Skip to main content
Log in

Progress in comprehensive utilization of electrolytic manganese residue: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Electrolytic manganese residue (EMR) is a solid waste produced in the process of electrolytic manganese metal (EMM) production. In recent years, the accumulation of EMR has caused increasingly serious environmental problems. To better understand the state of EMR recycling in recent years, this paper used a comprehensive literature database to conduct a statistical analysis of EMR-related publications from 2010 to 2022 from two perspectives: harmless green treatment and resource utilization. The results showed that the research on the comprehensive utilization of EMR mainly focused on the fields of chemical hazard-free treatment and manufacturing building materials. The related studies of EMR in the fields of biological harmlessness, applied electric field harmlessness, manganese series materials, adsorbents, geopolymers, glass–ceramics, catalysts, and agriculture were also reported. Finally, we put forward some suggestions to solve the EMR problem, hoping that this work could provide a reference for the clean disposal and efficient utilization of EMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available on reasonable request.

References

  • Ayala J, Fernandez B (2013) Reuse of anode slime generated by the zinc industry to obtain a liquor for manufacturing electrolytic manganese. Jom 65(8):1007–1014

    Article  Google Scholar 

  • Benassi L, Pasquali M, Zanoletti A, Dalipi R, Borgese L, Depero LE et al (2016) Chemical stabilization of municipal solid waste incineration fly ash without any commercial chemicals: first pilot-plant scaling up. ACS Sustain Chem Eng 4(10):5561–5569

    Article  CAS  Google Scholar 

  • Chen H, Liu R, Shu J, Li W (2015) Simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese from electrolytic manganese residue by air under calcium oxide assist. J Environ Sci Health Part A-Toxic/hazard Sub Environ Eng 50(12):1282–1290

    CAS  Google Scholar 

  • Chen HL, Liu RL, Liu ZH, Shu JC, Tao CY (2016) Immobilization of Mn and NH4 (+)-N from electrolytic manganese residue waste. Environ Sci Pollut Res 23(12):12352–12361

    Article  CAS  Google Scholar 

  • Chen H, Zhang Y, Zhang Q, Li L (2017) Technology conditions and kinetics analysis of manganese and iron ions leaching from electrolytic manganese residue by acid reduction. Bull Chin Ceramic Soc 36(8):2844–2849

    Google Scholar 

  • Chen H, Long Q, Zhang Y, Wang S, Deng F (2020) A novel method for the stabilization of soluble contaminants in electrolytic manganese residue: using low-cost phosphogypsum leachate and magnesia/calcium oxide. Ecotoxicol Environ Saf 194:110384

    Article  CAS  Google Scholar 

  • Cohen RO, Nixon PJ, Diner BA (2007) Participation of the C-terminal region of the D1-polypeptide in the first steps in the assembly of the Mn4Ca cluster of photosystem II. J Biol Chem 282(10):7209–7218

    Article  CAS  Google Scholar 

  • Das N, Jana RK (2006) Adsorption of some bivalent heavy metal ions from aqueous solutions by manganese nodule leached residues. J Colloid Interface Sci 293(2):253–262

    Article  CAS  Google Scholar 

  • Dash SS, Mallik S, Parida KM, Mohapatra BK (2006) Studies on manganese nodule leached residue 4. Physicochemical characterization and catalytic activity of acetic acid treated manganese nodule leached residue. J Colloid Interface Sci 294(1):117–21

    Article  CAS  Google Scholar 

  • Du B, Hou D, Duan N, Zhou C, Wang J, Dan Z (2015) Immobilization of high concentrations of soluble Mn(II) from electrolytic manganese solid waste using inorganic chemicals. Environ Sci Pollut Res 22(10):7782–7793

    Article  CAS  Google Scholar 

  • Duan N, Dan Z, Wang F, Pan C, Zhou C, Jiang L (2011a) Electrolytic manganese metal industry experience based China’s new model for cleaner production promotion. J Clean Prod 19(17–18):2082–2087

