Skip to main content

Advertisement

Log in

Pesticide contamination in agro-ecosystems: toxicity, impacts, and bio-based management strategies

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Continuous rise in application of pesticides in the agro-ecosystems in order to ensure food supply to the ever-growing population is of greater concern to the human health and the environment. Once entered into the agro-ecosystem, the fate and transport of pesticides is determined largely by the nature of pesticides and the soil attributes, in addition to the soil-inhabiting microbes, fauna, and flora. Changes in the soil microbiological actions, soil properties, and enzymatic activities resulting from pesticide applications are the important factors substantially affecting the soil productivity. Disturbances in the microbial community composition may lead to the considerable perturbations in cycling of major nutrients, metals, and subsequent uptake by plants. Indiscriminate applications are linked with the accumulation of pesticides in plant-based foods, feeds, and animal products. Furthermore, rapid increase in the application of pesticides having long half-life has also been reported to contaminate the nearby aquatic environments and accumulation in the plants, animals, and microbes surviving there. To circumvent the negative consequences of pesticide application, multitude of techniques falling in physical, chemical, and biological categories are presented by different investigators. In the present study, important findings pertaining to the pesticide contamination in cultivated agricultural soils; toxicity on soil microbes, plants, invertebrates, and vertebrates; effects on soil characteristics; and alleviation of toxicity by bio-based management approaches have been thoroughly reviewed. With the help of bibliometric analysis, thematic evolution and research trends on the bioremediation of pesticides in the agro-ecosystems have also been highlighted.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abedi Z, Hasantabar F, Khalesi MK, Babaei S (2013) Enzymatic activities in common carp; Cyprinus carpio influenced by sublethal concentrations of cadmium, lead, chromium. World J Fish Marine Sci 5(2):144–151

    CAS  Google Scholar 

  • Abrantes TC, Queiroz ARS, Lucio FR, Mendes CW Jr, Kuplich TM, Bredemeier C, Merotto A Jr (2021) Assessing the effects of dicamba and 2,4 dichlorophenoxyacetic acid (2,4D) on soybean through vegetation indices derived from unmanned aerial vehicle (UAV) based RGB imagery. Int J Rem Sens 42(7):2740–2758

    Article  Google Scholar 

  • Agnello AC, Huguenot D, Van Hullebusch ED, Esposito G (2014) Enhanced phytoremediation: a review of low molecular weight organic acids and surfactants used as amendments. Crit Rev Environ Sci Technol 44(22):2531–2576

    Article  CAS  Google Scholar 

  • Ahmad KS (2020) Remedial potential of bacterial and fungal strains (Bacillus subtilis, Aspergillus niger, Aspergillus flavus and Penicillium chrysogenum) against organochlorine insecticide endosulfan. Folia Microb 65:801–810

    Article  CAS  Google Scholar 

  • Akcha F, Vincent-Hubert F, Pfhol-Leszkowicz A (2003) Potential value of the comet assay and DNA adduct measurement in dab (Limanda limanda) for assessment of in situ exposure to genotoxic compounds. Mutat Res 534(1–2):21–32

    Article  CAS  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 1:1–12

    Article  CAS  Google Scholar 

  • Alencar BTB, Ribeiro VHV, Cabral CM, dos Santos NMC, Ferreira EA, Francino DMT, dos Santos JB, Silva DV, de Freitas SM (2020) Use of macrophytes to reduce the contamination of water resources by pesticides. Ecol Ind 109:105785

    Article  CAS  Google Scholar 

  • Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics 9(3):42

    Article  CAS  Google Scholar 

  • Alexandrino DA, Mucha AP, Almeida CMR, Carvalho MF (2020) Microbial degradation of two highly persistent fluorinated fungicides-epoxiconazole and fludioxonil. J Hazard Mat 394:122545

    Article  CAS  Google Scholar 

  • Al-Saleh IA (1994) Pesticides: a review article. J Environ Pathol Toxicol Oncol 13:151–161

    CAS  Google Scholar 

  • Al-Shidhani BN, Ahmed M, Al-Jabri S, Talukder F (2013) Application of a screening model to evaluate pesticide contamination in soil and groundwater for sustainable agriculture in Oman In: Shahid SA, Taha FK, Abdelfattah MA (eds.), Developments in soil classification, land use planning and policy implications: innovative thinking of soil inventory for land use planning and management of land resources. Springer Science+Business Media Dordrecht, 753–767. https://doi.org/10.1007/978-94-007-5332-7_43

  • An CJ, Huang GH, Wei J, Yu H (2011) Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil–water environment. Water Res 45(17):5501–5510

    Article  CAS  Google Scholar 

  • Anderson JC, Dubetz C, Palace VP (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci Total Environ 505:409–422

    Article  CAS  Google Scholar 

  • Anggreini CD, Tazkiaturrizki T, Rinanti A (2020) Chlorpyrifos removal improvement in liquid media by Aspergillus fumigatus. Int J Sci Technol Res 9:1475–1479

    Google Scholar 

  • Aria M, Cuccurullo C (2017) Bibliometrix: an R-tool for comprehensive science mapping analysis. J Inform 11:959–975

    Article  Google Scholar 

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260

    Article  Google Scholar 

  • Avila R, Peris A, Eljarrat E, Vicent T, Blánquez P (2021) Biodegradation of hydrophobic pesticides by microalgae: transformation products and impact on algae biochemical methane potential. Sci Total Environ 754:142114

    Article  CAS  Google Scholar 

  • Azevedo RD, Falcão KV, Assis CR, Martins RM, Araújo MC, Yogui GT, Neves JL, Seabra GM, Maia M, Amaral IP, Leite AC (2021) Effects of pyriproxyfen on zebrafish brain mitochondria and acetylcholinesterase. Chemosphere 263:128029

    Article  CAS  Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manag 151:160–166

    Article  CAS  Google Scholar 

  • Bakshi DK, Gupta KG, Sharma P (1999) Enhanced biodecolorization of synthetic textile dye effluent by Phanerochaete chrysosporium under improved culture conditions. World J Microb Biotechnol 15(4):507–509

    Article  CAS  Google Scholar 

  • Balázs HE, Schmid CA, Feher I, Podar D, Szatmari PM, Marincaş O, Balázs ZR, Schröder P (2018) HCH phytoremediation potential of native plant species from a contaminated urban site in Turda, Romania. J Environ Manag 223:286–296

    Article  Google Scholar 

  • Barra Caracciolo A, Fajardo C, Grenni P, Saccà ML, Amalfitano S, Ciccoli R, Martin M, Gibello A (2009) The role of a groundwater bacterial community in the degradation of the herbicide terbuthylazine. FEMS Microbiol Ecol 71:127–136

    Article  Google Scholar 

  • Bass C, Field LM (2018) Neonicotinoids. Curr Biol 28(14):R772–R773

    Article  CAS  Google Scholar 

  • Bass C, Carvalho RA, Oliphant L, Puinean AM, Field LM, Nauen R, Williamson MS, Moores G, Gorman K (2011) Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 20:763–773

    Article  CAS  Google Scholar 

  • Beketov M, Schäfer RB, Marwitz A, Paschke A, Liess M (2008) Long-term stream invertebrate community alterations induced by the insecticide thiacloprid: effect concentrations and recovery dynamics. Sci Total Environ 405:96–108

    Article  CAS  Google Scholar 

  • Bennett B, Workman T, Smith MN, Griffith WC, Thompson B, Faustman EM (2019) Longitudinal, seasonal, and occupational trends of multiple pesticides in house dust. Environ Health Perspect 127:017003. https://doi.org/10.1289/EHP3644

    Article  CAS  Google Scholar 

  • Berard A, Dorigo U, Humbert U, Leboulanger C, Seguin E (2002) Application of the pollution-induced community tolerance (PICT) method to algal communities: its values as a diagnostic tool for ecotoxicological risk assessment in the aquatic environment. Annales De Limnologie - Int J Limnology 38(3):47–261 (In French)

    Google Scholar 

  • Bhatt P, Bhatt K, Sharma A, Zhang W, Mishra S, Chen S (2021a) Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit Rev Biotechnol 41(3):317–338

    Article  Google Scholar 

  • Bhatt P, Zhou X, Huang Y, Zhang W, Chen S (2021b) Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. J Hazard Mat 411:125026

    Article  CAS  Google Scholar 

  • Bi YF, Miao SS, Lu YC, Qiu CB, Zhou Y, Yang H (2012) Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae. J Hazard Mat 243:242–249

    Article  CAS  Google Scholar 

  • Bish MD, Bradley KW (2017) Survey of Missouri pesticide applicator practices, knowledge, and perceptions. Weed Technol J 311:177

    Google Scholar 

  • Blankson GK, Osei-Fosu P, Adeendze EA, Ashie D (2016) Contamination levels of organophosphorus and synthetic pyrethroid pesticides in vegetables marketed in Accra, Ghana. Food Control 68:174–180

