Skip to main content

Advertisement

Log in

A critical review of research progress for metal alloy materials in hydrogen evolution and oxygen evolution reaction

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hydrogen produced by electrolyzing water has attracted extensive attention as an effective way to generate and store new energy by using renewable energy. Electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) were the core reactions in the process of hydrogen production by water electrolysis, however, due to the low efficiency of the electrolytic device caused by its slow kinetic reaction and the dependence on noble metal catalysts (platinum and iridium/ruthenium (oxide)), which limited its wide application. The preparation of high-efficiency catalysts with high catalytic activity, stability, low cost and scalability played a vital role in promoting the development of hydrogen production technology from electrolytic water and has become a current research hotspot. Metal alloy catalysts have been widely studied as high-efficiency electrocatalysts. This study introduced and analyzed the mechanism and application of metal alloy catalyst in hydrogen and oxygen evolution reaction, summarized and discussed the progress in the design, preparation and application of metal alloy electrocatalysts. Finally, the strategy and prospect of new high-efficiency electrocatalysts were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Copyright 2014 Elsevier B.V. (i), (j) SEM images of NiS/Ni samples under different magnifications (Yan et al. 2020). Copyright 2020 Elsevier Ltd. (k), (l) SEM images of Ni-doped Co3S4 HNS/TM (Wang et al. 2022). Copyright 2021 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. (m), (n) SEM images of MoO3/Ni–NiO at 2 μm and 100 nm (Li et al. 2020). Copyright 2020 Wiley–VCH GmbH

Fig. 5

Copyright 2018 American Chemical Society

Fig. 6

Copyright 2013 The Royal Society of Chemistry

Fig. 7

Copyright 2021 The Royal Society of Chemistry

Fig. 8

Copyright 2021 Youke Publishing Co, Ltd

Fig. 9
Fig. 10
Fig. 11
Fig. 12

Copyright 2021 American Chemical Society

Similar content being viewed by others

Data availability

We declare that the data supporting the findings of this study are available within the article.

Materials availability

We declare that the materials supporting the findings of this study are available within the article.

References

  • Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK (2018) Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Convers Manage 165:602–627

    Article  CAS  Google Scholar 

  • Ahmed MS, Choi B, Kim YB (2018) Development of highly active bifunctional electrocatalyst using Co3O4 on carbon nanotubes for oxygen reduction and oxygen evolution. Sci Rep 8:2543

    Article  Google Scholar 

  • Ahsan MA, Puente Santiago AR, Hong Y, Zhang N, Cano M, Rodriguez-Castellon E, Echegoyen L, Sreenivasan ST, Noveron JC (2020) Tuning of trifunctional NiCu bimetallic nanoparticles confined in a porous carbon network with surface composition and local structural distortions for the electrocatalytic oxygen reduction, oxygen and hydrogen evolution reactions. J Am Chem Soc 142:14688–14701

    Article  CAS  Google Scholar 

  • An C-H, Kang W, Deng Q-B, Hu N (2021) Pt and Te codoped ultrathin MoS2 nanosheets for enhanced hydrogen evolution reaction with wide pH range. Rare Met 41:378–384

    Article  Google Scholar 

  • Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S (2016) Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal 6:8069–8097

    Article  CAS  Google Scholar 

  • Anantharaj S, Karthick K, Kundu S (2017) Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: a review with insights on structure, activity and mechanism. Materials Today Energy 6:1–26

    Article  Google Scholar 

  • Bao J, Zhang X, Fan B, Zhang J, Zhou M, Yang W, Hu X, Wang H, Pan B, Xie Y (2015) Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed Engl 54:7399–7404

    Article  CAS  Google Scholar 

  • Bao J, Wang Z, Xie J, Xu L, Lei F, Guan M, Huang Y, Zhao Y, Xia J, Li H (2018) The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting. Inorg Chem Front 5:2964–2970

    Article  CAS  Google Scholar 

  • Burke MS, Enman LJ, Batchellor AS, Zou S, Boettcher SW (2015) Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem Mater 27:7549–7558

    Article  CAS  Google Scholar 

  • Chalgin A, Song C, Tao P, Shang W, Deng T, Wu J (2020) Effect of supporting materials on the electrocatalytic activity, stability and selectivity of noble metal-based catalysts for oxygen reduction and hydrogen evolution reactions. Prog Natl Sci Mater Intl 30:289–297