    Article  Google Scholar 

  • Duan N, Zhou C, Chen B, Jiang W, Xin B (2011) Bioleaching of Mn from manganese residues by the mixed culture of Acidithiobacillus and mechanism. J Chem Technol Biotechnol 86(6):832–837

    Article  CAS  Google Scholar 

  • Edwards RA, Whittaker MM, Whittaker JW, Baker EN, Jameson GB (2001) Outer sphere mutations perturb metal reactivity in manganese superoxide dismutase. Biochemistry 40(1):15–27

    Article  CAS  Google Scholar 

  • Fan B, He GW, Liu LH, Wang JX (2011) Study on clean production technologies of electrolysis manganese passivation. Adv Mater Res 308–310:790–795

    Article  Google Scholar 

  • Figueira BAM, Angelica RS, Da Costa ML, Pollmann H, Schenzel K (2013) Conversion of different Brazilian manganese ores and residues into birnessite-like phyllomanganate. Appl Clay Sci 86:54–58

    Article  CAS  Google Scholar 

  • Glasfeld A, Guedon E, Helmann JD, Brennan RG (2003) Structure of the manganese-bound manganese transport regulator of Bacillus subtilis. Nat Struct Mol Biol 10(8):652–657

    Article  CAS  Google Scholar 

  • Gulkowska A, Thalmann B, Hollender J, Krauss M (2014) Nonextractable residue formation of sulfonamide antimicrobials: new insights from soil incubation experiments. Chemosphere 107:366–372

    Article  CAS  Google Scholar 

  • He S, Jiang D, Hong M, Liu Z (2021a) Hazard-free treatment and resource utilisation of electrolytic manganese residue: a review. J Clean Prod 306:127224

    Article  CAS  Google Scholar 

  • He S, Wilson B P, Lundstrom M, Liu Z (2021b) Hazard-free treatment of electrolytic manganese residue and recovery of manganese using low temperature roasting-water washing process. Journal of Hazardous Materials 402:123561

  • He D, Shu J, Wang R, Chen M, Wang R, Gao Y, Liu R, Liu Z, Xu Z, Tan D, Gu H, Wang N (2021c) A critical review on approaches for electrolytic manganese residue treatment and disposal technology: reduction, pretreatment, and reuse. J Hazard Mater 418:126235

  • He W, Li R, Zhang Y, Nie D (2022) Synergistic use of electrolytic manganese residue and barium slag to prepare belite-sulphoaluminate cement study. Constr Build Mater 326:126672

    Article  CAS  Google Scholar 

  • Hou PK, Qian JS, Wang Z, Deng C (2012) Production of quasi-sulphoaluminate cementitious materials with electrolytic manganese residue. Cement Concr Compos 34(2):248–254

    Article  CAS  Google Scholar 

  • Huang WZ, Lu N (2011) Study on procedure toxicity and harmless disposal of manganese mine tailing slag. Adv Mater Res 414:312–316

    Article  Google Scholar 

  • Ippolito NM, Belardi G, Medici F, Piga L (2016) Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries. Waste Manage 51:182–189

    Article  CAS  Google Scholar 

  • Janczak J (2004) Iodo phthalocyaninato(2-) manganese(III) bridged by a neutral I2 molecule. Acta Crystallogr Sect C-Cryst Struct Commun 60(Pt 7):m330–m332

    Article  Google Scholar 

  • Jankowski K, Kijewski L, Skwierawska M, Krzebietke S, Mackiewicz-Walec E (2014) Effect of sulfur fertilization on the concentrations of copper, zinc and manganese in the roots, straw and oil cake of rapeseed (Brassica napus l. ssp oleifera metzg). J Elementol 19(2):433–446

    Google Scholar 

  • Jiang L (2020) Heat treatment parameters of preparing glass-ceramic with electrolytic manganese residue and their properties. J Therm Anal Calorim 140(4):1737–1744

