Part C Toxicol Pharmacol 248:109097

    Article  CAS  Google Scholar 

  • Hao B, Zhang Z, Bao Z et al (2022) Claroideoglomus etunicatum affects the structural and functional genes of the rhizosphere microbial community to help maize resist Cd and La stresses. Environ Pollut 119559

  • Haque N, Hughes A, Lim S, Vernon C (2014) Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact. Resources 3:614–635. https://doi.org/10.3390/resources3040614

    Article  Google Scholar 

  • He YW, Loh CS (2000) Cerium and lanthanum promote floral initiation and reproductive growth of Arabidopsis thaliana. Plant Sci 159:117–124. https://doi.org/10.1016/S0168-9452(00)00338-1

    Article  CAS  Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes. Sinauer Associates Inc., Sunderland, MA

    Google Scholar 

  • Hong F, Liu C, Zheng L et al (2005) Formation of complexes of Rubisco-Rubisco activase from La3+, Ce3+ treatment spinach. Sci China Ser B Chem 48:67–74

    Article  CAS  Google Scholar 

  • Hong F, Wei Z, Zhao G (2002) Mechanism of lanthanum effect on chlorophyll of spinach. Sci China Ser C Life Sci 45:166–176

    Article  CAS  Google Scholar 

  • Hu H, Wang L, Li Y et al (2016) Insight into mechanism of lanthanum (III) induced damage to plant photosynthesis. Ecotoxicol Environ Saf 127:43–50

  • Hu Z, Richter H, Sparovek G, Schnug E (2004) Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J Plant Nutr 27:183–220. https://doi.org/10.1081/PLN-120027555

    Article  CAS  Google Scholar 

  • Jenkins JA, Musgrove M, White SJO (2023) Critical minerals : nutritionally essential trace elements and the rare earth elements. Toxics 11:188

    Article  CAS  Google Scholar 

  • Jiao Y, Yang L, Kong Z et al (2021) Evaluation of trace metals and rare earth elements in mantis shrimp Oratosquilla oratoria collected from Shandong province, China, and its potential risks to human health. Mar Pollut Bull 162:111815. https://doi.org/10.1016/j.marpolbul.2020.111815

    Article  CAS  Google Scholar 

  • Kapoor B, Kumar P, Gill NS et al (2022) Molecular mechanisms underpinning the silicon-selenium (Si-Se) interactome and cross-talk in stress-induced plant responses. Plant Soil. https://doi.org/10.1007/s11104-022-05482-6

  • Khan A, Yusoff I, Abu Bakar N, Abu Bakar A, Alias Y, Mispan M (2017) Accumulation, uptake and bioavailability of rare earth elements (REEs) in soil grown plants from ex-mining area in Perak Malaysia. Appl Ecol Environ Res 15:117–133

    Article  Google Scholar 

  • Khan MIR, JahanB AAMF, Rehman MT, Iqbal N, Irfan M et al (2021) Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice. Ecotoxicol Environ Safety 222:112535

    Article  CAS  Google Scholar 

  • Kim JY, Kim KY, Kim SM, Choi Y-E (2022) Use of rare earth element (REE)-contaminated acidic water as Euglena gracilis growth stimulator: a strategy for bioremediation and simultaneous increase in biodiesel productivity. Chem Eng J 445:136814

    Article  CAS  Google Scholar 

  • Klaver G, Verheul M, Bakker I et al (2014) Anthropogenic rare earth element in rivers: gadolinium and lanthanum. Partitioning between the dissolved and particulate phases in the Rhine River and spatial propagation through the Rhine-Meuse Delta (the Netherlands). Appl Geochemistry 47:186–197

    Article  CAS  Google Scholar 

  • Klüsener B, Boheim G, Liß H et al (1995) Gadolinium-sensitive, voltage-dependent calcium release channels in the endoplasmic reticulum of a higher plant mechanoreceptor organ. EMBO J 14:2708–2714. https://doi.org/10.1002/j.1460-2075.1995.tb07271.x

    Article  Google Scholar 

  • Kovaříková M, Tomášková I, Soudek P (2019) Rare earth elements in plants. Biol Plant 63:20–32. https://doi.org/10.32615/bp.2019.003