    Article  CAS  Google Scholar 

  • Blondel C, Khelalfa F, Reynaud S, Fauvelle F, Raveton M (2016) Effect of organochlorine pesticides exposure on the maize root metabolome assessed using high-resolution magic-angle spinning H-1 NMR spectroscopy. Environ Pollut 214:539–548

    Article  CAS  Google Scholar 

  • Blondel C, Briset L, Legay N, Arnoldi C, Poly F, Clément JC, Raveton M (2017) Assessing the dynamic changes of rhizosphere functionality of Zea mays plants grown in organochlorine contaminated soils. J Hazard Mat 331:226–234

    Article  CAS  Google Scholar 

  • Bolognesi C, Merlo FD (2011) Pesticides: human health effects. In: Nriagu JO (ed) Encyclopedia of environmental health. Elsevier, Burlington, pp 438–453

    Chapter  Google Scholar 

  • Botias C, David A, Horwood J, Abdul-Sada A, Nicholls E, Hill E, Goulson D (2015) Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ Sci Technol 49:12731–12740

    Article  CAS  Google Scholar 

  • Boudh S, Singh JS (2019) Pesticide contamination: environmental problems and remediation strategies In: Bharagava RN, Chowdhary P (eds). Emerging and eco-friendly approaches for waste management. Springer Nature, Singapore, pp 245–269. https://doi.org/10.1007/978-981-10-8669-4_12

  • Brett MT, Müller-Navarra DC (1997) The role of highly unsaturated fatty acids in aquatic foodwebs. Science 275:384–386

    Article  CAS  Google Scholar 

  • Buschini A, Martino A, Gustavino B, Monfrinotti M, Poli P, Rossi C, Santoro M, Dorr AJM, Rizzoni M (2004) Comet assay and micronucleus test in circulating erythrocytes of Cyprinus carpio specimens exposed in situ to lake waters treated with disinfectants for potabilization. Mutat Res 557(2):119–129

    Article  CAS  Google Scholar 

  • Buszewski B, Bukowska M, Ligor M, Staneczko-Baranowska I (2019) A holistic study of neonicotinoids neuroactive insecticides—properties, applications, occurrence, and analysis. Environ Sci Poll Res 26(34):34723–34740

    Article  CAS  Google Scholar 

  • Cáceres TP, Megharaj M, Naidu R (2008) Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr Microb 57(6):643–646

    Article  Google Scholar 

  • Calvo-Agudo M, González-Cabrera J, Picó Y, Calatayud-Vernich P, Urbaneja A, Dicke M, Tena A (2019) Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects. Proc Nat Acad Sci 116(34):16817–16822

    Article  CAS  Google Scholar 

  • Carranza CS, Regnicoli JP, Aluffi ME, Benito N, Chiacchiera SM, Barberis CL, Magnoli CE (2019) Glyphosate in vitro removal and tolerance by Aspergillus oryzae in soil microcosms. Int J Environ Sci Technol 16(12):7673–7682

    Article  CAS  Google Scholar 

  • Castillo LE, Martínez E, Ruepert C, Savage C, Gilek M, Pinnock M, Solis E (2006) Water quality and macroinvertebrate community response following pesticide applications in a banana plantation, Limon, Costa Rica. Sci Total Environ 367(1):418–432

    Article  CAS  Google Scholar 

  • Cavas T, Ergene-Gozukara S (2005) Micronucleus test in fish cells: a bioassay for in situ monitoring of genotoxic pollution in the marine environment. Environ Mol Mutagen 46(1):64–70

    Article  CAS  Google Scholar 

  • Chakraborty P, Zhang G, Li J, Sivakumar A, Jones KC (2015) Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: assessment of airesoil exchange. Environ Pollut 204:74–80

    Article  CAS  Google Scholar 

  • Chapman RA, Tu CM, Harris CR, Cole C (1981) Persistence of five pyrethroid insecticides in sterile and natural, mineral and organic soil. Bull Environ Contam Toxicol 26:513–519

    Article  CAS  Google Scholar 

  • Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS ONE 7(10):e47205

    Article  CAS  Google Scholar 

  • Chen S, Zhan H (2019) Biodegradation of synthetic pyrethroid insecticides. In: Arora P (eds). Microbial metabolism of xenobiotic compounds. Springer, Singapore, pp 229–244

  • Chen ZJ, Wu HL, Xiao ZL, Fu HJ, Shen YD, Luo L, Wang H, Lei HT, Hongsibsong S, Xu ZL (2021) Rational hapten design to produce high-quality antibodies against carbamate pesticides and development of immunochromatographic assays for simultaneous pesticide screening. J Hazard Mat 412:125241

    Article  CAS  Google Scholar 

  • Cimino AM, Boyles AL, Thayer KA, Perry MJ (2017) Effects of neonicotinoid pesticide exposure on human health: a systematic review. Environ Health Perspect 125(2):155–162

    Article  CAS  Google Scholar 

  • Conde-Avila V, Ortega-Martínez LD, Loera O, El Kassis EG, Dávila JG, Valenzuela CM et al (2020) Pesticides degradation by immobilised microorganisms. Int J Environ Anal Chem 101(15):2975–3005. https://doi.org/10.1080/03067319.2020.1715375

    Article  CAS  Google Scholar 

  • Costa LG (2008) Toxic effects of pesticides. In: Klaassen CD, (Eds.), Toxicology: the basic science of poisons. Casarett, McGraw-Hill, USA, pp: 883–930

  • da Silva Teófilo TM, Mendes KF, Fernandes BCC, de Oliveira FS, Silva TS, Takeshita V, de Freitas SM, Tornisielo VL, Silva DV (2020) Phytoextraction of diuron, hexazinone, and sulfometuron-methyl from the soil by green manure species. Chemosphere 25:6127059

    Google Scholar 

  • Dar MA, Kaushik G, Chiu JFV (2020) Pollution status and biodegradation of organophosphate pesticides in the environment. In: Singh P, Kumar A, Borthakur A (eds). Abatement of environmental pollutants. Elsevier, pp 25–66

  • Deadman ML (2017) Sources of pesticide residues in food: Toxicity, exposure, and risk associated with use at the farm level. In: Pesticide residue in foods. Springer, Cham, pp 7–35

  • Debenest T, Pinelli E, Coste M, Silvestre J, Mazzella N, Madigou C, Delmas F (2009) Sensitivity of freshwater periphytic diatoms to agricultural herbicides. Aqua Toxicol 93:11–17

    Article  CAS  Google Scholar 

  • DeLorenzo M, Scott G, Ross P (2001) Toxicity of pesticides to aquatic microorganisms: a review. Environ Toxicol Chem 20(1):84–98

    Article  CAS  Google Scholar 

  • Deng B, Xia C, Tian S, Shi H (2021) Melatonin reduces pesticide residue, delays senescence, and improves antioxidant nutrient accumulation in postharvest jujube fruit. Postharvest Biol Technol 173:111419

    Article  CAS  Google Scholar 

  • Dey C, Saha SK (2014) A comparative study on the acute toxicity bioassay of dimethoate and lambda-cyhalothrin and effects on thyroid hormones of freshwater teleost fish Labeo rohita (Hamilton). Int J Environ Res 8(4):1085–1092

    Google Scholar 

  • Duncan WP, Idalino JJS, da Silva AG, Moda RF, da Silva HCM, Matoso DA, Gomes ALS (2020) Acute toxicity of the pesticide trichlorfon and inhibition of acetylcholinesterase in Colossoma macropomum (Characiformes: Serrasalmidae). Aqua Int 28(2):815–830

    Article  CAS  Google Scholar 

  • Eddleston M (2020) Poisoning by pesticides. Medicine 48(3):214–217. https://doi.org/10.1016/j.mpmed.2019.12.019

    Article  Google Scholar 

  • Egbe CC, Oyetibo GO, Ilori MO (2021) Ecological impact of organochlorine pesticides consortium on autochthonous microbial community in agricultural soil. Ecotoxicol Environ Saf 207:111319

    Article  CAS  Google Scholar 

  • Emily M (2011) The encyclopedia of earth. In: Agricultural pesticide contamination. http://www.eoearth.org/article/Agricultural_pesticide_contamination. (Accessed on 20 Dec 2017)

  • Ertl HM, Mora MA, Boellstorff DE, Brightsmith DJ, Carson K (2018) Potential effects of neonicotinoid insecticides on Northern Bobwhites. Wildl Soc Bull 42:649–655. https://doi.org/10.1002/wsb.921

    Article  Google Scholar 

  • Espinoza-Navarro O, Bustos-Obregón E (2005) Effect of malathion on the male reproductive organs of earthworms Eisenia foetida. Asian J Androl 7(1):97–101

    Article  CAS  Google Scholar 

  • Espinoza-Navarro O, Ponce-LaRosa C, Bustos-Obregón E (2017) Organophosphorous pesticides: their effects on biosentinel species and humans. Control and application in Chile. Int J Morphol 35(3):1069–1074