    Article  CAS  Google Scholar 

  • Jiang M, Du Y, Du D, Deng Y, Chen N (2014) Technology for production silicon-manganese fertilizer from EMM residue. China’s Manganese Industry 32(02):16–19+24

  • Kovacs T, Shahrokhi A, Sas Z, Vigh T, Somlai J (2017) Radon exhalation study of manganese clay residue and usability in brick production. J Environ Radioact 168:15–20

    Article  CAS  Google Scholar 

  • Krasheninin AG, Khalezov BD, Bornovolokov AS, Ordinartsev DP (2019) Technology of extracting manganese from vanadium converter slag after leaching vanadium. Metallurgist 5:91–96

    Google Scholar 

  • Lan J, Sun Y, Guo L, Li Z, Du D, Zhang TC (2019a) A novel method to recover ammonia, manganese and sulfate from electrolytic manganese residues by bio-leaching. J Clean Prod 223:499–507

    Article  CAS  Google Scholar 

  • Lan J, Sun Y, Guo L, Du Y, Du D, Zhang TC, Li J, Ye H (2019b) Highly efficient removal of As(V) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent. J Alloys Compd 811:151973

    Article  CAS  Google Scholar 

  • Lan J, Sun Y, Huang P, Du Y, Zhan W, Zhang TC, Du D (2020) Using electrolytic manganese residue to prepare novel nanocomposite catalysts for efficient degradation of azo dyes in Fenton-like processes. Chemosphere 252:126487

    Article  CAS  Google Scholar 

  • Lan J, Sun Y, Tian H, Zhan W, Du Y, Ye H, Du D, Zhang T C, Hou H (2021a) Electrolytic manganese residue-based cement for manganese ore pit backfilling: performance and mechanism. J Hazard Mater 411:124941

    Article  CAS  Google Scholar 

  • Lan J, Dong Y, Xiang Y, Zhang S, Mei T, Hou H (2021b) Selective recovery of manganese from electrolytic manganese residue by using water as extractant under mechanochemical ball grinding: mechanism and kinetics. J Hazard Mater 415:125556

    Article  CAS  Google Scholar 

  • Lan J, Zhang S, Mei T, Dong Y, Hou H (2021c) Mechanochemical modification of electrolytic manganese residue: ammonium nitrogen recycling, heavy metal solidification, and baking-free brick preparation. J Clean Prod 329:129727

    Article  CAS  Google Scholar 

  • Li C, Zhong H, Wang S, Xue J, Zhang Z (2015a) Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. J Ind Eng Chem 23:344–352

    Article  CAS  Google Scholar 

  • Li C, Zhong H, Wang S, Xue J, Zhang Z (2015b) A novel conversion process for waste residue: synthesis of zeolite from electrolytic manganese residue and its application to the removal of heavy metals. Colloids Surf A-Physicochem Eng Aspects 470:258–267

    Article  CAS  Google Scholar 

  • Li CX, Zhong H, Wang S, Xue JR, Wu FF, Zhang ZY (2015c) Preparation of MnO2 and calcium silicate hydrate from electrolytic manganese residue and evaluation of adsorption properties. J Central South Univ 22(7):2493–2502

    Article  CAS  Google Scholar 

  • Li Q, Liu Q, Peng B, Chai L, Liu H (2016) Self-cleaning performance of TiO2-coating cement materials prepared based on solidification/stabilization of electrolytic manganese residue. Constr Build Mater 106:236–242

    Article  CAS  Google Scholar 

  • Li J, Du D, Peng Q, Wu C, Lv K, Ye H, Chen S, Zhan W (2018) Activation of silicon in the electrolytic manganese residue by mechanical grinding-roasting. J Clean Prod 192:347–353

    Article  CAS  Google Scholar 

  • Li M, Hu L, Zhong H, He Z, Sun W, Xiong D (2021) Efficient removal of diethyl dithiocarbamate with EDTA functionalized electrolytic manganese residue and mechanism exploration. J Hazard Mater 410:124582