    Article  CAS  Google Scholar 

  • Kumar A, Elad Y, Tsechansky L, Abrol V, Lew B, Offenbach R, Graber ER (2018) Biochar potential in intensive cultivation of Capsicum annuum L.(sweet pepper): Crop yield and plant protection. J Sci Food Agric 98:495–503

    Article  CAS  Google Scholar 

  • Kwon JY, Koedrith P, Seo YR (2014) Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations. Int J Nanomedicine 9:271

    Google Scholar 

  • Lauchli A, Bieleski R (1983) Inorganic plant nutrition Spring-Verlag, Berlin, p 23

  • Laur J, Hacke UG (2014) The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa. PLoS One 9:e111751

    Article  Google Scholar 

  • Lavoie M, Campbell PGC, Fortin C (2014) Predicting cadmium accumulation and toxicity in a green alga in the presence of varying essential element concentrations using a biotic ligand model. Environ Sci Technol 48(2):1222–1229

    Article  CAS  Google Scholar 

  • Li J, Hong M, Yin X, Liu J (2010) Effects of the accumulation of the rare earth elements on soil macrofauna community. J Rare Earths 28:957–964

    Article  CAS  Google Scholar 

  • Li M, Li Z, Ding W et al (2006) Using rare earth element tracers and neutron activation analysis to study rill erosion process. Appl Radiat Isot 64:402–408

    Article  CAS  Google Scholar 

  • Li X, Chen Z, Chen Z, Zhang Y (2013) A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere 93:1240–1246

    Article  CAS  Google Scholar 

  • Lin YF, Aarts YLMGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. 3187–3206. https://doi.org/10.1007/s00018-012-1089-z

  • Lin W, Huang Y, Zhou X-D, Ma Y (2006) Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 25:451–457

    Article  CAS  Google Scholar 

  • Lindner U, Lingott J, Richter S et al (2013) Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry. Anal Bioanal Chem 405:1865–1873

    Article  CAS  Google Scholar 

  • Lindner U, Lingott J, Richter S et al (2015) Analysis of gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry. Anal Bioanal Chem 407:2415–2422

    Article  CAS  Google Scholar 

  • Liu C, Liu W, Huot H et al (2022) Responses of ramie (Boehmeria nivea L.) to increasing rare earth element (REE) concentrations in a hydroponic system. J Rare Earths 40:840–846. https://doi.org/10.1016/j.jre.2021.04.002

    Article  CAS  Google Scholar 

  • Liu C, Lin H, Mi N et al (2018) Bioaccessibility and health risk assessment of rare earth elements in Porphyra seaweed species. Hum Ecol Risk Assess 24:721–730. https://doi.org/10.1080/10807039.2017.1398070

  • Liu D, Wang X, Lin Y et al (2012) The effects of cerium on the growth and some antioxidant metabolisms in rice seedlings. Environ Sci Pollut Res 19:3282–3291. https://doi.org/10.1007/s11356-012-0844-x

    Article  CAS  Google Scholar 

  • Liu Y, Wu M, Song L et al (2021) Association between prenatal rare earth elements exposure and premature rupture of membranes: results from a birth cohort study. Environ Res 193:110534. https://doi.org/10.1016/j.envres.2020.110534

    Article  CAS  Google Scholar 

  •  Long KR, Van Gosen BS, Foley NK, Cordier D (2012) The principal rare earth elements deposits of the United States: a summary of domestic deposits and a global perspective. Non-Renewable Resour Issues Geosci Soc Challenges 131–155. https://doi.org/10.1007/978-90-481-8679-2_7

    Google Scholar 

  • Ma Y, Zhang P, Zhang Z et al (2015) Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology 9:262–270. https://doi.org/10.3109/17435390.2014.921344

    Article  CAS  Google Scholar 

  • Maksimovic I, Kastori R, Putnik-Delic M, Borišev M (2014) Effect of yttrium on photosynthesis and water relations in young maize plants. J Rare Earths 32:372–378

    Article  CAS  Google Scholar 

  • Marckmann P (2008) An epidemic outbreak of nephrogenic systemic fibrosis in a Danish hospital. Eur J Radiol 66:187–190

    Article  Google Scholar 

  • Martinez RE, Pourret O, Faucon MP, Dian C (2018) Effect of rare earth elements on rice plant growth. Chem Geol 489:28–37. https://doi.org/10.1016/j.chemgeo.2018.05.012