    Article  Google Scholar 

  • Fernández-Calviño D, Rousk J, Bååth E, Bollmann UE, Bester K, Brandt KK (2021) Short-term toxicity assessment of a triazine herbicide (terbutryn) underestimates the sensitivity of soil microorganisms. Soil Biol Biochem 154:108130

    Article  Google Scholar 

  • Filimon MN, Voia SO, Popescu ROXANA, Dumitrescu GABI, Ciochina LP, Mituletu M, Vlad DC (2015) The effect of some insecticides on soil microorganisms based on enzymatic and bacteriological analyses. Rom Biotechnol Lett 20(3):10439

    CAS  Google Scholar 

  • Fleeger J, Carman K, Nisbet R (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317(1–3):207–233

    Article  CAS  Google Scholar 

  • Flocco CG, Carranza MP, Carvajal LG, Loewy RM, De D’Angelo AP, Giulietti AM (2004) Removal of azinphos methyl by alfalfa plants (Medicago sativa L.) in a soil-free system. Sci Total Environ 327(1–3):31–39

    Article  CAS  Google Scholar 

  • Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA (2007) Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc Natl Acad Sci 104(24):10282–10287

    Article  CAS  Google Scholar 

  • Fuentes MS, Raimondo EE, Amoroso MJ, Benimeli CS (2017) Removal of a mixture of pesticides by a Streptomyces consortium: influence of different soil systems. Chemosphere 173:359–367

    Article  CAS  Google Scholar 

  • Gaines TA, Duke SO, Morran S, Rigon CA, Tranel PJ, Küpper A, Dayan FE (2020) Mechanisms of evolved herbicide resistance. J Biol Chem 295(30):10307–10330

    Article  CAS  Google Scholar 

  • Garcia-Perez JA, Alarcon-Gutierrez E, Diaz-Fleischer F (2020) Interactive effect of glyphosate-based herbicides and organic soil layer thickness on growth and reproduction of the tropical earthworm Pontoscolex corethrurus (Müller, 1857). Appl Soil Ecol 155:103648

    Article  Google Scholar 

  • García-Vara M, Hu K, Postigo C, Olmo L, Caminal G, Sarrà M, de Alda ML (2021) Remediation of bentazone contaminated water by Trametes versicolor: characterization, identification of transformation products, and implementation in a trickle-bed reactor under non-sterile conditions. J Hazard Mat 409:124476

    Article  Google Scholar 

  • Garg N, Lata P, Jit S, Sangwan N, Singh AK, Dwivedi V, Niharika N, Kaur J, Saxena A, Dua A, Nayyar N (2016) Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation. Biodegradation 27(2):179–193

    Article  CAS  Google Scholar 

  • Gaweł M, Kiljanek T, Niewiadowska A, Semeniuk S, Goliszek M, Burek O, Posyniak A (2019) Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chem 282:36–47

    Article  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  Google Scholar 

  • Gilani RA, Rafique M, Rehman A, Munis MF, Rehman SU, Chaudhary HJ (2016) Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. J Basic Microbiol 56:105–119

    Article  CAS  Google Scholar 

  • Giusti A, Leprince P, Mazzucchelli G, Thome JP, Lagadic L, Ducrot V, Joaquim-Justo C (2013) Proteomic analysis of the reproductive organs of thehermaphroditic gastropod Lymnaea stagnalis exposed to different endocrinedisrupting chemicals. PLoS One 8(11):e81086

    Article  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  Google Scholar 

  • Glinski DA, Van Meter RJ, Purucker ST, Henderson WM (2021) Route of exposure influences pesticide body burden and the hepatic metabolome in post-metamorphic leopard frogs. Sci Total Environ 779:146358

    Article  CAS  Google Scholar 

  • Gonçalves IFS, Souza TM, Vieira LR, Marchi FC, Nascimento AP, Farias DF (2020) Toxicity testing of pesticides in zebrafish—a systematic review on chemicals and associated toxicological endpoints. Environ Sci Poll Res 27(10):10185–10204. https://doi.org/10.1007/s11356-020-07902-5

    Article  CAS  Google Scholar 

  • Gonçalves AM, Rocha CP, Marques JC, Gonçalves FJ (2021) Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure–a review. Ecol Ind 122:107303

    Article  Google Scholar 

  • Góngora-Echeverría VR, García-Escalante R, Rojas-Herrera R, Giácoman-Vallejos G, Ponce-Caballero C (2020) Pesticide bioremediation in liquid media using a microbial consortium and bacteria-pure strains isolated from a biomixture used in agricultural areas. Ecotoxicol Environ Saf 200:110734

    Article  Google Scholar 

  • Govarthanan M, Ameen F, Kamala-Kannan S, Selvankumar T, Almansob A, Alwakeel SS, Kim W (2020) Rapid biodegradation of chlorpyrifos by plant growth-promoting psychrophilic Shewanella sp. BT05: an eco-friendly approach to clean up pesticide-contaminated environment. Chemosphere 247:125948

    Article  CAS  Google Scholar 

  • Gunstone T, Cornelisse T, Kendra K, Aditi D, Donley N (2021) Pesticides and soil invertebrates: a hazard assessment. Front Environ Sci 9:122

    Article  Google Scholar 

  • Hai FI, Modin O, Yamamoto K, Fukushi K, Nakajima F, Nghiem LD (2012) Pesticide removal by a mixed culture of bacteria and white-rot fungi. J Taiwan Inst Chem Eng 43(3):459–462

    Article  CAS  Google Scholar 

  • Hamada A, Wahl GD, Nesterov A, Nakao T, Kawashima M, Banba S (2019) Differential metabolism of imidacloprid and dinotefuran by Bemisia tabaci CYP6CM1 variants. Pestic Biochem Phys 159:27–33. https://doi.org/10.1016/j.pestbp.2019.05.011

    Article  CAS  Google Scholar 

  • Hammed AM, Prajapati SK, Simsek S, Simsek H (2016) Growth regime and environmental remediation of microalgae. Algae 31(3):189–204

    Article  CAS  Google Scholar 

  • Handa SK, Agnihotri NP, Kulshrestha G (1999) Pesticide residues: significance, management and analysis. Research Periodicals and Book Publishing House, Houston, TX

  • Hawkins NJ, Bass C, Dixon A, Neve P (2019) The evolutionary origins of pesticide resistance. Biol Rev 94(1):135–155

    Article  Google Scholar 

  • Helbling DE (2015) Bioremediation of pesticide-contaminated water resources: the challenge of low concentrations. Curr Opin Biotechnol 33:142–148

    Article  CAS  Google Scholar 

  • Hodgson E, Goldstein JA (2001) Metabolism of toxicants: phase I reactions and pharmacogenetics. In: Hodgson E, Smart RC (eds) Introduction to biochemical toxicology. Wiley, New York, pp 67–113

    Google Scholar 

  • Hong X, Zhao X, Tian X, Li J, Zha J (2018) Changes of haematological and biochemical parameters revealed genotoxicity and immunotoxicity of neonicotinoids on Chinese rare minnows (Gobiocypris rarus). Environ Pollut 233:862–871. https://doi.org/10.1016/j.envpol.2017.12.036

    Article  CAS  Google Scholar 

  • Hrynkiewicz K, Złoch M, Kowalkowski T, Baum C, Buszewski B (2018) Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils. Environ Rev 26:316–332

    Article  CAS  Google Scholar 

  • Hu K, Peris A, Torán J, Eljarrat E, Sarrà M, Blánquez P, Caminal G (2020a) Exploring the degradation capability of Trametes versicolor on selected hydrophobic pesticides through setting sights simultaneously on culture broth and biological matrix. Chemosphere 250:126293

    Article  CAS  Google Scholar 

  • Hu K, Torán J, López-García E, Barbieri MV, Postigo C, de Alda ML, Caminal G, Sarrà M, Blánquez P (2020b) Fungal bioremediation of diuron-contaminated waters: evaluation of its degradation and the effect of amendable factors on its removal in a trickle-bed reactor under non-sterile conditions. Sci Total Environ 743:140628

    Article  CAS  Google Scholar 

  • Huang Y, Luo X, Liu D, Du S, Yan A, Tang L (2021) Pest control ability, technical guidance, and pesticide overuse: evidence from rice farmers in rural China. Environ Sci Pollut Res 28:39587–39597. https://doi.org/10.1007/s11356-021-13607-0

    Article  Google Scholar 

  • Huggenberger F, Letey J, Farmer WJ (1973) Adsorption adsorption and mobility of pesticides in soil. California Agric 27:8–10

    CAS  Google Scholar 

  • Hussein MH, Abdullah AM, Badr El-Din NI, Mishaqa ESI (2017) Biosorption potential of the microchlorophyte chlorella vulgaris for some pesticides. J Fertil Pestic 8(01):1000177. https://doi.org/10.4172/2471-2728.1000177

  • Hwang JI, Lee SE, Kim JE (2015) Plant uptake and distribution of endosulfan and its sulfate metabolite persisted in soil. PLoS One 10:e0141728

