Skip to main content
Log in

Adsorption and detoxification of glyphosate and aminomethylphosphonic acid by montmorillonite clays

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The co-occurrence of mixtures of glyphosate (GLP) and aminomethylphosphonic acid (AMPA) in contaminated water, soil, sediment, and plants is a cause for concern due to potential threats to the ecosystem and human health. Major routes of exposure include contact with contaminated water and soil and through consumption of crops containing GLP and AMPA residues. Calcium montmorillonite (CM) and acid-processed montmorillonite (APM) clays were investigated for their ability to tightly sorb and detoxify GLP and AMPA mixtures. In vitro adsorption and desorption isotherms and thermodynamic analysis indicated saturable Langmuir binding of both chemicals with high capacities, affinities, enthalpies, and free energies of sorption and low desorption rates. In silico computational modeling indicated that both GLP and AMPA can be readily absorbed onto clay surfaces through electrostatic interactions and hydrogen bonding. The safety and efficacy of the clays were confirmed using well-established living organisms, including an aquatic cnidarian (Hydra vulgaris), a soil nematode (Caenorhabditis elegans), and a floating plant (Lemna minor). Low levels of clay inclusion (0.05% and 0.2%) in the culture medium resulted in increased growth and protection against chemical mixtures based on multiple endpoints. Results indicated that montmorillonite clays may be used to bind mixtures of GLP and AMPA in water, soil, and plants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw data that support the findings of this study are available from the corresponding author, upon request.

References

  • Adema CM, Hillier LW, Jones CS et al (2017) Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat Commun 8:15451

    Article  CAS  Google Scholar 

  • Afriyie-Gyawu E, Ankrah NA, Huebner HJ, Ofosuhene M, Kumi J, Johnson NM, Tang L, Xu L, Jolly PE, Ellis WO, Ofori-Adjei D, Williams JH, Wang JS, Phillips TD (2008) NovaSil clay intervention in Ghanaians at high risk for aflatoxicosis. I. Study design and clinical outcomes. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(1):76–87

    Article  CAS  Google Scholar 

  • Ake CL, Wiles MC, Huebner HJ, McDonald TJ, Cosgriff D, Richardson MB, Donnelly KC, Phillips TD (2003) Porous organoclay composite for the sorption of polycyclic aromatic hydrocarbons and pentachlorophenol from groundwater. Chemosphere 51(9):835–844

    Article  CAS  Google Scholar 

  • Al-Rajab AJ, Amellal S, Schiavon M (2008) Sorption and leaching of 14C-glyphosate in agricultural soils. Agron Sustain Dev 28:419–428

    Article  CAS  Google Scholar 

  • Bai SH, Ogbourne SM (2016) Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ Sci Pollut Res Int 23(19):18988–19001. https://doi.org/10.1007/s11356-016-7425-3

    Article  CAS  Google Scholar 

  • Battaglin WA, Meyer MT, Kuivila KM, Dietze JE (2014) Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater, and precipitation. J Am Water Resour Assoc 50(2):275–290. https://doi.org/10.1111/jawr.12159

    Article  CAS  Google Scholar 

  • Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28. https://doi.org/10.1186/s12302-016-0070-0

  • Bosch TCG, David CN (1984) Growth-regulation in hydra - relationship between epithelial-cell cycle length and growth-rate. Dev Biol 104(1):161–171

    Article  CAS  Google Scholar 

  • Boyd WA, Smith MA, Freedman JH (2012) Caenorhabditis elegans as a model in developmental toxicology. Methods Mol Biol 889:15–24

    Article  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    Article  CAS  Google Scholar 

  • Brown KA, Mays T, Romoser A, Marroquin-Cardona A, Mitchell NJ, Elmore SE, Phillips TD (2014) Modified hydra bioassay to evaluate the toxicity of multiple mycotoxins and predict the detoxification efficacy of a clay-based sorbent. J Appl Toxicol 34(1):40–48