    Article  CAS  Google Scholar 

  • Min Z, Yuguan Z, Na L et al (2009) Cerium relieving the inhibition of photosynthesis and growth of spinach caused by lead. J Rare Earths 27:864–869

    Article  Google Scholar 

  • Na J, Chen H, An H et al (2022) Association of rare earth elements with passive smoking among housewives in Shanxi province, China. Int J Environ Res Public Health 19. https://doi.org/10.3390/ijerph19010559

  • Naczynski DJ, Tan MC, Zevon M et al (2013) Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun 4. https://doi.org/10.1038/ncomms3199

  • Nørregaard RD, Kaarsholm H, Bach L et al (2019) Bioaccumulation of rare earth elements in juvenile arctic char (Salvelinus alpinus) under field experimental conditions. Sci Total Environ 688:529–535

    Article  Google Scholar 

  • Okoroafor PU, Mann L, Ngu KA et al (2022) Impact of soil inoculation with Bacillus amyloliquefaciens FZB42 on the phytoaccumulation of germanium, rare earth elements, and potentially toxic elements. Plants 11. https://doi.org/10.3390/plants11030341

  • Ono T (2000) Effects of lanthanide substitution at Ca2+-site on the properties of the oxygen evolving center of photosystem II. J Inorg Biochem 82:85–91

    Article  CAS  Google Scholar 

  • Pagano G, Aliberti F, Guida M et al (2015a) Rare earth elements in human and animal health: state of art and research priorities. Environ Res 142:215–220

    Article  CAS  Google Scholar 

  • Pagano G, Guida M, Tommasi F, Oral R (2015b) Health effects and toxicity mechanisms of rare earth elements—knowledge gaps and research prospects. Ecotoxicol Environ Saf 115:40–48

    Article  CAS  Google Scholar 

  • Parent B, Hachez C, Redondo E et al (2009) Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol 149:2000–2012

    Article  CAS  Google Scholar 

  • Park E-J, Choi J, Park Y-K, Park K (2008) Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100

    Article  CAS  Google Scholar 

  • Porru S, Placidi D, Quarta C et al (2001) The potencial role of rare earths in the pathogenesis of interstitial lung disease: a case report of movie projectionist as investigated by neutron activation analysis. J Trace Elem Med Biol 14:232–236. https://doi.org/10.1016/S0946-672X(01)80008-0

    Article  CAS  Google Scholar 

  • Pošćić F, Schat H, Marchiol L (2017) Cerium negatively impacts the nutritional status in rapeseed. Sci Total Environ 593–594:735–744. https://doi.org/10.1016/j.scitotenv.2017.03.215

    Article  CAS  Google Scholar 

  • Qiu H, He E (2017) Development of electrostatic-based bioavailability models for interpreting and predicting differential phytotoxicity and uptake of metal mixtures across different soils *. Environ Pollut 1–9. https://doi.org/10.1016/j.envpol.2017.04.001

  • Reddy N, Maheswaran J, Meehan B, Peverill K (2001) The application of rare earth elements in enhancement of crop production in Australia. Part 2. Proceedings of the 4th International Conference on Rare earth development and application

    Google Scholar 

  • Rehman MZ, Rizwan M, Hussain A et al (2018) Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil. Environ Pollut 241:557–565

    Article  CAS  Google Scholar 

  • Rezaee A, Hale B, Santos RM, Chiang YW (2018) Accumulation and toxicity of lanthanum and neodymium in horticultural plants (Brassica chinensis L. and Helianthus annuus L.). Can J Chem Eng 96:2263–2272. https://doi.org/10.1002/cjce.23152

    Article  CAS  Google Scholar 

  • Rim K (1980) Effects of rare earth elements on the environment and human health: a literature review. https://doi.org/10.1007/s13530-016-0276-y

    Book  Google Scholar 

  • Rim K-T (2016) Effects of rare earth elements on the environment and human health: a literature review. Toxicol Environ Health Sci 8:189–200

    Article  Google Scholar 

  • Runge VM (2017) Critical questions regarding gadolinium deposition in the brain and body after injections of the gadolinium-based contrast agents, safety, and clinical recommendations in consideration of the EMA’s pharmacovigilance and risk assessment committee recommend. Invest Radiol 52:317–323