    Article  Google Scholar 

  • Hwang JI, Zimmerman AR, Kim JE (2018) Bioconcentration factor-based management of soil pesticide residues: endosulfan uptake by carrot and potato plants. Sci Total Environ 627:514–522

    Article  CAS  Google Scholar 

  • Ibrahim WM, Karam MA, El-Shahat RM, Adway AA (2014) Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. BioMed Res Int 2014:392682. https://doi.org/10.1155/2014/392682

  • Ihara M, Matsuda K (2018) Neonicotinoids: molecular mechanisms of action, insights into resistance and impact on pollinators. Curr Opin Insect Sci 30:86–92

    Article  Google Scholar 

  • Insecticide Resistance Action Comminttee, IRAC (2021) Insecticide resistance action committee. https://irac-online.org/modes-of-action/. Accessed 22 Jan 2021 

  • Islam MN, Bint-E-Naser SF, Khan MS (2017) Pesticide food laws and regulations. In: Khan M, Rahman M (eds). Pesticide residue in foods. Springer, Cham, pp 37–51

  • Jactel H, Verheggen F, Thiéry D, Escobar-Gutiérrez AJ, Gachet E, Desneux N (2019) Neonicotinoids working group. Alternatives to neonicotinoids. Environ Int 129:423–429

  • Jia W, Ye Q, Shen D, Yu K, Zheng Y, Liu M, Jiang J, Wang W (2021) Enhanced mineralization of chlorpyrifos bound residues in soil through inoculation of two synergistic degrading strains. J Hazard Mat 412:125116

    Article  CAS  Google Scholar 

  • Jiang W, Lin K, Haver D, Qin S, Ayre G, Spurlock F, Gan J (2010) Wash-off potential of urban use insecticides on concrete surfaces. Environ Toxicol Chem 29:1203–1208

    CAS  Google Scholar 

  • Jin ZP, Luo K, Zhang S, Zheng Q, Yang H (2012) Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 87(3):278–284

    Article  CAS  Google Scholar 

  • Jokanović M (2009) Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol Lett 190(2):107–115

    Article  Google Scholar 

  • Jones SE, Axelrad R, Wattigney WA (2007) Healthy and safe school environment, part II, physical school environment: results from the school health policies and programs study 2006. J School Health 77:544–556

    Article  Google Scholar 

  • Jonsson CM, Paraiba LC, Mendoza MT, Sabater C, Carrasco JM (2001) Bioconcentration of the insecticide pyridaphenthion by the green algae Chlorella saccharophila. Chemosphere 43(3):321–325

    Article  CAS  Google Scholar 

  • Kabra AN, Ji MK, Choi J, Kim JR, Govindwar SP, Jeon BH (2014) Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana. Environ Sci Pollut Res 21(21):12270–12278

    Article  CAS  Google Scholar 

  • Katagi T (2010) Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. Rev Environ Contam Toxicol 204:1–132

    CAS  Google Scholar 

  • Kaur P, Balomajumder C (2019) Simultaneous biodegradation of mixture of carbamates by newly isolated Ascochyta sp. CBS 237.37. Ecotoxicol Environ Saf 169:590–599

    Article  CAS  Google Scholar 

  • Kaur P, Balomajumder C (2020) Effective mycoremediation coupled with bioaugmentation studies: an advanced study on newly isolated Aspergillus sp. in Type-II pyrethroid-contaminated soil. Environ Poll 261:114073

    Article  CAS  Google Scholar 

  • Kempa ES (1997) Hazardous wastes and economic risk reduction: case study, Poland. Int J Environ Pollut 7:221–248

    CAS  Google Scholar 

  • Kessler SC, Tiedeken EJ, Simcock KL, Derveau S, Mitchell J, Softley S, Stout JC, Wright GA (2015) Bees prefer foods containing neonicotinoid pesticides. Nature 521:74–76

    Article  CAS  Google Scholar 

  • Khan A, Iqbal QM (2013) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  CAS  Google Scholar 

  • Khatri N, Tyagi S (2015) Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front Life Sci 8:23–39

    Article  CAS  Google Scholar 

  • Khuman SN, Vinod PG, Bharat G, Kumar YM, Chakraborty P (2020) Spatial distribution and compositional profiles of organochlorine pesticides in the surface soil from the agricultural, coastal and backwater transects along the south-west coast of India. Chemosphere 254:126699

    Article  CAS  Google Scholar 

  • Kidd PS, Prieto-Fernandez A, Monterroso C, Acea MJ (2008) Rhizospheremicrobial community and hexachlorocyclohexane degradative potential incontrasting plant species. Plant Soil 302:233–247

    Article  CAS  Google Scholar 

  • Koureas M, Tsakalof A, Tsatsakis A, Hadjichristodoulou C (2012) Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol Lett 210:155–168

    Article  CAS  Google Scholar 

  • Krishnaswamy VG, Jaffar MF, Sridharan R, Ganesh S, Kalidas S, Palanisamy V, Mani K (2021) Effect of chlorpyrifos on the earthworm Eudrilus euginae and their gut microbiome by toxicological and metagenomic analysis. World J Microbiol Biotechnol 37(5):1–12

    Article  Google Scholar 

  • Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62(2):593–600

    Article  CAS  Google Scholar 

  • Kumar V (2015) A review on efficacy of biopesticides to control the agricultural insect’s pest. Int J Agric Sci Res 4(9):168–179

    Google Scholar 

  • Kumar A, Nayak AK, Shukla AK, Panda BB, Raja R, Shahid M, Tripathi R, Mohanty S, Rath PC (2012) Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition. Bull Environ Contam Toxicol 88(4):538–542

    Article  CAS  Google Scholar 

  • Kumar M, Yadav AN, Saxena R, Paul D, Tomar RS (2021) Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocat Agric Biotechnol 31:101883

    Article  CAS  Google Scholar 

  • Kurade MB, Kim JR, Govindwar SP, Jeon BH (2016) Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res 20:126–134

    Article  Google Scholar 

  • Kuritz T, Wolk CP (1995) Use of cyanobacteria for degradation of organic pollutants. Appl Environ Microbiol 61:234–238

    Article  CAS  Google Scholar 

  • Kushwaha B, Pandey S, Sharma S, Srivastava R, Kumar R, Nagpure NS, Dabas A, Srivastava SK (2012) In situ assessment of genotoxic and mutagenic potential of polluted river water in Channa punctatus and Mystus vittatus. Int Aquat Res 4:16–26

    Article  Google Scholar 

  • La Merrill M et al (2013) Toxicological function of adipose tissue: focus on persistent organic pollutants. Environ Health Perspect 121:162–169

    Article  Google Scholar 

  • Lamberti G, Steinman A (1997) A comparison of primary production in stream ecosystems. In: Webster JR, Meyer JL (eds.), Stream organic matter budgets. J North Am Bentholog Soc 16:95–104

  • Letondor C, Pascal-Lorber S, Laurent F (2015) Uptake and distribution of chlordecone in radish: different contamination routes in edible roots. Chemosphere 118:20–28

    Article  CAS  Google Scholar 

  • Li AJ, Kannan K (2020) Profiles of urinary neonicotinoids and dialkylphosphates in populations in nine countries. Environ Int 145:106120

    Article  CAS  Google Scholar 

  • Li H, Qu M, Lu X, Chen Z, Guan S, Du H, Zhu D (2019) Evaluation of the potential of Potamogeton crispus and Myriophyllum spicatum on phytoremediation of atrazine. Int J Environ Analyt Chem 99(3):243–257

    Article  CAS  Google Scholar 

  • Li Y, Miao R, Khanna M (2020a) Neonicotinoids and decline in bird biodiversity in the United States. Nat Sust 3(12):1027–1035

    Article  Google Scholar 

  • Li Z, Zhang Y, Zhao Q, Wang C, Cui Y, Li J, Chen A, Liang G, Jiao B (2020b) Occurrence, temporal variation, quality and safety assessment of pesticide residues on citrus fruits in China. Chemosphere 258:127381

    Article  CAS  Google Scholar 

  • Li H, Qiu Y, Yao T, Ma Y, Zhang H, Yang X, Li C (2020c) Evaluation of seven chemical pesticides by mixed microbial culture (PCS-1): degradation ability, microbial community, and Medicago sativa phytotoxicity. J Hazard Mat 389:121834

    Article  CAS  Google Scholar 

  • Liang Y, Wei D, Hu J, Zhang J, Liu Z, Li A, Li R (2020) Glyphosate and nutrients removal from simulated agricultural run-off in a pilot pyrrhotite constructed wetland. Water Res 168:115154

    Article  CAS  Google Scholar 

  • Lin CH, Lerch RN, Garrett HE, George MF (2008) Bioremediation of atrazine-contaminated soil by forage grasses: transformation, uptake, and detoxification. J Environ Qual 37(1):196–206