    Article  CAS  Google Scholar 

  • Candela L, Alvarez-Benedi J, de Melo Condesso MT, Rao PSC (2007) Laboratory studies on glyphosate transport in soils of the Maresme area near Barcelona, Spain: transport model parameter estimation. Geoderma 140(1–2):8–16. https://doi.org/10.1016/j.geoderma.2007.02.013

    Article  CAS  Google Scholar 

  • Capkova P, Pospisil M, Valaskova M, Merinska D, Trchova M, Sedlakova Z, Weiss Z, Simonik J (2006) Structure of montmorillonite cointercalated with stearic acid and octadecylamine: modeling, diffraction. IR Spectroscopy J Colloid Interface Sci 300(1):264–269

    Article  CAS  Google Scholar 

  • Chamkasem N, Harmon T (2016) Direct determination of glyphosate, glufosinate, and AMPA in soybean and corn by liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 408(18):4995–5004

    Article  CAS  Google Scholar 

  • International Union of Crystallography. International Tables for X-ray Crystallography. Birmingham, Eng.: Kynoch Press, 1969.

  • Drost W, Matzke M, Backhaus T (2007) Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure. Chemosphere 67(1):36–43

    Article  CAS  Google Scholar 

  • Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43(20):3714–3717

    Article  CAS  Google Scholar 

  • Flores FM, Sanchez RMT, Afonso MD (2018) Some aspects of the adsorption of glyphosate and its degradation products on montmorillonite. Environ Sci Pollut Res 25:18138–18146. https://doi.org/10.1007/s11356-018-2073-4

    Article  CAS  Google Scholar 

  • Garba J, Samsuri AW, Othman R, Ahmad Hamdani MS (2018) Adsorption-desorption and leaching potential of glyphosate and aminomethylphosphonic acid in acidic Malaysian soil amended with cow dung and rice husk ash. Environ Monit Assess 190(11):676

    Article  Google Scholar 

  • Garcia-Espineira M, Tejeda-Benitez L, Olivero-Verbel J (2018) Toxicity of atrazine- and glyphosate-based formulations on Caenorhabditis elegans. Ecotoxicol Environ Saf 156:216–222

    Article  CAS  Google Scholar 

  • Gomes MP, Smedbol E, Chalifour A, Henault-Ethier L, Labrecque M, Lepage L, Lucotte M, Juneau P (2014) Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. J Exp Bot 65(17):4691–4703

    Article  CAS  Google Scholar 

  • Gong J, Wright FA (2021) Toxin analysis, ACS. https://jgong9.shinyapps.io/chemistry_app/

  • Grant PG, Phillips TD (1998) Isothermal adsorption of aflatoxin B(1) on HSCAS clay. J Agric Food Chem 46(2):599–605

    Article  CAS  Google Scholar 

  • Gupta VP (2016) 4 - approximate molecular orbital theories. Principles and Applications of Quantum Chemistry 127–153.

  • Hall KE, Spokas KA, Gamiz B, Cox L, Papiernik SK, Koskinen WC (2018) Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes. Pest Manage Sci 74(5):1206–1212

    Article  CAS  Google Scholar 

  • Hearon SE, Wang M, Phillips TD (2020) Strong adsorption of dieldrin by parent and processed montmorillonite clays. Environ Toxico Chem 39(3):517–525

    Article  CAS  Google Scholar 

  • Hearon SE, Wang M, McDonald TJ, Phillips TD (2021) Decreased bioavailability of aminomethylphosphonic acid (AMPA) in genetically modified corn with activated carbon or calcium montmorillonite clay inclusion in soil. J Environ Sci 100:131–143

    Article  CAS  Google Scholar 

  • Hearon SE, Orr AA, Moyer H, Wang M, Tamamis P, Phillips TD (2022) Montmorillonite clay-based sorbents decrease the bioavailability of per-and polyfluoroalkyl substances (PFAS) from soil and their translocation to plants. Environ Res 205:112433. https://doi.org/10.1016/j.envres.2021.112433