    Article  CAS  Google Scholar 

  • Sabiha-Javied WS, Siddique N et al (2010) Measurement of rare earths elements in Kakul phosphorite deposits of Pakistan using instrumental neutron activation analysis. J Radioanal Nucl Chem 284:397–403

    Article  CAS  Google Scholar 

  • Saldaña-Sánchez WD, León-Morales JM, López-Bibiano Y et al (2019) Effect of V, Se, and Ce on growth, photosynthetic pigments, and total phenol content of tomato and pepper seedlings. J Soil Sci Plant Nutr 19:678–688. https://doi.org/10.1007/s42729-019-00068-1

    Article  CAS  Google Scholar 

  • Schwenke H, Wagner E (1992) A new concept of root exudation. Plant Cell Environ 15:289–299. https://doi.org/10.1111/j.1365-3040.1992.tb00976.x

    Article  Google Scholar 

  • Shan X, Lian J, Wen B (2002) Effect of organic acids on adsorption and desorption of rare earth elements. Chemosphere 47:701–710

    Article  CAS  Google Scholar 

  • Sharma S, Shree B, Aditika SA, Irfan M, Kumar P (2022) Nanoparticle-based toxicity in perishable vegetable crops: molecular insights, impact on human health and mitigation strategies for sustainable cultivation. Environ Res 212(A):113168

    Article  CAS  Google Scholar 

  • Shi K, Liu C, Liu D et al (2021) The accumulation and effect of rare earth element neodymium on the root of rice seedlings. Environ Sci Pollut Res 28:48656–48665. https://doi.org/10.1007/s11356-021-14072-5

    Article  CAS  Google Scholar 

  • Shuai C, Yang M, Deng F et al (2020) Forming quality, mechanical properties, and anti-inflammatory activity of additive manufactured Zn-Nd alloy. J Zhejiang Univ A 21:876–891

    Article  CAS  Google Scholar 

  • Shyam R, Aery NC (2012) Effect of cerium on growth, dry matter production, biochemical constituents and enzymatic activities of cowpea plants [Vigna unguiculata (L.) Walp]. J Plant Nutr Soil Sci 12:1–14

    Article  Google Scholar 

  • Siddiqui MH, Mukherjee S, Al-Munqedhi B et al (2022) Salicylic acid and silicon impart resilience to lanthanum toxicity in Brassica juncea L. seedlings. Plant Growth Regul:1–14. https://doi.org/10.1007/s10725-021-00787-5

  • Silva RG, Morais CA, Oliveira ÉD (2019) Selective cerium removal by thermal treatment of mixed rare earth oxalates or carbonates obtained from non-purified rare earth sulphate liquor. Miner Eng 139:105865. https://doi.org/10.1016/j.mineng.2019.105865

    Article  CAS  Google Scholar 

  • Sousa J, Landim P, Jacques Y et al (2021) Distribution of rare earth elements in soils of contrasting geological and pedological settings to support human health assessment and environmental policies. https://doi.org/10.1007/s10653-021-00993-0

    Book  Google Scholar 

  • Stebbing ARD (1982) Hormesis—the stimulation of growth by low levels of inhibitors. Sci Total Environ 22:213–234

    Article  CAS  Google Scholar 

  • Thomas PJ, Carpenter D, Boutin C, Allison JE (2014) Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species. Chemosphere 96:57–66. https://doi.org/10.1016/j.chemosphere.2013.07.020

    Article  CAS  Google Scholar 

  • USGS (2021) Rare earths statistics and information. Retrieved from https://www.usgs.gov/centers/ nmic/rare-earths-statistics-and-information

    Google Scholar 

  • Val’kov AV, Stepanov SI, Sergievskii VV, Chekmarev AM (2010) Monazite raw material for the production of highly effective fertilizers. Theor Found Chem Eng 44:497–499

  • Vilela LAF, Ramos SJ, Carneiro MAC et al (2018) Cerium (Ce) and Lanthanum (La) promoted plant growth and mycorrhizal colonization of maize in tropical soil. Aust J Crop Sci 12:704–710. https://doi.org/10.21475/ajcs.18.12.05.PNE754

    Article  CAS  Google Scholar 

  • Wahid PA, Valiathan MS, Kamalam NV et al (2000) Effect of rare earth elements on growth and nutrition of coconut palm and root competition for these elements between the palm and Calotropis gigantea. J Plant Nutr 23:329–338. https://doi.org/10.1080/01904160009382019