    Article  CAS  Google Scholar 

  • Li J, Lv Y, Jiao X, Sun P, Li J, Wuri L, Zhang T C (2020a) Electrolytic manganese residue based autoclaved bricks with Ca(OH)(2) and thermal-mechanical activated K-feldspar additions. Constr Build Mater 230:116848

    Article  CAS  Google Scholar 

  • Li J, Sun P, Li J, Lv Y, Ye H, Shao L, Du D (2020b) Synthesis of electrolytic manganese residue-fly ash based geopolymers with high compressive strength. Constr Build Mater 248:118489

    Article  CAS  Google Scholar 

  • Liang D Q, Qin F, Li X G, Jiang J B (2011) Performance of concrete made with manganese slag. Appl Mech Mater 117–119

  • Liu WL, Lee KJ, Park M, John RP, Moon D, Zou Y, Liu XF, Ri HC, Kim GH, Lah MS (2008) Novel 48-membered hexadecanuclear and 60-membered icosanuclear manganese metallamacrocycles. Inorg Chem 47(19):8807–8812

    Article  CAS  Google Scholar 

  • Liu R, Wang H, Liu Z, Tao C (2020) Electrokinetic remediation with solar powered for electrolytic manganese residue and researching on migration of ammonia nitrogen and manganese. J Water Process Eng 38:101655

    Article  Google Scholar 

  • Luo Y, Liu F, Ren J, Zhu J, Luo XQ, Xiang YZ (2021) Effects of dominant plant growth on the nutrient composition and bacterial community structure of manganese residues. Int J Phytoremediation 24:525–535

    Article  Google Scholar 

  • Lv Y, Li J, Ye H, Du D, Li J, Sun P, Ma M, Wen J (2019) Bioleaching behaviors of silicon and metals in electrolytic manganese residue using silicate bacteria. J Clean Prod 228:901–909

    Article  CAS  Google Scholar 

  • Lv Y, Li J, Ye H, Du D, Sun P, Ma M, Zhang TC (2020) Bioleaching of silicon in electrolytic manganese residue (EMR) by Paenibacillus mucilaginosus: impact of silicate mineral structures. Chemosphere 256:127043

    Article  CAS  Google Scholar 

  • Ma M, Du Y, Bao S, Li J, Wei H, Lv Y, Song X, Zhang T, Du D (2020) Removal of cadmium and lead from aqueous solutions by thermal activated electrolytic manganese residues. Sci Total Environ 748:141490

    Article  CAS  Google Scholar 

  • Moradkhani D, Sedaghat B, Khodakarami M, Ataei I (2014) Recovery of valuable metals from zinc plant residue through separation between manganese and cobalt with n-n reagent. Physicochem Problems Min Process 50(2):735–746

    CAS  Google Scholar 

  • Morgan JJ (2005) Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochim Cosmochim Acta 69(1):35–48

    Article  CAS  Google Scholar 

  • Mrowka M, Wozniak A, Nowak J, Wrobel G, Slawski S (2021) Determination of mechanical and tribological properties of silicone-based composites filled with manganese waste. Materials 14(16):4459

    Article  CAS  Google Scholar 

  • Mukherjee P, Pattnaik S, Sanjay K, Mohapatra M (2021) Manganese enrichment of polymetallic oceanic nodules via selective leaching process for energy storage applications. J Chem Technol Biotechnol 96(5):1246–1257

    Article  CAS  Google Scholar 

  • Ning D, Wang F, Zhou CB, Zhu CL, Yu HB (2010) Analysis of pollution materials generated from electrolytic manganese industries in China. Resour Conserv Recycl 54(8):506–511

    Article  Google Scholar 

  • Parida KM, Mallick S, Mohapatra BK, Misra VN (2004) Studies on manganese-nodule leached residues; 1. Physicochemical characterization and its adsorption behavior toward Ni(2+) in aqueous system. J Colloid Interface Sci 277(1):48–54