    Article  CAS  Google Scholar 

  • Hedley CB, Yuan G, Theng BKG (2007) Thermal analysis of montmorillonites modified with quaternaryphosphonium and ammonium surfactants. Appl Clay Sci 35(3–4):180–188. https://doi.org/10.1016/j.clay.2006.09.005

    Article  CAS  Google Scholar 

  • Hung KY, Lin YC, Feng HP (2017) The effects of acid etching on the nanomorphological surface characteristics and activation energy of titanium medical materials. Materials (basel) 10(10):1164. https://doi.org/10.3390/ma10101164

    Article  CAS  Google Scholar 

  • Hunt PR (2017) The C. elegans model in toxicity testing. J Appl Toxicol 37(1):50–59

    Article  CAS  Google Scholar 

  • Hypercube (2002) Hyperchem release 7.0 for windows: reference manual, Hypercube lnc., Waterloo, Ont. Available at http://www.chemistry-software.com/pdf/Hyperchem_full_manual.pdf

  • Kanissery R, Gairhe B, Kadyampakeni D, Batuman O, Alferez F (2019) Glyphosate: its environmental persistence and impact on crop health and nutrition. Plants-Basel 8(11):499. https://doi.org/10.3390/plants8110499

    Article  CAS  Google Scholar 

  • Khoury GA, Gehris TC, Tribe L, Sanchez RMT, Afonso MD (2010) Glyphosate adsorption on montmorillonite: an experimental and theoretical study of surface complexes. Appl Clay Sci 50(2):167–175

    Article  CAS  Google Scholar 

  • Kronberg MF, Clavijo A, Moya A, Rossen A, Calvo D, Pagano E, Munarriz E (2018) Glyphosate-based herbicides modulate oxidative stress response in the nematode Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 214:1–8

    Article  CAS  Google Scholar 

  • Lemke N, Murawski A, Schmied-Tobies MIH, Rucic E, Hoppe HW, Conrad A, Kolossa-Gehring M (2021) Glyphosate and aminomethylphosphonic acid (AMPA) in urine of children and adolescents in Germany - human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V). Environ Int 156:106769

    Article  CAS  Google Scholar 

  • Liao X, Li Y, Yan X (2016) Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process. J Environ Sci (china) 41:202–210

    Article  CAS  Google Scholar 

  • Maggi F, la Cecilia D, Tang FHM, McBratney A (2020) The global environmental hazard of glyphosate use. Sci Total Environ 717:137167. https://doi.org/10.1016/j.scitotenv.2020.137167

    Article  CAS  Google Scholar 

  • Mamy L, Barriuso E (2005) Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops. Chemosphere 61(6):844–855

    Article  CAS  Google Scholar 

  • Marroquin-Cardona A, Deng Y, Garcia-Mazcorro J, Johnson NM, Mitchell N, Tang L, Robinson A 2nd, Taylor J, Wang JS, Phillips TD (2011) Characterization and safety of uniform particle size novaSil clay as a potential aflatoxin enterosorbent. Appl Clay Sci 54(3–4):248–257

    Article  CAS  Google Scholar 

  • Matozzo V, Munari M, Masiero L, Finos L, Marin MG (2019) Ecotoxicological hazard of a mixture of glyphosate and aminomethylphosphonic acid to the mussel Mytilus galloprovincialis (Lamarck 1819). Sci Rep 9(1):14302

    Article  Google Scholar 

  • Morita K, Chow KL, Ueno N (1999) Regulation of body length and male tail ray pattern formation of Caenorhabditis elegans by a member of TGF-beta family. Development 126(6):1337–1347

    Article  CAS  Google Scholar 

  • OECD (2002) Guideline for the testing of chemicals. Revised proposal for a new guideline 221. Lemna sp. Growth Inhibition Test. Available at https://www.oecd.org/chemicalsafety/testing/1948054.pdf