    Article  CAS  Google Scholar 

  • Wang D, Wang C, Wei Z et al (2003) Effect of rare earth elements on peroxidase activity in tea shoots. J Sci Food Agric 83:1109–1113. https://doi.org/10.1002/jsfa.1507

    Article  CAS  Google Scholar 

  • Wang H, Luo H, Sun M (1994) Application of elicitor to cell culture of medicinal plants. Chinese Traditional and Herbal Drugs

    Google Scholar 

  • Wang L, He J, Yang Q et al (2017) A preliminary study on the effects of lanthanum (III) on plant vitronectin-like protein and its toxicological basis. Ecotoxicol Environ Saf 145:227–234. https://doi.org/10.1016/j.ecoenv.2017.07.039

    Article  CAS  Google Scholar 

  • Wang L, Huang X, Zhou Q (2008) Effects of rare earth elements on the distribution of mineral elements and heavy metals in horseradish. Chemosphere 73:314–319. https://doi.org/10.1016/j.chemosphere.2008.06.004

    Article  CAS  Google Scholar 

  • Wang L, Wang W, Zhou Q, Huang X (2014) Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice. Chemosphere 112:355–361. https://doi.org/10.1016/j.chemosphere.2014.04.069

    Article  CAS  Google Scholar 

  • Wang Y, Zhou H, Xiong L et al (2020) Residual levels of rare earth elements in cereal and their health risk assessment from mining area in Jiangxi, South China. J Food Nutr Res 8:58–62

    CAS  Google Scholar 

  • Wei B, Li Y, Li H et al (2013) Rare earth elements in human hair from a mining area of China. Ecotoxicol Environ Saf 96:118–123

    Article  CAS  Google Scholar 

  • Weltje L, Heidenreich H, Zhu W et al (2002) Lanthanide concentrations in freshwater plants and molluscs, related to those in surface water, pore water and sediment. A case study in The Netherlands. Sci Total Environ 286:191–214

  • Weiwei H, Shihua S, Peidong T (2006) Proteome analysis of inhibitory effect of Gadolinium on Sinorhizobium fredii. J-Chin Rare Earth Soc Ed 24:623

    Google Scholar 

  • Wu J, Wang C, Mei X (2001) Stimulation of taxol production and excretion in Taxus spp cell cultures by rare earth chemical lanthanum. J Biotechnol 85:67–73

    Article  CAS  Google Scholar 

  • Wu M, Wang PY, Sun LG et al (2014) Alleviation of cadmium toxicity by cerium in rice seedlings is related to improved photosynthesis, elevated antioxidant enzymes and decreased oxidative stress. Plant Growth Regul 74:251–260. https://doi.org/10.1007/s10725-014-9916-x

    Article  CAS  Google Scholar 

  • Xiaoqing L, Mingyu S, Chao L et al (2007) Effects of CeCl3 on energy transfer and oxygen evolution in spinach photosystem II. J Rare Earths 25:624–630

    Article  Google Scholar 

  • Xu X, Wang Y, Han N et al (2021) Early pregnancy exposure to rare earth elements and risk of gestational diabetes mellitus: a nested case-control study. Front Endocrinol (Lausanne) 12:1–9. https://doi.org/10.3389/fendo.2021.774142

    Article  Google Scholar 

  • Xu X, Wang Z (2007) Phosphorus uptake and translocation in field-grown maize after application of rare earth-containing fertilizer. J Plant Nutr 30:557–568. https://doi.org/10.1080/01904160701209287

    Article  CAS  Google Scholar 

  • Xu X, Zhu W, Wang Z, Witkamp G-J (2003) Accumulation of rare earth elements in maize plants (Zea mays L.) after application of mixtures of rare earth elements and lanthanum. Plant Soil 252:267–277

  • Yang Q, Wang L, He J et al (2018) Direct imaging of how lanthanides break the normal evolution of plants. J Inorg Biochem 182:158–169. https://doi.org/10.1016/j.jinorgbio.2018.01.020

    Article  CAS  Google Scholar 

  • Yang Y, Yang M, He C et al (2021) Rare earth improves strength and creep resistance of additively manufactured Zn implants. Compos Part B Eng 216:108882