    Article  CAS  Google Scholar 

  • Linnenluecke MK, Marrone M, Singh AK (2020) Conducting systematic literature reviews and bibliometric analyses. Aust J Manag 45:175–194

    Article  Google Scholar 

  • Liu T, Wang X, Xu J, You X, Chen D, Wang F et al (2017) Biochemical and genetic toxicity of dinotefuran on earthworms (Eisenia fetida). Chemosphere 176:156–164. https://doi.org/10.1016/j.chemosphere.2017.02.113

    Article  CAS  Google Scholar 

  • Liu T, Li T, Zhang L, Li H, Liu S, Yang S, An Q, Pan C, Zou N (2021) Exogenous salicylic acid alleviates the accumulation of pesticides and mitigates pesticide-induced oxidative stress in cucumber plants (Cucumis sativus L.). Ecotoxicol Environ Saf 208:111654

    Article  CAS  Google Scholar 

  • Lo CC (2010) Effect of pesticides on soil microbial community. J Environ Sci Health Part B 45:348–359

    Article  CAS  Google Scholar 

  • Loffredo E, Picca G, Parlavecchia M (2021) Single and combined use of Cannabis sativa L. and carbon-rich materials for the removal of pesticides and endocrine-disrupting chemicals from water and soil. Environ Sci Pollut Res 28(3):3601–3616

    Article  CAS  Google Scholar 

  • López-Chávez MY, Alvarez-Legorreta T, Infante-Mata D, Dunn MF, Guillén-Navarro K (2021) Glyphosate-remediation potential of selected plant species in artificial wetlands. Sci Total Environ 781:146812

    Article  Google Scholar 

  • Lu TQ, Mao SY, Sun SL, Yang WL, Ge F, Dai YJ (2016) Regulation of hydroxylation and nitroreduction pathways during metabolism of the neonicotinoid insecticide imidacloprid by Pseudomonas putida. J Agric Food Chem 64:4866–4875

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phytopathol 39(1):461–490

    Article  CAS  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  Google Scholar 

  • Lushchak VI, Matviishyn TM, Husaka VV, Storey JM, Storey KB (2018) Pesticide toxicity: a mechanistic approach. EXCLI J 17:1101–1136

    Google Scholar 

  • Mamirova A, Pidlisnyuk V, Amirbekov A, Ševců A, Nurzhanova A (2021) Phytoremediation potential of Miscanthus sinensis and in organochlorine pesticides contaminated soil amended by Tween 20 and activated carbon. Environ Sci Pollut Res 28(13):16092–16106

    Article  CAS  Google Scholar 

  • Marican A, Durán-Lara EF (2018) A review on pesticide removal through different processes. Environ Sci Pollut Res 25(3):2051–2064

    Article  CAS  Google Scholar 

  • Maskaoui K, Zhou JL, Zhen TL, Hong H, Yu Z (2005) Organochlorine micropollutants in the Jiulong River Estuary and Western Xiamen Sea, China. Mar Pollut Bull 51(8–12):950–959

    Article  CAS  Google Scholar 

  • McKnight AM, Gannon TW, Yelverton F (2021) Phytoremediation of azoxystrobin and imidacloprid by wetland plant species Juncus effusus, Pontederia cordata and Sagittaria latifolia. Int J Phytoremed 13:1–9

    Google Scholar 

  • Medithi S, Kasa YD, Jee B, Kodali V, Jonnalagadda PR (2022) Organophosphate pesticide exposure among farm women and children: status of micronutrients, acetylcholinesterase activity, and oxidative stress. Arch Environ Occup Health 77(2):109–124

    Article  CAS  Google Scholar 

  • Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Megharaj M (2020) Pesticides in the urban environment: a potential threat that knocks at the door. Sci Total Environ 711:134612. https://doi.org/10.1016/j.scitotenv.2019.134612

    Article  CAS  Google Scholar 

  • Mesnage R, Defarge N, de Vendômois JS (2014) Séralini1 GE (2014) Major pesticides are more toxic to human cells than their declared active principles. BioMed Res Int 179691:1–8. https://doi.org/10.1155/2014/179691

    Article  CAS  Google Scholar 

  • Molander S, Blanck H (1992) Detection of pollution-induced community tolerance (PICT) in marine in periphyton communities established under diuron exposure. Aqua Toxicol 22(2):129–144

    Article  CAS  Google Scholar 

  • Moore MT, Tyler HL, Locke MA (2013) Aqueous pesticide mitigation efficiency of Typha latifolia (L.), Leersia oryzoides (L.) Sw., and Sparganium americanum Nutt. Chemosphere 92(10):1307–1313

    Article  CAS  Google Scholar 

  • Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC, Liber K (2015) Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ Int 74:291–303

  • MostafalouAbdollahi SM (2017) Pesticides: an update of human exposure and toxicity. Arch Toxicol 91:549–599. https://doi.org/10.1007/s00204-016-1849-x

    Article  CAS  Google Scholar 

  • Multigner L, Ndong JR, Giusti A, Romana M, Delacroix-Maillard H, Cordier S, Jegou B, Thome JP, Blanchet P (2010) Chlordecone exposure and risk of prostate cancer. J Clin Oncol 28:3457–3462

    Article  CAS  Google Scholar 

  • Nagpal V, Srinivasan MC, Paknikar KM (2008) Biodegradation of γ-hexachlorocyclohexane (lindane) by a non-white rot fungus conidiobolus 03-1-56 isolated from litter. Ind J Microb 48(1):134–141

    Article  CAS  Google Scholar 

  • Narenderan ST, Meyyanathan SN, Babu B (2020) Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res Int 133:109141

    Article  CAS  Google Scholar 

  • Nie J, Sun Y, Zhou Y, Kumar M, Usman M, Li J, Shao J, Wang L, Tsang DC (2020) Bioremediation of water containing pesticides by microalgae: mechanisms, methods, and prospects for future research. Sci Total Environ 707:136080

    Article  CAS  Google Scholar 

  • Nieder R, Benbi DK, Reichl FX (2018) Health risks associated with pesticides in soils. In: Nieder R, Benbi DK, Reichl FX (eds). Soil components and human health. Springer, Dordrecht, pp 503–573. https://doi.org/10.1007/978-94-024-1222-2_10

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483

    Article  CAS  Google Scholar 

  • Nwankwegu AS, Onwosi CO (2017) Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environ Technol Innov 7:1–11

    Article  Google Scholar 

  • Omwenga I, Kanja L, Zomer P, Louisse J, RietjensMol IMH (2021) Organophosphate and carbamate pesticide residues and accompanying risks in commonly consumed vegetables in Kenya. Food Add Contam: Part B 14(1):48–58

    Article  CAS  Google Scholar 

  • Organisation for Economic Co-operation and Development, OECD (2013) Test no. 236: fish embryo acute toxicity (FET) test, OECD guidelines for the testing of chemicals, Section 2, OECD Publishing, Paris, https://doi.org/10.1787/9789264203709-en

  • Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293(5536):1786–1790

    Article  CAS  Google Scholar 

  • Pandey AK, Nagpure NS, Trivedi SP, Kumar R, Kushwaha B (2011) Profenofos induced DNA damage in freshwater fish, Channa punctatus (Bloch) using alkaline single cell gel electrophoresis. Mutation Res 726(2):206–214

    Google Scholar 

  • Pang S, Lin Z, Zhang W, Mishra S, Bhatt P, Chen S (2020) Insights into the microbial degradation and biochemical mechanisms of neonicotinoids. Front Microb 11:868

  • Parizadeh M, Mimee B, Kembel SW (2021) Neonicotinoid seed treatments have significant non-target effects on phyllosphere and soil bacterial communities. Front Microb 11:3445

    Article  Google Scholar 

  • Pascal-Lorber S, Letondor C, Liber Y, Jamin EL, Laurent F (2016) Chlordecone transfer and distribution in maize shoots. J Agric Food Chem 64:409–415

    Article  CAS  Google Scholar 

  • Pascal-Lorber S, Laurent F (2011) Phytoremediation techniques for pesticide contaminations.In: Lichtfouse E (ed.), Alternative farming systems, biotechnology, drought stress and ecological fertilisation. Sustainable Agriculture Reviews 6:77–105. https://doi.org/10.1007/978-94-007-0186-1_4

  • Pelosi C, Bertrand C, Daniele G, Coeurdassier M, Benoit P, Nélieu S, Lafay F, Bretagnolle V, Gaba S, Vulliet E, Fritsch C (2021) Residues of currently used pesticides in soils and earthworms: a silent threat? Agric Ecosyst Environ 305:107167

    Article  Google Scholar 

  • Peng G, Xie J, Guo R, Keyhani NO, Zeng D, Yang P, Xia Y (2021) Long-term field evaluation and large-scale application of a Metarhizium anisopliae strain for controlling major rice pests. J Pest Sci 94:969–980

    Article  CAS  Google Scholar 

  • Pérez DJ, Menone ML, Tognetti JA, Lukaszewicz G (2019) Azoxystrobin induces chromosomal aberrations in roots of the hydrophyte Bidens laevis L. Revista Int De Contam Amb 35(3):553–563