    Article  CAS  Google Scholar 

  • Parida KM, Mallick S, Dash SS (2005) Studies on manganese nodule leached residues 2. Adsorption of aqueous phosphate on manganese nodule leached residues. J Colloid Interface Sci 290(1):22–7

    Article  CAS  Google Scholar 

  • Peng T, Xu L, Chen H (2010) Preparation and characterization of high specific surface area Mn3O4 from electrolytic manganese residue. Cent Eur J Chem 8(5):1059–1068

    CAS  Google Scholar 

  • Peng T, Xu L, Wang X (2013) Leaching of manganese residue for the preparation of trimanganese tetroxide with a high surface area. Chin J Geochem 32:331–336

    Article  CAS  Google Scholar 

  • Qian J, Hou P, Wang Z, Qu Y (2012) Crystallization Characteristic of Glass-ceramic Made from Electrolytic Manganese Residue. J Wuhan Univ Technol-Mater Sci Edit 27(1):45–49

    Article  CAS  Google Scholar 

  • Randhawa NS, Das NN, Jana RK (2012) Selenite adsorption using leached residues generated by reduction roasting-ammonia leaching of manganese nodules. J Hazard Mater 241:486–492

    Article  Google Scholar 

  • Randhawa NS, Das NN, Jana RK (2013) Cadmium removal using waste residue generated after recovery of base metals from manganese nodules. Indian J Chem Technol 20(6):371–379

    CAS  Google Scholar 

  • Reddy MM, Rajasekharan R (2006) Role of threonine residues in the regulation of manganese-dependent arabidopsis serine/threonine/tyrosine protein kinase activity. Arch Biochem Biophys 455(2):99–109

    Article  CAS  Google Scholar 

  • Remelli M, Peana M, Medici S, Ostrowska M, Gumienna-Kontecka E, Zoroddu MA (2016) Manganism and Parkinson’s disease: Mn(II) and Zn(II) interaction with a 30-amino acid fragment. Dalton Trans 45(12):5151–5161

    Article  CAS  Google Scholar 

  • Rhie GE, Hwang CS, Brady MJ, Kim ST, Kim YR, Huh WK, Baek YU, Lee BH, Lee JS, Kang SO (1999) Manganese-containing superoxide dismutase and its gene from Candida albicans. N/a 1426(3):409–419

    CAS  Google Scholar 

  • Satapathy PK, Randhawa NS, Das NN (2012) Oxidative decolorization of methylene blue by leached sea-nodule residues generated by the reduction-roasting ammoniacal leaching process. Environ Technol 33(5):515–522

    Article  CAS  Google Scholar 

  • Shaabani A, Mirzaei P, Naderi S, Lee DG (2004) Green oxidations. The use of potassium permanganate supported on manganese dioxide. Tetrahedron 60(50):11415–11420

    Article  CAS  Google Scholar 

  • Shen B, Zhou P, Chen SJ, Yuan HP, Zhu NW, Sun TH, Lou ZY (2019) Manganese-based catalysts recovered from spent ternary lithium-ion batteries and its catalytic activity enhanced by a mechanical method. J Clean Prod 213:1346–1352

    Article  CAS  Google Scholar 

  • Shu JC, Liu RL, Liu ZH, Chen HL, Tao CY (2016a) Enhanced extraction of manganese from electrolytic manganese residue by electrochemical. J Electroanal Chem 780:32–37

    Article  CAS  Google Scholar 

  • Shu J, Liu R, Liu Z, Chen H, Du J, Tao C (2016b) Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO. J Hazard Mater 317:267–274

    Article  CAS  Google Scholar 

  • Shu JC, Wu HP, Liu RL, Liu ZH, Li B, Chen MJ, Tao CY (2018a) Simultaneous stabilization/solidification of Mn2+ and NH4+-N from electrolytic manganese residue using MgO and different phosphate resource. Ecotoxicol Environ Saf 148:220–227