  • Orr AA, He SJ, Wang M, Goodall A, Hearon SE, Phillips TD, Tamamis P (2020) Insights into the interactions of bisphenol and phthalate compounds with unamended and carnitine-amended montmorillonite clays. Comput Chem Eng 143:107063. https://doi.org/10.1016/j.compchemeng.2020.107063

    Article  CAS  Google Scholar 

  • Orr AA, Wang M, Beykal B, Ganesh HS, Hearon SE, Pistikopoulos EN, Phillips TD, Tamamis P (2021) Combining experimental isotherms, minimalistic simulations, and a model to understand and predict chemical adsorption onto montmorillonite clays. ACS Omega 6(22):14090–14103

    Article  CAS  Google Scholar 

  • Padilla JT, Selim HM (2019) Time-dependent sorption and desorption of glyphosate in soils: Multi-reaction modeling. Vadose Zone J 18(1):1–10. https://doi.org/10.2136/vzj2018.12.0214

    Article  CAS  Google Scholar 

  • Peillex C, Pelletier M (2020) The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J Immunotoxicol 17(1):163–174

    Article  CAS  Google Scholar 

  • Pereira L (2006) LC-MS analysis of glyphosate and AMPA using hypercarb columns. The Application Notebook. https://www.chromatographyonline.com/view/lc-ms-analysis-glyphosate-and-ampa-using-hypercarb-columns

  • Perez-Chavez NA, Albesa AG, Longo GS (2018) Using polymer hydrogels for glyphosate sequestration from aqueous solutions: molecular theory study of adsorption to polyallylamine films. Langmuir 34(42):12560–12568

    Article  CAS  Google Scholar 

  • Phillips TD, Wang M, Elmore SE, Hearon S, Wang JS (2019) NovaSil clay for the protection of humans and animals from aflatoxins and other contaminants. Clays Clay Miner 67(1):99–110

    Article  CAS  Google Scholar 

  • Phillips TD, Wang M, Elmore SE, Hearon S, Wang JS (2019) NovaSil clay for the protection of humans and animals from aflatoxins and other contaminants. Clays Clay Miner 67(1):99–110

    Article  CAS  Google Scholar 

  • Phillips TD, Wang M (2018) Edible enterosorbents used to mitigate acute exposures to ingestible environmental toxins following outbreaks, natural disasters and emergencies. United States Patent and Trademark Office, Texas A&M University, US. https://patents.google.com/patent/US20210137971A1/en

  • Reddy KN, Rimando AM, Duke SO (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52(16):5139–5143

    Article  CAS  Google Scholar 

  • Richardson SM, Richardson Jr JM (1982) Crystal structure of a pink muscovite from archer’s post, Kenya: implications for reverse pleochroism in dioctahedral micas. American Mineralogist 67:69–75. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.595.9827&rep=rep1&type=pdf

  • Sidoli P, Baran N, Angulo-Jaramillo R (2016) Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules. Environ Sci Pollut Res Int 23(6):5733–5742

    Article  CAS  Google Scholar 

  • Sikorski L, Baciak M, Bes A, Adomas B (2019) The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. Aquat Toxicol 209:70–80

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Datta S, Wani AB, Dhanjal DS, Romero R, Singh J (2020) Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: a review. Environ Chem Lett 18(3):663–702. https://doi.org/10.1007/s10311-020-00969-z

    Article  CAS  Google Scholar 

  • Skeff W, Recknagel C, Duwel Y, Schulz-Bull DE (2018) Adsorption behaviors of glyphosate, glufosinate, aminomethylphosphonic acid, and 2-aminoethylphosphonic acid on three typical Baltic Sea sediments. Mar Chem 198:1–9. https://doi.org/10.1016/j.marchem.2017.11.008

    Article  CAS  Google Scholar 

  • Sprankle P, Meggitt WF, Penner D (2017) Adsorption, mobility, and microbial degradation of glyphosate in the soil. Weed Sci 23(3):229–234. https://doi.org/10.1017/S0043174500052929