    Article  Google Scholar 

  • Perlatti B, de Souza Bergo PL, Fernandes JB, Forim MR (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals, insecticides-development of safer and more effective technologies. InTech. https://doi.org/10.5772/53355

  • Pillai HP, Kottekottil J (2016) Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. J Environ Prot 7(05):734

    Article  CAS  Google Scholar 

  • Pimentel D, Acquay H, Biltonen M, Rice P, Silva M, Nelson J, Lipner V, Giordano S, Horowitz A, D’Amore M (1992) Environmental and human costs of pesticide use. Bioscience 42:750–760

    Article  Google Scholar 

  • Pimmata P, Reungsang A, Plangklang P (2013) Comparative bioremediation of carbofuran contaminated soil by natural attenuation, bioaugmentation and biostimulation. Int Biodeter Biodegrad 85:196–204

    Article  CAS  Google Scholar 

  • Piwowar A (2021) The use of pesticides in Polish agriculture after integrated pest management (IPM) implementation. Environ Sci Poll Res 28:26628–26642

    Article  Google Scholar 

  • Prashar P, Shah S (2016) Impact of fertilizers and pesticides on soil microflora in agriculture. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer, Cham, pp 331–361

    Chapter  Google Scholar 

  • Purnomo AS, Sariwati A, Kamei I (2020) Synergistic interaction of a consortium of the brown-rot fungus Fomitopsis pinicola and the bacterium Ralstonia pickettii for DDT biodegradation. Heliyon 6(6):e04027

    Article  Google Scholar 

  • Putra IWWP, Setiyo Y, Gunam IBW, Anggreni AAMD (2021) Isolation and identification of profenofos pesticide degrading bacterium from soil sample of Bedugul, Indonesia. In: IOP Conf Series: Earth Environ Sci 724(1):012037. IOP Publishing

  • Qi S, Wang D, Zhu L, Teng M, Wang C, Xue X et al (2018) Effects of a novel neonicotinoid insecticide cycloxaprid on earthworm, Eisenia fetida. Environ Sci Pollut Res 25:14138–14147. https://doi.org/10.1007/s11356-018-1624-z

    Article  CAS  Google Scholar 

  • Qin G, Chen Y, He F, Yang B, Zou K, Shen N, Zuo B, Liu R, Zhang W, Li Y (2021) Risk assessment of fungicide pesticide residues in vegetables and fruits in the mid-western region of China. J Food Comp Anal 95:103663

    Article  CAS  Google Scholar 

  • Qu M, Li H, Li N, Liu G, Zhao J, Hua Y, Zhu D (2017) Distribution of atrazine and its phytoremediation by submerged macrophytes in lake sediments. Chemosphere 168:1515–1522

    Article  CAS  Google Scholar 

  • Raffa CM, Chiampo F (2021) Bioremediation of agricultural soils polluted with pesticides: a review. Bioengineering 8:92

    Article  CAS  Google Scholar 

  • Raimondo EE, Saez JM, Aparicio JD, Fuentes MS, Benimeli CS (2020) Bioremediation of lindane-contaminated soils by combining of bioaugmentation and biostimulation: effective scaling-up from microcosms to mesocosms. J Environ Manag 276:111309

    Article  CAS  Google Scholar 

  • Ramamurthy AS, Memarian R (2012) Phytoremediation of mixed soil contaminants. Water Air Soil Poll 223(2):511–518

    Article  CAS  Google Scholar 

  • Rangasamy K, Athiappa M, Devarajan N, Parray JA (2017) Emergence of multi drug resistance among soil bacteria exposing to insecticides. Microb Pathog 105:153–165

    Article  CAS  Google Scholar 

  • Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS, Srivastav AL, Kaushal J (2021) An extensive review on the consequences of chemical pesticides on human health and environment. J Cleaner Prod 283:124657

    Article  CAS  Google Scholar 

  • Rao KS (2018) Toxicity of pesticides. BEMS Rep 4(2):31–36

    Article  Google Scholar 

  • Rashed MN (2013) Adsorption technique for the removal of organic pollutants from water and wastewater. In: Rashed MN (ed) Organic pollutants: monitoring, risk and treatment. IntechOpen, UK. https://doi.org/10.5772/54048

    Chapter  Google Scholar 

  • Roberts JR, Reigart JR (2009) Recognition and management of pesticide poisonings. DIANE Publishing. USEPA, Washington DC

  • Rigas F, Papadopoulou K, Dritsa V, Doulia D (2007) Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J Hazard Mat 140(1–2):325–332

    Article  CAS  Google Scholar 

  • Röllin HB, Sandanger TM, Hansen L, Channa K, Odland JØ (2009) Concentration of selected persistent organic pollutants in blood from delivering women in South Africa. Sci Total Environ 408(1):146–152

    Article  Google Scholar 

  • Roy CL, Coy PL, Chen D, Ponder J, Jankowski M (2019) Multi-scale availability of neonicotinoid-treated seed for wildlife in an agricultural landscape during spring planting. Sci Total Environ 682:271–281

    Article  CAS  Google Scholar 

  • Rumkee JCO, Becher MA, Thorbek P, Osborne JL (2017) Modeling effects of honeybee behaviors on the distribution of pesticide in nectar within a hive and resultant in-hive exposure. Environ Sci Technol 51:6908–6917

    Article  CAS  Google Scholar 

  • Rundlöf M, Andersson GKS, Bommarco R, Fries I, Hederstr¨om V, Herbertsson L, Jonsson O, Klatt BK, Pedersen TR, Yourstone J, Smith HG (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80

  • Russo F, Ceci A, Pinzari F, Siciliano A, Guida M, Malusà E, Tartanus M, Miszczak A, Maggi O, Persiani AM (2019) Bioremediation of dichlorodiphenyltrichloroethane (DDT)-contaminated agricultural soils: potential of two autochthonous saprotrophic fungal strains. Appl Environ Microb 85(21):e01720-e1819

    Article  CAS  Google Scholar 

  • Sabin LB, Mora MA (2022) Ecological risk assessment of the effects of neonicotinoid insecticides on northern bobwhites (Colinus virginianus) in the South Texas Plains Ecoregion. Integr Environ Assess Manag 18(2):488–499. https://doi.org/10.1002/ieam.4479

  • Salam JA, Das N (2014) Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: kinetic study, enzyme analysis and biodegradation pathway. World J Microb Biotechnol 30(4):1301–1313

    Article  CAS  Google Scholar 

  • Salem H, Olajos EJ (1988) Review of pesticides: chemistry, uses and toxicology. Toxicol Ind Health 4(3):291–321

    Article  CAS  Google Scholar 

  • Sánchez V, López-Bellido FJ, Cañizares P, Rodríguez L (2017) Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils. Chemosphere 185:119–126

    Article  Google Scholar 

  • Sánchez-Bayo F, Goka K (2014) Pesticide residues and bees – a risk assessment. PLoS One 9:e94482

    Article  Google Scholar 

  • Sarker A, Islam T, Rahman S, Nandi R, Kim JE (2021) Uncertainty of pesticides in foodstuffs, associated environmental and health risks to humans—a critical case of Bangladesh with respect to global food policy. Environ Sci Pollut Res 28(39):54448–54465

    Article  CAS  Google Scholar 

  • Sarma H, Nava AR, Prasad MNV (2019) Mechanistic understanding and future prospect of microbe-enhanced phytoremediation of polycyclic aromatic hydrocarbons in soil. Environ Technol Innov 13:318–330

    Article  Google Scholar 

  • Sarwar M (2015) The dangers of pesticides associated with public health and preventing of the risks. Int J Bioinform Biomed Eng 1(2):130–136

    CAS  Google Scholar 

  • Schulz R, Bub S, Petschick LL, Stehle S, Wolfram J (2021) Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 372(6537):81–84

    Article  CAS  Google Scholar 

  • Senyildiz M, Kilinc A, Ozden S (2018) Investigation of the genotoxic and cytotoxic effects of widely used neonicotinoid insecticides in HepG2 and SH-SY5Y cells. Toxicol Ind Health 34:375–383. https://doi.org/10.1177/0748233718762609

    Article  CAS  Google Scholar 

  • Shahid M, Zaidi A, Khan MS (2021) Modulations in growth, structure, cell viability and antioxidant enzyme of a nodule bacterium Mesorhizobium ciceri induced by pesticides. Environ Dev Sustain 23(3):4103–4119

    Article  Google Scholar 

  • Shaker BK, Al-Salman IM, Al-Attabi MS (2018) Bioremediation of pesticide glyphosate (Ground-up SL) and remove Cd, Cr elements from polluted aquatic medium by using fungi (Aspergillus niger, Trichoderma harzanium). Biochem Cell Arch 18:967–974