    Article  CAS  Google Scholar 

  • Shu J, Liu R, Wu H, Liu Z, Sun X, Tao C (2018b) Adsorption of methylene blue on modified electrolytic manganese residue: kinetics, isotherm, thermodynamics and mechanism analysis. J Taiwan Inst Chem Eng 82:351–359

    Article  CAS  Google Scholar 

  • Shu J, Chen M, Wu H, Li B, Wang B, Li B, Liu R, Liu Z (2019a) An innovative method for synergistic stabilization/solidification of Mn2+, NH4+-N, PO43- and F- in electrolytic manganese residue and phosphogypsum. J Hazard Mater 376:212–222

    Article  CAS  Google Scholar 

  • Shu J, Sun X, Liu R, Liu Z, Wu H, Chen M, Li B (2019b) Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents. Ecotoxicol Environ Saf 171:523–529

    Article  CAS  Google Scholar 

  • Shu J, Cai L, Zhao J, Feng H, Chen M, Zhang X, Wu H, Yang Y, Liu R (2020a) A low cost of phosphate-based binder for Mn2+ and NH4+-N simultaneous stabilization in electrolytic manganese residue. Ecotoxicol Environ Saf 205:111317

  • Shu J, Li B, Chen M, Sun D, Wei L, Wang Y, Wang J (2020b) An innovative method for manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material. Chemosphere 253:126896

  • Shu J, Lin F, Chen M, Li B, Wei L, Wang J, Luo Z, Wang R (2020c) An innovative method to enhance manganese and ammonia nitrogen leaching from electrolytic manganese residue by surfactant and anode iron plate. Hydrometallurgy 193:105311

  • Slawski S, Wozniak A, Bazan P, Mrowka M (2022) The mechanical and tribological properties of epoxy-based composites filled with manganese-containing waste. Materials 15(4):1579

  • Suanon F, Tang L, Sheng H, Fu Y, Xiang L, Herzberger A et al (2020) Tw80 and glda-enhanced oxidation under electrokinetic remediation for aged contaminated-soil: does it worth? Chem Eng J 385:123934

    Article  CAS  Google Scholar 

  • Sun D, Yang L, Liu N, Jiang W, Jiang X, Li J, Yang Z, Song Z (2020) Sulfur resource recovery based on electrolytic manganese residue calcination and manganese oxide ore desulfurization for the clean production of electrolytic manganese. Chin J Chem Eng 28(3):864–870

    Article  CAS  Google Scholar 

  • Tang B, Gao S, Wang Y, Liu X, Zhang N (2019) Pore structure analysis of electrolytic manganese residue based permeable brick by using industrial CT. Constr Build Mater 208:697–709

    Article  CAS  Google Scholar 

  • Tao CY, Li MY, Liu ZH, Du J (2009) Composition and recovery method for electrolytic manganese residue. J Cent South Univ Technol 16:309–312

    CAS  Google Scholar 

  • Tian Y, Shu J, Chen M, Wang J, Wang Y, Luo Z, Wang R, Yang F, Xiu F, Sun Z (2019) Manganese and ammonia nitrogen recovery from electrolytic manganese residue by electric field enhanced leaching. J Clean Prod 236:117708

    Article  CAS  Google Scholar 

  • Wang J, Peng B, Chai L, Zhang Q, Liu Q (2013) Preparation of electrolytic manganese residue-ground granulated blastfurnace slag cement. Powder Technol 241:12–18

    Article  CAS  Google Scholar 

  • Wang N, Fang Z, Peng S, Cheng D, Du B, Zhou C (2016) Recovery of soluble manganese from electrolyte manganese residue using a combination of ammonia and CO2. Hydrometallurgy 164:288–294

  • Wang Z, Yu Q, Li C, Li Y, Wu W (2021) Preparation, structure and performance of steel slag-manganese slag compound fertilizer. China Metallurgy 31(01):75–80

    Google Scholar 

  • Wang P, Liu DY (2013) Preparation of baking-free brick from manganese residue and its mechanical properties. J Nanomater 2013:452854