    Article  CAS  Google Scholar 

  • Yao R, Li Y, Chen Y et al (2021) Rare-earth elements can structurally and energetically replace the calcium in a synthetic Mn4CaO4-cluster mimicking the oxygen-evolving center in photosynthesis. J Am Chem Soc 143:17360–17365

    Article  CAS  Google Scholar 

  • Yuan H, Wu F, Gao S et al (2003) Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Sci Bull 48:2411–2421

    CAS  Google Scholar 

  • Yue L, Chen F, Yu K et al (2019) Early development of apoplastic barriers and molecular mechanisms in juvenile maize roots in response to La 2 O 3 nanoparticles. Sci Total Environ 653:675–683. https://doi.org/10.1016/j.scitotenv.2018.10.320

    Article  CAS  Google Scholar 

  • Yue L, Ma C, Zhan X et al (2017) Molecular mechanisms of maize seedling response to La2O3 NP exposure: water uptake, aquaporin gene expression and signal transduction. Environ Sci Nano 4:843–855. https://doi.org/10.1039/c6en00487c

    Article  CAS  Google Scholar 

  • Zeng Q, Zhu JG, Cheng HL et al (2006) Phytotoxicity of lanthanum in rice in haplic acrisols and cambisols. Ecotoxicol Environ Saf 64:226–233

    Article  CAS  Google Scholar 

  • Zicari MA, d’Aquino L, Paradiso A et al (2018) Effect of cerium on growth and antioxidant metabolism of Lemna minor L. Ecotoxicol Environ Saf 163:536–543. https://doi.org/10.1016/j.ecoenv.2018.07.113

    Article  CAS  Google Scholar 

  • Zhang C, Li Q, Zhang M et al (2013) Effects of rare earth elements on growth and metabolism of medicinal plants. Acta Pharm Sin B 3:20–24

    Article  Google Scholar 

  • Zhang F, Cheng M, Sun Z et al (2017a) Combined acid rain and lanthanum pollution and its potential ecological risk for nitrogen assimilation in soybean seedling roots. Environ Pollut 231:524–532. https://doi.org/10.1016/j.envpol.2017.08.037

    Article  CAS  Google Scholar 

  • Zhang J, Zhang T, Lu Q et al (2015) Oxidative effects, nutrients and metabolic changes in aquatic macrophyte, Elodea nuttallii, following exposure to lanthanum. Ecotoxicol Environ Saf 115:159–165. https://doi.org/10.1016/j.ecoenv.2015.02.013

    Article  CAS  Google Scholar 

  • Zhang P, Ma Y, Liu S et al (2017b) Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Environ Pollut 220:1400–1408. https://doi.org/10.1016/j.envpol.2016.10.094

    Article  CAS  Google Scholar 

  • Zhang X, Hu Z, Pan H et al (2022) Effects of rare earth elements on bacteria in rhizosphere, root, phyllosphere and leaf of soil–rice ecosystem. Sci Rep 12:1–17. https://doi.org/10.1038/s41598-022-06003-2

    Article  CAS  Google Scholar 

  • Zhao X, Zhang W, He Y et al (2021) Phytotoxicity of Y2O3 nanoparticles and Y3+ ions on rice seedlings under hydroponic culture. Chemosphere 263:127943. https://doi.org/10.1016/j.chemosphere.2020.127943

    Article  CAS  Google Scholar 

  • Zhu WF, Xu SQ, Zhang H et al (1996) Investigation of children intelligence quotient in REE mining area: bio-effect study of REE mining area in South Jiangxi. Chin Sci Bull 41:914–916

    Google Scholar 

  • Zhuang M, Zhao J, Li S et al (2017) Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China. Chemosphere 168:578–582

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PK and MI conceived the idea; AZ, SN, PK, and MI designed the article; AZ, PK, SN, BB, and MI mined the literature and wrote the draft of the manuscript; MI, PK, BB, and RS reviewed and edited the manuscript; All the authors have read and approved the manuscript.

Corresponding author

Correspondence to Mohammad Irfan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadokar, A., Negi, S., Kumar, P. et al. Molecular insights into rare earth element (REE)-mediated phytotoxicity and its impact on human health. Environ Sci Pollut Res 30, 84829–84849 (2023). https://doi.org/10.1007/s11356-023-27299-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27299-1

Keywords

Navigation