    Article  CAS  Google Scholar 

  • Chen B, Jiang Z, Huang J, Deng B, Zhou L, Jiang Z-J, Liu M (2018) Cation exchange synthesis of NixCo(3–x)O4 (x = 1.25) nanoparticles on aminated carbon nanotubes with high catalytic bifunctionality for the oxygen reduction/evolution reaction toward efficient Zn–air batteries. J Mater Chem A 6:9517–9527

    Article  CAS  Google Scholar 

  • Chen L, Yang W, Liu X, Jia J (2017) Flower-like CoS 2 /MoS 2 nanocomposite with enhanced electrocatalytic activity for hydrogen evolution reaction. Int J Hydrogen Energy 42:12246–12253

    Article  CAS  Google Scholar 

  • Chen T, Tan Y (2018) Hierarchical CoNiSe2 nano-architecture as a high-performance electrocatalyst for water splitting. Nano Res 11:1331–1344

    Article  CAS  Google Scholar 

  • Chen X, Zhen X, Gong H, Li L, Xiao J, Xu Z, Yan D, Xiao G, Yang R (2019) Cobalt and nitrogen codoped porous carbon as superior bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reaction in alkaline medium. Chin Chem Lett 30:681–685

    Article  CAS  Google Scholar 

  • Chen Z, Wei W, Ni B-J (2021): Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: recent advances. Current Opinion in Green and Sustainable Chemistry 27

  • Cheng Y, Yuan P, Xu X, Guo S, Pang K, Guo H, Zhang Z, Wu X, Zheng L, Song R (2019) S-Edge-rich MoxSy arrays vertically grown on carbon aerogels as superior bifunctional HER/OER electrocatalysts. Nanoscale 11:20284–20294

    Article  CAS  Google Scholar 

  • Cherevko S, Geiger S, Kasian O, Kulyk N, Grote J-P, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer KJJ (2016) Oxygen and hydrogen evolution reactions on Ru, RuO 2, Ir, and IrO 2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today 262:170–180

    Article  CAS  Google Scholar 

  • Chi J-Q, Yan K-L, Xiao Z, Dong B, Shang X, Gao W-K, Li X, Chai Y-M, Liu C-G (2017) Trimetallic Ni Fe Co selenides nanoparticles supported on carbon fiber cloth as efficient electrocatalyst for oxygen evolution reaction. Int J Hydrogen Energy 42:20599–20607

    Article  CAS  Google Scholar 

  • Czioska S, Wang J, Teng X, Chen Z (2018) Hierarchically structured CuCo2S4 nanowire arrays as efficient bifunctional electrocatalyst for overall water splitting. ACS Sustain Chem Eng 6:11877–11883

    Article  CAS  Google Scholar 

  • da Silva Veras T, Mozer TS, da Costa Rubim Messeder dos Santos D, da Silva César A (2017): Hydrogen: trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy 42, 2018-2033

  • Dang NK, Tiwari JN, Sultan S, Meena A, Kim KS (2021): Multi-site catalyst derived from Cr atoms-substituted CoFe nanoparticles for high-performance oxygen evolution activity. Chemical Engineering Journal 404

  • Danilovic N, Subbaraman R, Chang KC, Chang SH, Kang Y, Snyder J, Paulikas AP, Strmcnik D, Kim YT, Myers D, Stamenkovic VR, Markovic NM (2014) Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew Chem Int Ed Engl 53:14016–14021

    Article  CAS  Google Scholar 

  • Danish M, Tayyab M, Akhtar A, Altaf AA, Kausar S, Ullah S, Iqbal M (2020) Effect of soft template variation on the synthesis, physical, and electrochemical properties of Mn3O4 nanomaterial. Inorg Nano-Metal Chem 51:359–365

    Article  Google Scholar 

  • Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: an overview. Int J Hydrogen Energy 45:3847–3869

    Article  CAS  Google Scholar 

  • dos Santos KG, Eckert CT, De Rossi E, Bariccatti RA, Frigo EP, Lindino CA, Alves HJ (2017) Hydrogen production in the electrolysis of water in Brazil, a review. Renew Sustain Energy Rev 68:563–571