    Google Scholar 

  • Shammi M, Hasan N, Rahman MM, Begum K, Sikder MT, Bhuiyan MH, Uddin MK (2017) Sustainable pesticide governance in Bangladesh: socio-economic and legal status interlinking environment, occupational health and food safety. Environ Sys Decis 37(3):243–260

    Article  Google Scholar 

  • Sharma A, Shukla A, Attria K, Kumare M, Kumar P, Suttee A, Singh G, Barnwala RP, Singla N (2020) Global trends in pesticides: a looming threat and viable alternatives. Ecotoxicol Environ Saf 201:110812. https://doi.org/10.1016/j.ecoenv.2020.110812

    Article  CAS  Google Scholar 

  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C et al (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22:5–34. https://doi.org/10.1007/s11356-014-3470-y

  • Singh P, Suri CR, Cameotra SS (2004) Isolation of a member of Acinetobacter species involved in atrazine degradation. Biochem Biophys Res Comm 317(3):697–702

    Article  CAS  Google Scholar 

  • Singh R, Kumari T, Verma P, Singh HP, Raghubanshi AS (2022) Compatible package-based agriculture systems: an urgent need for agro-ecological balance and climate change adaptation. Soil Ecol Lett 4:187–212. https://doi.org/10.1007/s42832-021-0087-1

    Article  Google Scholar 

  • Singh NS, Sharma R, Parween T, Patanjali PK (2018) Pesticide contamination and human health risk factor. In: Oves M, Khan MZ, Ismail IMI (eds). Modern age environmental problems and their remediation. Springer, Cham, pp 49–68. https://doi.org/10.1007/978-3-319-64501-8_3

  • Singh R, Srivastava P, Singh P, Upadhyay S, Raghubanshi AS (2019) Human overpopulation and food security: challenges for the agriculture sustainability. In: Urban agriculture and food systems: breakthroughs in research and practice 2019 (pp. 439–467). IGI Global

  • Sinha A, Ma K, Zhao H (2021) 2D Ti3C2Tx flakes prepared by in-situ HF etchant for simultaneous screening of carbamate pesticides. J Colloid Interface Sci 59:365–374

    Article  Google Scholar 

  • Solomon KR, Carr JA, Du Preez LH, Giesy JP, Kendall RJ, Smith EE, Van Der Kraak GJ (2008) Effects of atrazine on fish, amphibians, and aquatic reptiles: a critical review. Crit Rev Toxicol 38(9):721–772

    Article  Google Scholar 

  • Souza TDD, Borges AC, Matos ATD, Mounteer AH, de Queiroz ME (2017) Removal of chlorpyrifos insecticide in constructed wetlands with different plant species. Revista Brasileira De Engenharia Agrícola e Ambiental 21(12):878–883

    Article  Google Scholar 

  • Spina F, Cecchi G, Landinez-Torres A, Pecoraro L, Russo F, Wu B, Cai L, Liu XZ, Tosi S, Varese GC, Zotti M (2018) Fungi as a toolbox for sustainable bioremediation of pesticides in soil and water. Plant Biosyst 152(3):474–488

    Article  Google Scholar 

  • Stenström JR (2013) Mixture toxicity of pesticides and biological effects in agricultural streams: field and laboratory studies, Licentiate Thesis Swedish University of Agricultural Sciences, Uppsala

  • Strong LC, Rosendahl C, Johnson G, Sadowsky MJ, Wackett LP (2002) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68(12):5973–5980

    Article  CAS  Google Scholar 

  • Subsanguan T, Vangnai AS, Siripattanakul-Ratpukdi S (2020) Aerobic and anoxic degradation and detoxification of profenofos insecticide by Pseudomonas plecoglossicida strain PF1. Ecotoxicol Environ Saf 190:110129

    Article  CAS  Google Scholar 

  • Sun S, Lv P, Datta R, Ni J, Su Y, Sarkar D, Zheng Y (2019) Uptake of 2, 4-bis (isopropylamino)-6-methylthio-s-triazine by Canna indica. J Environ Biol 40(3):577–583

    Article  CAS  Google Scholar 

  • Taghizadeh SF, Badibostan H, Hayes AW, Giesy JP, Karimi G (2021) Residues levels of pesticides in walnuts of Iran and associated health risks. Human Ecol Risk Assess: an Int J 27(1):191–204

    Article  CAS  Google Scholar 

  • Tang XY, Yang Y, McBride MB, Tao R, Dai YN, Zhang XM (2019) Removal of chlorpyrifos in recirculating vertical flow constructed wetlands with five wetland plant species. Chemosphere 216:195–202

    Article  CAS  Google Scholar 

  • Tassin de Montaigu C, Goulson D (2020) Identifying agricultural pesticides that may pose a risk for birds. PeerJ 8:e9526. https://doi.org/10.7717/peerj.9526

    Article  CAS  Google Scholar 

  • Tennekes HA (2017) The importance of dose-time-response relationships for hazard identification and limitation of animal experiments. Open Acc J Toxicol 1(5):555572

    Google Scholar 

  • Thompson H, Overmyer J, Feken M, Ruddle N, Vaughan S, Scorgie E, Bocksch S, Hill M (2019) Thiamethoxam: long-term effects following honey bee colony-level exposure and implications for risk assessment. Sci Total Environ 654:60–71

    Article  CAS  Google Scholar 

  • Thongprakaisang S, Thiantanawat A, Rangkadilok N, Suriyo T, Satayavivad J (2013) Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem Toxicol 59:129–136

    Article  CAS  Google Scholar 

  • Tiwari B, Sindhu V, Mishra AK, Singh SS (2020) Carbon catabolite repression of methyl parathion degradation in a bacterial isolate characterized as a Cupriavidus sp. LMGR1. Water Air Soil Poll 231(7):1–14

    Article  Google Scholar 

  • Tournebize J, Chaumont C, Mander Ü (2017) Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol Eng 103:415–425

    Article  Google Scholar 

  • Tripathi S, Singh VK, Srivastava P, Singh R, Devi RS, Kumar A, Bhadouria R (2020) Phytoremediation of organic pollutants: current status and future directions. In: Singh P, Kumar A, Borthakur A (eds). Abatement of Environmental Pollutants. Elsevier, pp 81–105

  • Ueyama J, Harada KH, Koizumi A, Sugiura Y, Kondo T, Saito I, Kamijima M (2015) Temporal levels of urinary neonicotinoid and dialkylphosphate concentrations in Japanese women between 1994 and 2011. Environ Sci Technol 49:14522–14528

    Article  CAS  Google Scholar 

  • Ullah S, Zorriehzahra MJ (2015) Ecotoxicology: a review of pesticides induced toxicity in fish. Adv Anim Vet Sci 3(1):40–57

    Article  Google Scholar 

  • Ullah S, Ullah N, Rahman K, Khan TM, Jadoon MA, Ahmad T (2014) Study on physicochemical characterization of Konhaye stream district Dir lower, Khyber Pakhtunkhwa Pakistan. World J Fish and Mar Sci 6(5):461–470

    CAS  Google Scholar 

  • Usmani Z, Kulp M, Lukk T (2021) Bioremediation of lindane contaminated soil: exploring the potential of actinobacterial strains. Chemosphere 278:130468

    Article  CAS  Google Scholar 

  • Vajargah MF, Hossaini SA, Hedayati A (2013) Acute toxicity test of two pesticides diazinon and deltamethrin on spirlin (Alburnoides bipunctatus) larvae and fingerling. J Toxicol Environ Health Sci 5(6):106–110

    Article  CAS  Google Scholar 

  • van de Merwe JP, Neale PA, Melvin SD, Leusch FD (2018) In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides. Aquat Toxicol 199:263–268

    Article  Google Scholar 

  • Verasoundarapandian G, Lim ZS, Radziff SB, Taufik SH, Puasa NA, Shaharuddin NA, Merican F, Wong CY, Lalung J, Ahmad SA (2022) Remediation of pesticides by microalgae as feasible approach in agriculture: bibliometric strategies. Agronomy 12(1):117

    Article  CAS  Google Scholar 

  • Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-state-of-art. Rev Environ Sci Bio/technol 13(4):429–466

    Article  Google Scholar 

  • Vijgen J, Abhilash PC, Li YF, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian CG, Schaffer A, Weber R (2011) Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res 18:152–162

    Article  CAS  Google Scholar 

  • Vymazal J, Březinová T (2015) The use of constructed wetlands for removal of pesticides from agricultural run-off and drainage: a review. Environ Int 75:11–20

    Article  CAS  Google Scholar 

  • Wan L, Wu Y, Ding H, Zhang W (2020) Toxicity, biodegradation, and metabolic fate of organophosphorus pesticide trichlorfon on the freshwater algae Chlamydomonas reinhardtii. J Agric Food Chem 68(6):1645–1653

    Article  CAS  Google Scholar 

  • Wan Y, Wang Y, Xia W, He Z, Xu S (2019) Neonicotinoids in raw, finished, and tap water from Wuhan, Central China: Assessment of human exposure potential. Sci Total Environ 675:513–519