    Google Scholar 

  • Wang Y, Ye W, Liu H (2011) The research on preparation of a new building material with emr and their properties. Adv Mater Res 163–167:4575–4579

    Google Scholar 

  • Wang J, Peng B, Chai L Y, Zhang Q, Liu Q (2012) Study on cementing material making with electrolytic manganese residue. TMS Annual Meeting 461–471

  • Wang Y, Gao S, Liu X, Tang B, Mukiza E, Zhang N (2019) Preparation of non-sintered permeable bricks using electrolytic manganese residue: environmental and NH3-N recovery benefits. J Hazard Mater 378:120768

    Article  CAS  Google Scholar 

  • Wang D, Wang Q, Xue J (2020) Reuse of hazardous electrolytic manganese residue: detailed leaching characterization and novel application as a cementitious material. Resour Conserv Recycl 154:104645

    Article  Google Scholar 

  • Whitwam RE, Brown KR, Musick M, Natan MJ, Tien M (1997) Mutagenesis of the Mn2+-binding site of manganese peroxidase affects oxidation of Mn2+ by both compound I and compound II. Biochemistry 36(32):9766–9773

    Article  CAS  Google Scholar 

  • Wu FF, Wang S, Guo SY, Zhong H (2016a) Adsorption of methylene blue by porous ceramics prepared from electrolytic manganese residues. Desalin Water Treat 57(57):27627–27637

    CAS  Google Scholar 

  • Wu FF, Li XP, Zhong H, Wang S (2016b) Utilization of electrolytic manganese residues in production of porous ceramics. Int J Appl Ceram Technol 13(3):511–521

    Article  CAS  Google Scholar 

  • Wu W, Dai SF, Wang P, Ma D, Ni B (2019) Equilibrium kinetics of manganese-ore carbon-reduction between molten steel and slag. Ironmaking Steelmaking 46(5):469–476

    Article  CAS  Google Scholar 

  • Xin BP, Chen B, Duan N, Zhou CB (2011) Extraction of manganese from electrolytic manganese residue by bioleaching. Biores Technol 102(2):1683–1687

    Article  CAS  Google Scholar 

  • Xu LJ, Wang XM, Chen HC, Liu CL (2011) Mn forms and environmental impact of electrolytic manganese residue. Adv Mater Res 183–185:570–574

    Google Scholar 

  • Xu Y, Liu X, Zhang Y, Tang B, Mukiza E (2019) Investigation on sulfate activation of electrolytic manganese residue on early activity of blast furnace slag in cement-based cementitious material. Constr Build Mater 229:116831

    Article  CAS  Google Scholar 

  • Yang C, Lv X, Tian X, Wang Y, Komarneni S (2014) An investigation on the use of electrolytic manganese residue as filler in sulfur concrete. Constr Build Mater 73:305–310

    Article  Google Scholar 

  • Yang X, Xiang X, Xue X (2018a) Study on acid leaching experimental conditions of electrolytic manganese residue. Bull Chinese Ceramic Soc 37(7):2326–2330

    Google Scholar 

  • Yang YQ, Gu HN, Guo TF, Dai Y, Wang N (2018b) Environmental assessment of manganese sulfate residues derived from pyrolusite process. Fresenius Environ Bull 27(7):4883–4888

    CAS  Google Scholar 

  • Yang T, Xue Y, Liu X, Zhang Z (2022) Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: a review. Process Saf Environ Prot 157:509–526

    Article  CAS  Google Scholar 

  • Zhan XY, Wang LA, Hu CC, Gong J, Xu TT, Li JX, Yang L, Bai JS, Zhong S (2018) Co-disposal of MSWI fly ash and electrolytic manganese residue based on geopolymeric system. Waste Manage 82:62–70

    Article  CAS  Google Scholar 

  • Zhan X, Wang LA, Wang L, Wang X, Gong J, Yang L, Bai J (2019) Enhanced geopolymeric co-disposal efficiency of heavy metals from MSWI fly ash and electrolytic manganese residue using complex alkaline and calcining pre-treatment. Waste Manage 98:135–143