    Article  Google Scholar 

  • Du J, Chen C, Cheng F, Chen J (2015) Rapid synthesis and efficient electrocatalytic oxygen reduction/evolution reaction of CoMn2O4 nanodots supported on graphene. Inorg Chem 54:5467–5474

    Article  CAS  Google Scholar 

  • Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt TJ (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4:3800–3821

    Article  CAS  Google Scholar 

  • Fan G, Li F, Evans DG, Duan X (2014) Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 43:7040–7066

    Article  CAS  Google Scholar 

  • Fang M, Dong G, Wei R, Ho JC (2017): Hierarchical nanostructures: design for sustainable water splitting. Advanced Energy Materials 7

  • Ganesan P, Sivanantham A, Shanmugam S (2017) Nanostructured nickel-cobalt-titanium alloy grown on titanium substrate as efficient electrocatalyst for alkaline water electrolysis. ACS Appl Mater Interfaces 9:12416–12426

    Article  CAS  Google Scholar 

  • Gao X, Li B, Sun X, Wu B, Hu Y, Ning Z, Li J, Wang N (2021) Engineering heterostructure and crystallinity of Ru/RuS2 nanoparticle composited with N-doped graphene as electrocatalysts for alkaline hydrogen evolution. Chin Chem Lett 32:3591–3595

    Article  CAS  Google Scholar 

  • Geng B, Yan F, Liu L, Zhu C, Li B, Chen Y (2021): Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting. Chem Eng J 406

  • Ghosh S, Basu RN (2018) Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale 10:11241–11280

    Article  CAS  Google Scholar 

  • Guan J, Bai X, Tang T (2021) Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res 15:818–837

    Article  Google Scholar 

  • Guo Y, Tang J, Wang Z, Kang Y-M, Bando Y, Yamauchi Y (2018) Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 47:494–502

    Article  CAS  Google Scholar 

  • He T, Pachfule P, Wu H, Xu Q, Chen P (2016): Hydrogen carriers. Nature Reviews Materials 1

  • Hong SH, Ahn SH, Choi I, Pyo SG, Kim H-J, Jang JH, Kim S-K (2014) Fabrication and evaluation of nickel cobalt alloy electrocatalysts for alkaline water splitting. Appl Surf Sci 307:146–152

    Article  CAS  Google Scholar 

  • Hong SH, Ahn SH, Choi J, Kim JY, Kim HY, Kim H-J, Jang JH, Kim H, Kim S-K (2015) High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis. Appl Surf Sci 349:629–635

    Article  CAS  Google Scholar 

  • Hou Y, Liu Y, Gao R, Li Q, Guo H, Goswami A, Zboril R, Gawande MB, Zou X (2017) Ag@CoxP core–shell heterogeneous nanoparticles as efficient oxygen evolution reaction catalysts. ACS Catal 7:7038–7042

    Article  CAS  Google Scholar 

  • Jiang N, You B, Sheng M, Sun Y (2015) Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew Chem Int Ed Engl 54:6251–6254

    Article  CAS  Google Scholar 

  • Jin H, Sultan S, Ha M, Tiwari JN, Kim MG, Kim KS (2020): Simple and scalable mechanochemical synthesis of noble metal catalysts with single atoms toward highly efficient hydrogen evolution. Adv Function Mater 30

  • Kumar MP, Murugesan P, Vivek S, Ravichandran S (2017): NiWO3 nanoparticles grown on graphitic carbon nitride (g-C3N4) supported toray carbon as an efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Particle & Particle Systems Characterization 34

  • Li S, Hao X, Abudula A, Guan G (2019) Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. J Mater Chem A 7:18674–18707

    Article  CAS  Google Scholar 

  • Li X, Wang Y, Wang J, Da Y, Zhang J, Li L, Zhong C, Deng Y, Han X, Hu W (2020) Sequential electrodeposition of bifunctional catalytically active structures in MoO3 /Ni-NiO composite electrocatalysts for selective hydrogen and oxygen evolution. Adv Mater 32:e2003414