  • Wang K, Mu X, Qi S, Chai T, Pang S, Yang Y, Wang C, Jiang J (2015a) Toxicity of a neonicotinoid insecticide, guadipyr, in earthworm (Eisenia fetida). Ecotoxicol Environ Saf 114:17–22

    Article  CAS  Google Scholar 

  • Wang K, Pang S, Mu X, Qi S, Li D, Cui F, Wang C (2015b) Biological response of earthworm, Eisenia fetida, to five neonicotinoid insecticides. Chemosphere 132:120–126

    Article  CAS  Google Scholar 

  • Wang H, Tang C, Yang J, Wang N, Jiang F, Xia Q, He G, Chen Y, Jiang Q (2018a) Predictors of urinary antibiotics in children of Shanghai and health risk assessment. Environ Int 121:507–514. https://doi.org/10.1016/j.envint.2018.09.032

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Y, Xu P, Guo B, Li W (2018b) Metabolism distribution and effect of thiamethoxam after oral exposure in mongolian racerunner (Eremias argus). J Agric Food Chem 66:7376–7383. https://doi.org/10.1021/acs.jafc.8b02102

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Y, Li W, Yang L, Guo B (2019) Distribution, metabolism and hepatotoxicity of neonicotinoids in small farmland lizard and their effects on GH/IGF axis. Sci Total Environ 662:834–841. https://doi.org/10.1016/j.scitotenv.2019.01.277

    Article  CAS  Google Scholar 

  • Wang H, Yang D, Fang H, Han M, Tang C, Wu J, Chen Y, Jiang Q (2020) Predictors, sources, and health risk of exposure to neonicotinoids in Chinese school children: a biomonitoring-based study. Environ Int 143:105918

    Article  CAS  Google Scholar 

  • Warmink JA, Nazir R, Van Elsas JD (2009) Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microb 11(2):300–312

    Article  CAS  Google Scholar 

  • Web of Science (WoS) database (2022) https://www.webofscience.com/wos/woscc/summary/083e2267-a833-4ebd-a02b-d476c1cd3e0c-60f50845/relevance/1. Accessed 01 Sept 2022

  • Wehtje G, Walker RH, Shaw JN (2000) Pesticide retention by inorganic soil amendments. Weed Sci 48:248–254

    Article  CAS  Google Scholar 

  • Widenfalk A, Svensson JM, Goedkoop W (2004) Effects of the pesticides captan, deltamethrin, isoproturon and pirimicarb on the microbial community of a freshwater sediment. Environ Toxicol Chem 23(8):1920–1927

    Article  CAS  Google Scholar 

  • Wongputtisin P, Supo C, Suwannarach N, Honda Y, Nakazawa T, Kumla J, Lumyong S, Khanongnuch C (2021) Filamentous fungi with high paraquat-degrading activity isolated from contaminated agricultural soils in northern Thailand. Lett Appl Microb 72(4):467–475

    Article  CAS  Google Scholar 

  • Wood SC, Kozii IV, Koziy RV, Epp T, Simko E (2018) Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees. PLoS One 13(1):e0190517

    Article  Google Scholar 

  • World Health Organization, WHO (2005) The WHO recommended classification of pesticides by hazard and guidelines to classification: 2004. https://www.who.int/ipcs/publications/pesticides_hazard_rev_3.pdf. (Accessed on 23.12.2021)

  • Xie Q, Xue C, Chen A, Shang C, Luo S (2020) Phanerochaete chrysosporium-driven quinone redox cycling promotes degradation of imidacloprid. Int Biodeter Biodegrad 151:104965

    Article  CAS  Google Scholar 

  • Xu P, Huang L (2017) Stereoselective bioaccumulation, transformation, and toxicity of triadimefon in Scenedesmus obliquus. Chirality 29(2):61–69

    Article  CAS  Google Scholar 

  • Xu B, Xue R, Zhou J, Wen X, Shi Z, Chen M, Xin F, Zhang W, Dong W, Jiang M (2020) Characterization of acetamiprid biodegradation by the microbial consortium ACE-3 enriched from contaminated soil. Front Microb 11:1429

    Article  Google Scholar 

  • Xue Q, Pan A, Wen Y, Huang Y, Chen D, Yang CX, Wu JH, Yang J, Pan J, Pan XF (2021) Association between pyrethroid exposure and cardiovascular disease: a national population-based cross-sectional study in the US. Environ Int 153:106545

    Article  CAS  Google Scholar 

  • Yang L, Chen S, Hu M, Hao W, Geng P, Zhang Y (2011) Biodegradation of carbofuran by Pichia anomala strain HQ-C-01 and its application for bioremediation of contaminated soils. Biol Fert Soils 47(8):917–923

    Article  Google Scholar 

  • Yang C, Lim W, Song G (2021) Immunotoxicological effects of insecticides in exposed fishes. Comp Biochem Physiol Part c: Toxicol Pharmacol 247:109064

    CAS  Google Scholar 

  • Ye F, Xie Z, Wu X, Lin X (2006) Determination of pyrethroid pesticide residues in vegetables by pressurized capillary electrochromatography. Talanta 69(1):97–102

    Article  CAS  Google Scholar 

  • Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, Yu J, Ren X, Yi H, Cheng M, Zhang C (2017) Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol 37:1062–1076

    Article  CAS  Google Scholar 

  • Yin X, Lian B (2012) Dimethoate degradation and calcium phosphate formation induced by Aspergillus niger. Afr J Microb Res 6(50):7603–7609

    Article  CAS  Google Scholar 

  • Zhang W, Jiang F, Ou J (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1(2):125

    CAS  Google Scholar 

  • Zhang M, Zeiss MR, Geng S (2015) Agricultural pesticide use and food safety: California’s model. J Integrat Agric 14:2340–2357

    Article  Google Scholar 

  • Zhang C, Tao Y, Li S, Tian J, Ke T, Wei S, Wang P, Chen L (2019) Simultaneous degradation of trichlorfon and removal of Cd (II) by Aspergillus sydowii strain PA F-2. Environ Sci Pollut Res 26(26):26844–26854

    Article  CAS  Google Scholar 

  • Zhang H, Yuan X, Xiong T, Wang H, Jiang L (2020a) Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods. Chem Eng J 398:125657

    Article  CAS  Google Scholar 

  • Zhang N, Guo D, Zhu Y, Wang X, Zhu L, Liu F, Teng Y, Christie P, Li Z, Luo Y (2020b) Microbial remediation of a pentachloronitrobenzene-contaminated soil under Panax notoginseng: a field experiment. Pedosphere 30(4):563–569

    Article  CAS  Google Scholar 

  • Zhang P, Ren C, Sun H, Min L (2018) Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Sci Total Environ 615:59–69

  • Zhu J, Liu W (2020) A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics 123:321–335

    Article  Google Scholar 

  • Zhu H, Yu X, Xu Y, Yan B, Bañuelos G, Shutes B, Wen Z (2021) Removal of chlorpyrifos and its hydrolytic metabolite in microcosm-scale constructed wetlands under soda saline-alkaline condition: mass balance and intensification strategies. Sci Total Environ 777:145956

    Article  CAS  Google Scholar 

  • Zikankuba VL, Mwanyika G, Ntwenya JE, James A (2019) Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food Agric 5(1):1601544

    Article  Google Scholar 

  • Zimmer CT, Garrood WT, Singh KS, Randall E, Lueke B, Gutbrod O, Matthiesen S, Kohler M, Nauen R, Davies TGE et al (2018) Neofunctionalization of duplicated P450 genes drives the evolution of insecticide resistance in the brown planthopper. Curr Biol 28(2):268-274.e5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the handling editor and anonymous reviewers for their critical suggestions which considerably helped in improving the manuscript. RS extends his thanks to Ms. Shikha Singh, IESD, Banaras Hindu University, Varanasi, for her help in drafting figures and improving the content of the manuscript.

Funding

RS gratefully acknowledge the funding support (grant number PDF/2020/001607) received from Science and Engineering Research Board (SERB), New Delhi, as National Post-Doctoral Fellow (NPDF).

Author information

Authors and Affiliations

Authors

Contributions

Umesh Dhuldhaj: conceptualization, writing-original review draft, funding acquisition; Rishikesh Singh: revision drafting, review, visualization, and editing; Vipin Kumar Singh: conceptualization, writing-original review draft, vizualization, review, and final editing. All authors have reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Vipin Kumar Singh.

Ethics declarations

Ethics approval

The work did not involve animal-based experiment.

Consent to participate

All authors participated in this work.

Consent for publication

All authors agree to publish this article in the Environmental Science and Pollution Research.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Elena Maestri

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 104 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhuldhaj, U.P., Singh, R. & Singh, V.K. Pesticide contamination in agro-ecosystems: toxicity, impacts, and bio-based management strategies. Environ Sci Pollut Res 30, 9243–9270 (2023). https://doi.org/10.1007/s11356-022-24381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-24381-y

Keywords

Navigation