    Article  Google Scholar 

  • Sun MJ, Li H, Jaisi DP (2019) Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system. Water Res 163:114840. https://doi.org/10.1016/j.watres.2019.07.007

    Article  CAS  Google Scholar 

  • Sun YJ, Shah KJ, Sun WQ, Zheng HL (2019) Performance evaluation of chitosan-based flocculants with good pH resistance and high heavy metals removal capacity. Sep Purif Technol 215:208–216. https://doi.org/10.1016/j.seppur.2019.01.017

    Article  CAS  Google Scholar 

  • Tharp BE, Kells JJ (2002) Residual herbicides used in combination with glyphosate and glufosinate in corn (Zea mays). Weed Technol 16(2):274–281. https://doi.org/10.1614/0890-037X(2002)016[0274:RHUICW]2.0.CO;2

    Article  CAS  Google Scholar 

  • Tyagi B, Chudasama CD, Jasra RV (2006) Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 64(2):273–278

    Article  Google Scholar 

  • Ugochukwu UC, Fialips CI (2017) Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: effect of acid activated clay minerals. Chemosphere 178:65–72

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (EPA) (1996) Ecological Effects Test Guidelines Oppts 850.4400 Aquatic plant toxicity test using Lemna spp., National Service Center for Environmental Publications (NSCEP). Available at https://www.epa.gov/sites/default/files/2015-07/documents/850-1400.pdf

  • United States Environmental Protection Agency (EPA) (2006) Test No. 221: Lemna sp. Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris. https://doi.org/10.1787/9789264016194-en

  • von Merey G, Manson PS, Mehrsheikh A, Sutton P, Levine SL (2016) Glyphosate and aminomethylphosphonic acid chronic risk assessment for soil biota. Environ Toxicol Chem 35(11):2742–2752

    Article  Google Scholar 

  • Wang M, Phillips TD (2019) Potential applications of clay-based therapy for the reduction of pesticide exposures in humans and animals. Appl Sci-Basel 9(24):5325

    Article  CAS  Google Scholar 

  • Wang M, Phillips TD (2020) Edible clay inclusion in the diet of oysters can reduce tissue residues of polychlorinated biphenyls. Toxicol Environ Health Sci 12(4):355–361. https://doi.org/10.1007/s13530-020-00058-2

    Article  Google Scholar 

  • Wang M, Phillips TD (2022) Inclusion of montmorillonite clays in environmental barrier formulations to reduce skin exposure to water-soluble chemicals from polluted water. ACS Appl Mater Interfaces 14(20):23232–23244

    Article  CAS  Google Scholar 

  • Wang JS, Luo H, Billam M, Wang Z, Guan H, Tang L, Goldston T, Afriyie-Gyawu E, Lovett C, Griswold J, Brattin B, Taylor RJ, Huebner HJ, Phillips TD (2005) Short-term safety evaluation of processed calcium montmorillonite clay (NovaSil) in humans. Food Addit Contam 22(3):270–279

    Article  CAS  Google Scholar 

  • Wang M, Maki CR, Phillips TD (2017) Development of high capacity enterosorbents for aflatoxin B1 and other hazardous chemicals. Chem Res Toxicol 30(9):1694–1701

    Article  CAS  Google Scholar 

  • Wang M, Hearon SE, Phillips TD (2019) Development of enterosorbents that can be added to food and water to reduce toxin exposures during disasters. J Environ Sci Heal B 54(6):514–524

    Article  CAS  Google Scholar 

  • Wang M, Orr AA, He SJ, Dalaijamts C, Chiu WA, Tamamis P, Phillips TD (2019) Montmorillonites can tightly bind glyphosate and paraquat reducing toxin exposures and yoxicity. ACS Omega 4(18):17702–17713