    Article  Google Scholar 

  • Li Y, Zhang H, Jiang M, Kuang Y, Sun X, Duan X (2016) Ternary NiCoP nanosheet arrays: an excellent bifunctional catalyst for alkaline overall water splitting. Nano Res 9:2251–2259

    Article  CAS  Google Scholar 

  • Liu G, Feng M, Tayyab M, Gong J, Zhang M, Yang M, Lin K (2021a) Direct and efficient reduction of perfluorooctanoic acid using bimetallic catalyst supported on carbon. J Hazard Mater 412:125224

    Article  CAS  Google Scholar 

  • Liu T, Liu Q, Asiri AM, Luo Y, Sun X (2015) An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chem Commun (camb) 51:16683–16686

    Article  CAS  Google Scholar 

  • Liu X, Hao S, Zheng G, Su Z, Wang Y, Wang Q, Lei L, He Y, Zhang X (2022) Ultrasmall Pt2Sr alloy nanoparticles as efficient bifunctional electrocatalysts for oxygen reduction and hydrogen evolution in acidic media. J Energy Chem 64:315–322

    Article  CAS  Google Scholar 

  • Liu Y, Luo X, Zhou C, Du S, Zhen D, Chen B, Li J, Wu Q, Iru Y, Chen D (2020): A modulated electronic state strategy designed to integrate active HER and OER components as hybrid heterostructures for efficient overall water splitting. Applied Catalysis B: Environmental 260

  • Liu Y, Zhu Q, Tayyab M, Zhou L, Lei J, Zhang J (2021b): Single‐atom Pt loaded zinc vacancies ZnO–ZnS induced type‐V electron transport for efficiency photocatalytic H2 evolution. Solar RRL 5

  • Lonkar SP, Pillai VV, Patole SP, Alhassan SM (2020) Scalable in situ synthesis of 2D–2D-type graphene-wrapped SnS2 nanohybrids for enhanced supercapacitor and electrocatalytic applications. ACS Appl Energy Mater 3:4995–5005

    Article  CAS  Google Scholar 

  • Lu F, Zhou M, Zhou Y, Zeng X (2017): First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances. Small 13

  • Luo P, Pang Z, Qin Z, Wei T, Li S, Hu Y, Wei C (2020) Strategies for improving Co/Ni-based bimetal-organic framework to water splitting. Int J Hydrogen Energy 45:28240–28251

    Article  CAS  Google Scholar 

  • Ma Y-Y, Wu C-X, Feng X-J, Tan H-Q, Yan L-K, Liu Y, Kang Z-H, Wang E-B, Li Y-G (2017) Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ Sci 10:788–798

    Article  CAS  Google Scholar 

  • Medford AJ, Vojvodic A, Hummelshøj JS, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov JK (2015) From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal 328:36–42

    Article  CAS  Google Scholar 

  • Murthy AP, Madhavan J, Murugan K (2018) Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. J Power Sources 398:9–26

    Article  CAS  Google Scholar 

  • Nadeem M, Yasin G, Bhatti MH, Mehmood M, Arif M, Dai L (2018) Pt-M bimetallic nanoparticles (M = Ni, Cu, Er) supported on metal organic framework-derived N-doped nanostructured carbon for hydrogen evolution and oxygen evolution reaction. J Power Sources 402:34–42

    Article  CAS  Google Scholar 

  • Oliver-Tolentino MA, Arce-Estrada EM, Cortés-Escobedo CA, Bolarín-Miro AM, Sánchez-De Jesús F, González-Huerta RdG, Manzo-Robledo A (2012) Electrochemical behavior of NixW1−x materials as catalyst for hydrogen evolution reaction in alkaline media. J Alloy Compd 536:S245–S249

    Article  CAS  Google Scholar 

  • Parra-Puerto A, Ng KL, Fahy K, Goode AE, Ryan MP, Kucernak A (2019) Supported transition metal phosphides: activity survey for HER, ORR, OER, and corrosion resistance in acid and alkaline electrolytes. ACS Catal 9:11515–11529

    Article  CAS  Google Scholar 

  • Pei Y, Yang Y, Zhang F, Dong P, Baines R, Ge Y, Chu H, Ajayan PM, Shen J, Ye M (2017) Controlled electrodeposition synthesis of Co-Ni-P film as a flexible and inexpensive electrode for efficient overall water splitting. ACS Appl Mater Interfaces 9:31887–31896