    Article  CAS  Google Scholar 

  • Zhan X, Wang L, a, Wang L, Gong J, Wang X, Song X, Xu T, (2021) Co-sintering MSWI fly ash with electrolytic manganese residue and coal fly ash for lightweight ceramisite. Chemosphere 263:127914

    Article  CAS  Google Scholar 

  • Zhang Y, Liu X, Xu Y, Tang B, Wang Y, Mukiza E (2019a) Preparation and characterization of cement treated road base material utilizing electrolytic manganese residue. J Clean Prod 232:980–992

    Article  CAS  Google Scholar 

  • Zhang Y, Liu X, Xu Y, Tang B, Wang Y, Mukiza E (2019b) Synergic effects of electrolytic manganese residue-red mud-carbide slag on the road base strength and durability properties. Constr Build Mater 220:364–374

    Article  CAS  Google Scholar 

  • Zhang Y, Liu X, Xu Y, Tang B, Wang Y (2020) Preparation of road base material by utilizing electrolytic manganese residue based on Si-Al structure: mechanical properties and Mn2+ stabilization/solidification characterization. J Hazard Mater 390:122188

  • Zhao B, Wang X, Zhu K, Yuan X, Dou G, Pan C (2017) Effects of washing methods on recovery efficiency of manganese from manganese residue and harmless treatment. Chinese J Environ Eng 11(11):6013–6108

    Google Scholar 

  • Zhao R, Han F (2013) Preparation of geopolymer using electrolytic manganese residue. Key Engineering Materials 591:130–133

    Article  Google Scholar 

  • Zheng C, Jian RH, Pan JL, Zou C, Wang H, Sheng YY, Zhou QF, Liu WQ (2018) Study on the preparation of battery grade cobalt carbonate from PTA oxidation residue. Integr Ferroelectr 189(1):65–70

    Article  CAS  Google Scholar 

  • Zheng F, Zhu H, Luo T, Wang H, Hou H (2020) Pure water leaching soluble manganese from electrolytic manganese residue: leaching kinetics model analysis and characterization. J Environ Chem Eng 8(4):103916

    Article  CAS  Google Scholar 

  • Zhou CB, Du B, Wang NF, Chen Z (2014a) Preparation and strength property of autoclaved bricks from electrolytic manganese residue. J Clean Prod 84:707–714

    Article  CAS  Google Scholar 

  • Zhou Y, Yang B, Yang Y, Jia R (2014) Optimization of manganese peroxidase production from Schizophyllum sp. F17 in solid-state fermentation of agro-industrial residues. Chinese J Biotechnol 30(3):524–8

    CAS  Google Scholar 

  • Zogzas CE, Mukhopadhyay S (2018) Putative metal binding site in the transmembrane domain of the manganese transporter SLC30A10 is different from that of related zinc transporters. Metallomics 10(8):1053–1064

  • Zou Q, Liu H, Xie H (2018) Leaching process of electrolytic manganese slag by alkali solution and its kinetics. Min Metallurgical Eng 38(2):83–87

    Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (52164036), the National Natural Science Foundation of China (U1960201), the National Natural Science Foundation of China (51764007), and the Guizhou Province Graduate Research Fund (YJSKYJJ(2021)003).

Author information

Authors and Affiliations

Authors

Contributions

Huixin Jin and Wenlei Li: design of the article, writing—original draft preparation, drafting of the article, revision to the text, and final approval of the article.

Hongyan Xie and Duolun Wang: review and revision to the text.

Corresponding author

Correspondence to Huixin Jin.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Jin, H., Xie, H. et al. Progress in comprehensive utilization of electrolytic manganese residue: a review. Environ Sci Pollut Res 30, 48837–48853 (2023). https://doi.org/10.1007/s11356-023-26156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26156-5

Keywords

Navigation