    Article  CAS  Google Scholar 

  • Wang M, Safe S, Hearon SE, Phillips TD (2019) Strong adsorption of polychlorinated biphenyls by processed montmorillonite clays: potential applications as toxin enterosorbents during disasters and floods. Environ Pollut 255:113210

    Article  CAS  Google Scholar 

  • Wang M, Chen Z, Rusyn I, Phillips T (2020) Testing the efficacy of broad-acting sorbents for environmental mixtures using isothermal analysis, mammalian cells, and H. vulgaris. J Hazard Mater 408:124425

    Article  Google Scholar 

  • Wang M, Hearon SE, Phillips TD (2020) A high capacity bentonite clay for the sorption of aflatoxins. Food Addit Contam Part A 37(2):332–341. https://doi.org/10.1080/19440049.2019.1662493

    Article  CAS  Google Scholar 

  • Wang M, Bera G, Mitra K, Wade TL, Knap AH, Phillips TD (2021) Tight sorption of arsenic, cadmium, mercury, and lead by edible activated carbon and acid-processed montmorillonite clay. Environ Sci Pollut Res Int 28(6):6758–6770

    Article  CAS  Google Scholar 

  • Wang M, Rivenbark K, Gong J, Wright FA, Phillips TD (2021) Application of edible montmorillonite clays for the adsorption and detoxification of microcystin. ACS Appl Bio Mater 4(9):7254–7265

    Article  CAS  Google Scholar 

  • Yang Z, Xue KS, Sun X, Tang L, Wang JS (2015) Multi-toxic endpoints of the foodborne mycotoxins in nematode caenorhabditis elegans. Toxins (basel) 7(12):5224–5235

    Article  CAS  Google Scholar 

  • Yardim MF, Budinova T, Ekinci E, Petrov N, Razvigorova M, Minkova V (2003) Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural. Chemosphere 52(5):835–841

    Article  CAS  Google Scholar 

  • Yu P, Li X, Zhang X, Zhou H, Xu YH, Sun YJ, Zheng HL (2021) Insights into the glyphosate removal efficiency by using magnetic powder activated carbon composite. Sep Purif Technol 254:117662. https://doi.org/10.1016/j.seppur.2020.117662

    Article  CAS  Google Scholar 

  • Zeeshan M, Murugadas A, Ghaskadbi S, Rajendran RB, Akbarsha MA (2016) ROS dependent copper toxicity in hydra-biochemical and molecular study. Comp Biochem Phys C 185:1–12

    Google Scholar 

  • Zhelezova A, Cederlund H, Stenstrom J (2017) Effect of biochar amendment and ageing on adsorption and degradation of two herbicides. Water Air Soil Pollut 228(6):216

    Article  Google Scholar 

  • Zhou CY, Jia DM, Liu M, Liu XW, Li CH (2017) Removal of glyphosate from aqueous solution using nanosized copper hydroxide modified resin: equilibrium isotherms and kinetics. J Chem Eng Data 62(10):3585–3592. https://doi.org/10.1021/acs.jced.7b00569

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the NIEHS SRP (Superfund Hazardous Substance Research and Training Program) P42 ES027704; and the USDA Hatch 6215.

Author information

Authors and Affiliations

Authors

Contributions

Timothy Phillips: conceptualization, funding acquisition, methodology, project administration, resources, supervision, validation, visualization, writing — review and editing.

Meichen Wang: formal analysis, investigation, software, writing — original draft.

Kelly Rivenbark: formal analysis, investigation, software, writing — original draft.

Corresponding author

Correspondence to Timothy D. Phillips.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors give consent for the publication of this manuscript in Environmental Science and Pollution Research.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Rivenbark, K.J. & Phillips, T.D. Adsorption and detoxification of glyphosate and aminomethylphosphonic acid by montmorillonite clays. Environ Sci Pollut Res 30, 11417–11430 (2023). https://doi.org/10.1007/s11356-022-22927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-22927-8

Keywords

Navigation