    Article  CAS  Google Scholar 

  • Prieto G, Tuysuz H, Duyckaerts N, Knossalla J, Wang GH, Schuth F (2016) Hollow nano and microstructures as catalysts. Chem Rev 116:14056–14119

    Article  CAS  Google Scholar 

  • Qian G, Chen J, Yu T, Luo L, Yin S (2021) N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nanomicro Lett 13:77

    Google Scholar 

  • Qu M, Jiang Y, Yang M, Liu S, Guo Q, Shen W, Li M, He R (2020): Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting. Applied Catalysis B: Environmental 263

  • Rauscher T, Müller CI, Schmidt A, Kieback B, Röntzsch L (2016) Ni–Mo–B alloys as cathode material for alkaline water electrolysis. Int J Hydrogen Energy 41:2165–2176

    Article  CAS  Google Scholar 

  • Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2:1765–1772

    Article  CAS  Google Scholar 

  • Rößner L, Armbrüster M (2019) Electrochemical energy conversion on intermetallic compounds: a review. ACS Catal 9:2018–2062

    Article  Google Scholar 

  • Sazali N (2020) Emerging technologies by hydrogen: a review. Int J Hydrogen Energy 45:18753–18771

    Article  CAS  Google Scholar 

  • Shao B, Liu Z, Zeng G, Wang H, Liang Q, He Q, Cheng M, Zhou C, Jiang L, Song B (2020) Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J Mater Chem A 8:7508–7535

    Article  CAS  Google Scholar 

  • Sheng W, Myint M, Chen JG, Yan Y (2013): Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ Sci 6

  • Shi Q, Zhu C, Du D, Lin Y (2019) Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem Soc Rev 48:3181–3192

    Article  CAS  Google Scholar 

  • Song D, Hong D, Kwon Y, Kim H, Shin J, Lee HM, Cho E (2020) Highly porous Ni–P electrode synthesized by an ultrafast electrodeposition process for efficient overall water electrolysis. J Mater Chem A 8:12069–12079

    Article  CAS  Google Scholar 

  • Tayyab M, Liu Y, Liu Z, Pan L, Xu Z, Yue W, Zhou L, Lei J, Zhang J (2022) One-pot in-situ hydrothermal synthesis of ternary In(2)S(3)/Nb(2)O(5)/Nb(2)C Schottky/S-scheme integrated heterojunction for efficient photocatalytic hydrogen production. J Colloid Interface Sci 628:500–512

    Article  CAS  Google Scholar 

  • Tee SY, Win KY, Teo WS, Koh LD, Liu S, Teng CP, Han MY (2017) Recent progress in energy-driven water splitting. Adv Sci (weinh) 4:1600337

    Article  Google Scholar 

  • Thangavel P, Ha M, Kumaraguru S, Meena A, Singh AN, Harzandi AM, Kim KS (2020) Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy Environ Sci 13:3447–3458

    Article  CAS  Google Scholar 

  • Thangavel P, Kim G, Kim KS (2021) Electrochemical integration of amorphous NiFe (oxy)hydroxides on surface-activated carbon fibers for high-efficiency oxygen evolution in alkaline anion exchange membrane water electrolysis. J Mater Chem A 9:14043–14051

    Article  CAS  Google Scholar 

  • Tian C, Zhao J, Ou X, Wan J, Cai Y, Lin Z, Dang Z, Xing B (2018) Enhanced adsorption of p-arsanilic acid from water by amine-modified UiO-67 as examined using extended X-ray absorption fine structure, X-ray photoelectron spectroscopy, and density functional theory calculations. Environ Sci Technol 52:3466–3475

    Article  CAS  Google Scholar 

  • Tian C, Lv J, Zhang W, Wang H, Chao J, Chai L, Lin Z (2022) Accelerated degradation of microplastics at the liquid interface of ice crystals in frozen aqueous solutions. Angew Chem 61(31):e202206947. https://doi.org/10.1002/anie.202206947

  • Vij V, Sultan S, Harzandi AM, Meena A, Tiwari JN, Lee W-G, Yoon T, Kim KS (2017) Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal 7:7196–7225

    Article  CAS  Google Scholar 

  • Wang HF, Chen L, Pang H, Kaskel S, Xu Q (2020) MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev 49:1414–1448

    Article  CAS  Google Scholar 

  • Wang J, Wang Y, Yao Z, Jiang Z (2022) Metal–organic framework-derived Ni doped Co3S4 hierarchical nanosheets as a monolithic electrocatalyst for highly efficient hydrogen evolution reaction in alkaline solution. Chin J Chem Eng 42:380–388

    Article  Google Scholar 

  • Wang S, Lu A, Zhong CJ (2021a) Hydrogen production from water electrolysis: role of catalysts. Nano Converg 8:4

    Article  CAS  Google Scholar 

  • Wang T, Jin R, Wu X, Zheng J, Li X, Ostrikov K (2018) A highly efficient Ni–Mo bimetallic hydrogen evolution catalyst derived from a molybdate incorporated Ni-MOF. J Mater Chem A 6:9228–9235

    Article  CAS  Google Scholar 

  • Wang W, Xu X, Zhou W, Shao Z (2017) Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv Sci (weinh) 4:1600371

    Article  Google Scholar 

  • Wang Y-Z, Ding Y-M, Zhang C-H, Xue B-W, Li N-W, Yu L (2021b) Formation of hierarchical Co-decorated Mo2C hollow spheres for enhanced hydrogen evolution. Rare Met 40:2785–2792

    Article  CAS  Google Scholar 

  • Wei X, Zhang Y, He H, Peng L, Xiao S, Yao S, Xiao P (2019) Carbon-incorporated porous honeycomb NiCoFe phosphide nanospheres derived from a MOF precursor for overall water splitting. Chem Commun (camb) 55:10896–10899

    Article  CAS  Google Scholar 

  • Wen Y et al (2021) Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J Am Chem Soc 143:6482–6490

    Article  CAS  Google Scholar 

  • Wu Z, Nie D, Song M, Jiao T, Fu G, Liu X (2019) Facile synthesis of Co-Fe-B-P nanochains as an efficient bifunctional electrocatalyst for overall water-splitting. Nanoscale 11:7506–7512

    Article  CAS  Google Scholar 

  • Xie W, Shi Y, Wang Y, Zheng Y, Liu H, Hu Q, Wei S, Gu H, Guo Z (2021): Electrospun iron/cobalt alloy nanoparticles on carbon nanofibers towards exhaustive electrocatalytic degradation of tetracycline in wastewater. Chem Eng J 405

  • Xiong Q, Wang Y, Liu PF, Zheng LR, Wang G, Yang HG, Wong PK, Zhang H, Zhao H (2018): Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv Mater, e1801450

  • Xu H, Shang H, Wang C, Du Y (2020a): Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting. Coordination Chem Rev 418

  • Xu S, Du Y, Liu X, Yu X, Teng C, Cheng X, Chen Y, Wu Q (2020b): Three-dimensional (3D) hierarchical coral-like Mn-doped Ni2P–Ni5P4/NF catalyst for efficient oxygen evolution. J Alloys Compounds 826

  • Yan C, Huang J, Wu C, Li Y, Tan Y, Zhang L, Sun Y, Huang X, Xiong J (2020) In-situ formed NiS/Ni coupled interface for efficient oxygen evolution and hydrogen evolution. J Mater Sci Technol 42:10–16

    Article  CAS  Google Scholar 

  • Yang CC, Zai SF, Zhou YT, Du L, Jiang Q (2019): Fe3C‐Co nanoparticles encapsulated in a hierarchical structure of N‐doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER. Advanced Functional Materials

  • Yang Y, Liu J, Liu F, Wang Z, Wu D (2021) FeS2-anchored transition metal single atoms for highly efficient overall water splitting: a DFT computational screening study. J Mater Chem A 9:2438–2447

    Article  CAS  Google Scholar 

  • Yi X, He X, Yin F, Chen B, Li G, Yin H (2020) Amorphous Ni-Fe-Se hollow nanospheres electrodeposited on nickel foam as a highly active and bifunctional catalyst for alkaline water splitting. Dalton Trans 49:6764–6775

    Article  CAS  Google Scholar 

  • Yu ZY, Duan Y, Gao MR, Lang CC, Zheng YR, Yu SH (2017) A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting. Chem Sci 8:968–973

    Article  CAS  Google Scholar 

  • Zhang F, Zhao P, Niu M, Maddy J (2016a) The survey of key technologies in hydrogen energy storage. Int J Hydrogen Energy 41:14535–14552

    Article  CAS  Google Scholar 

  • Zhang G, Feng Y-S, Lu W-T, He D, Wang C-Y, Li Y-K, Wang X-Y, Cao F-F (2018a) Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal 8:5431–5441

    Article  CAS  Google Scholar 

  • Zhang H, Jiang H, Hu Y, Saha P, Li C (2018b) Mo-Triggered amorphous Ni3S2 nanosheets as efficient and durable electrocatalysts for water splitting. Mater Chem Front 2:1462–1466

    Article  CAS  Google Scholar 

  • Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Zhuang X, Feng X (2016b) Interface engineering of MoS2 /Ni3 S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew Chem Int Ed Engl 55:6702–6707

    Article  CAS  Google Scholar 

  • Zhang J, Le J, Dong Y, Bu L, Zhang Y, Cheng J, Li L, Huang X (2021a) Face-centered cubic structured RuCu hollow urchin-like nanospheres enable remarkable hydrogen evolution catalysis. Sci China Chem 65:87–95

    Article  Google Scholar 

  • Zhang T, Zhang B, Peng Q, Zhou J, Sun Z (2021b) Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J Mater Chem A 9:433–441

    Article  CAS  Google Scholar 

  • Zhao Q, Yao W, Huang C, Wu Q, Xu Q (2017a) Effective and durable Co single atomic cocatalysts for photocatalytic hydrogen production. ACS Appl Mater Interfaces 9:42734–42741

    Article  CAS  Google Scholar 

  • Zhao Y, Chang C, Teng F, Zhao Y, Chen G, Shi R, Waterhouse GIN, Huang W, Zhang T (2017b): Defect-engineered ultrathin δ-MnO2nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Advanced Energy Materials 7

  • Zhao Y, Zhang J, Xie Y, Sun B, Jiang J, Jiang WJ, Xi S, Yang HY, Yan K, Wang S, Guo X, Li P, Han Z, Lu X, Liu H, Wang G (2021) Constructing atomic heterometallic sites in ultrathin nickel-incorporated cobalt phosphide nanosheets via a boron-assisted strategy for highly efficient water splitting. Nano Lett 21:823–832

    Article  CAS  Google Scholar 

  • Zheng X, Cui P, Qian Y, Zhao G, Zheng X, Xu X, Cheng Z, Liu Y, Dou SX, Sun W (2020) Multifunctional active-center-transferable platinum/lithium cobalt oxide heterostructured electrocatalysts towards superior water splitting. Angew Chem Int Ed Engl 59:14533–14540

    Article  CAS  Google Scholar 

  • Zhou X, Yang X, Hedhili MN, Li H, Min S, Ming J, Huang K-W, Zhang W, Li L-J (2017) Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction. Nano Energy 32:470–478

    Article  CAS  Google Scholar 

  • Zhu YP, Guo C, Zheng Y, Qiao SZ (2017) Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc Chem Res 50:915–923

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NO. 31901188 and NO. 31971503), China Postdoctoral Science Foundation (2021M691850) and Shandong Provincial Natural Science Foundation (ZR2020QC048 and ZR2019BB040).

Author information

Authors and Affiliations

Authors

Contributions

Y. X. and J.C. conceived and designed the experiments. The experiments were performed by Y. X., X. Z., Y. L., R. W., Y. Y. and J. C. Data was analyzed by Y. X., X. Z., Y. L. and J. C. The paper was written by Y. X. and J.C.

Corresponding author

Correspondence to Junfeng Chen.

Ethics declarations

Ethics approval and consent to participate

No applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, X., Liu, Y. et al. A critical review of research progress for metal alloy materials in hydrogen evolution and oxygen evolution reaction. Environ Sci Pollut Res 30, 11302–11320 (2023). https://doi.org/10.1007/s11356-022-24728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-24728-5

Keywords

Navigation