Skip to main content
Log in

Adsorptive removal of Pb(II) using nanostructured γ-alumina in a packed bed adsorber: Simulation using gPROMS

  • Sustainable Technologies in Water Treatment and Desalination
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this work, convective–dispersive and pore volume and surface diffusion models have been used to analyze Pb(II) adsorption from an aqueous solution over a nanostructured γ-alumina adsorbent in a packed bed adsorber. The models encompassing partial differential equation and a linear algebraic equation coupled with isotherm have been simulated in gPROMS using the backward finite difference approach. The predicted breakthrough curves of Pb(II) adsorption concerning flow rate, initial metal concentration, and bed height were matched with the experimental data. The accuracy of model predictions was analyzed through statistical measures such as coefficient of determination (R2), root mean square error, and chi-squared value. The simulation results also predicted the axial dispersion, distribution coefficient, mass transfer coefficient, pore volume, and surface diffusion coefficient, which are, otherwise, difficult to measure experimentally and, in turn, have been used to assess the mass transfer characteristics of continuous Pb(II) adsorption. Additionally, the values of breakthrough time, exhaustion time, adsorption column capacity, and mass transfer zone were determined as a function of flow rate, bed height, and initial metal concentration. Surface and pore volume diffusions (10−11–10−10 m2/s) apparently controlled the continuous adsorption process, with surface diffusion being dominant. The transport parameters evaluated in the current study could be beneficial for the large-scale Pb(II)/nanostructured γ-alumina adsorption system. As evident from the successful simulation, the developed gPROMS program can also be applied to other adsorbate/adsorbent systems with a slight modification concerning the operating parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Code developed during this study is available from the corresponding author upon reasonable request.

Abbreviations

\(C\) :

Heavy metal ion concentration in bulk liquid phase (mg/L)

\({C}_{0}\) :

Initial heavy metal ion concentration in bulk liquid phase (mg/L)

\({C}_{P}\) :

Heavy metal ion concentration within the adsorbent (mg/L)

\({D}_{AB}\) :

Molecular diffusivity of heavy metal in aqueous solution (m2/s)

\({D}_{L}\) :

Axial dispersion coefficient (m2/s)

\({D}_{\mathrm{p}}\) :

Pore volume diffusion coefficient (m2/s)

\({D}_{\mathrm{s}}\) :

Surface diffusion coefficient (m2/s)

\({K}_{\mathrm{d}}\) :

Distribution coefficient (m3/kg)

\({k}_{L}\) :

Mass transfer coefficient (m/s)

\({k}_{\mathrm{Th}}\) :

Thomas model constant (mL/min/mg)

\({k}_{\mathrm{YN}}\) :

Yoon-Nelson rate constant (min−1)

\(L\) :

Length of packed bed adsorber (m)

\(m\) :

Mass of adsorbent (g)

\({M}_{B}\) :

Molecular weight of water (g/mol)

\({N}_{\mathrm{p}}\) :

Mass transport due to pore volume diffusion (mg/m2/s)

\({N}_{\mathrm{s}}\) :

Mass transport due to surface diffusion (mg/m2/s)

\(Q\) :

Volumetric flow rate (mL/min)

\(q\) :

Adsorption capacity at equilibrium (mg/g)

\({q}_{\mathrm{p}}\) :

Adsorption capacity within the particle (mg/g)

\({q}_{\mathrm{eq}}\) :

Adsorption capacity of the packed bed adsorber (mg/g)

\({q}_{\mathrm{Th}}\) :

Maximum adsorption capacity (mg/g)

\({q}_{\mathrm{total}}\) :

Total Pb(II) adsorbed in the column (g)

\(R\) :

Radius of the adsorbent particle (m)

\(r\) :

Radial distance within the adsorbent particle (m)

\(Re\) :

Reynolds number

\(S\) :

External surface area of adsorbent per unit mass (m2/kg)

\(Sc\) :

Schmidt number

\(Sh\) :

Sherwood number

\(t\) :

Time (min)

\({t}_{\mathrm{b}}\) :

Breakthrough time (min)

\({t}_{\mathrm{e}}\) :

Exhaustion time (min)

\(T\) :

Temperature (K)

\(V\) :

Volume of heavy metal solution (mL)

\({V}_{A}\) :

Molal volume of heavy metals at normal boiling point (cm3/g/mol)

\({v}_{z}\) :

Interstitial velocity (m/s)

\(z\) :

Axial distance (m)

\({\varepsilon }_{\mathrm{b}}\) :

Bed voidage

\({\varepsilon }_{\mathrm{p}}\) :

Porosity of particle

\({\rho }_{\mathrm{p}}\) :

Density of the adsorbent (kg/m3)

\({\rho }_{\mathrm{water}}\) :

Density of the water (kg/m3)

\(\tau\) :

Tortuosity factor

\({\tau }_{\mathrm{YN}}\) :

Time required for 50% adsorbate breakthrough (min)

\({\mu }_{\mathrm{s}}\) :

Viscosity of solution (kg/m/s)

\({\mu }_{\mathrm{water}}\) :

Viscosity of water (kg/m/s)

\(\phi\) :

Association parameter for water

\({\chi }^{2}\) :

Chi-squared value

References

  • Afkhami A, Saber-Tehrani M, Bagheri H (2010) Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J Hazard Mater 181:836–844

    CAS  Google Scholar 

  • Aftab RA, Zaidi S, Danish M et al (2021) Support vector regression-based model for phenol adsorption in rotating packed bed adsorber. Environ Sci Pollut Res 1–12

  • Allan M, Fagel N, Van Rampelbergh M et al (2015) Lead concentrations and isotope ratios in speleothems as proxies for atmospheric metal pollution since the industrial revolution. Chem Geol 401:140–150

    CAS  Google Scholar 

  • Banerjee S, Dubey S, Gautam RK et al (2019) Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arab J Chem 12:5339–5354

    CAS  Google Scholar 

  • Basu M, Guha AK, Ray L (2019) Adsorption of lead on lentil husk in fixed bed column bioreactor. Bioresour Technol 283:86–95

    CAS  Google Scholar 

  • Behera PS, Sarkar R, Bhattacharyya S (2016) Nano alumina: a review of the powder synthesis method. Interceram - Int Ceram Rev 65:10–16

    CAS  Google Scholar 

  • Bhat A, Megeri GB, Thomas C et al (2015) Adsorption and optimization studies of lead from aqueous solution using γ-alumina. J Environ Chem Eng 3:30–39

    CAS  Google Scholar 

  • Černá M (1995) Use of solvent extraction for the removal of heavy metals from liquid wastes. Environ Monit Assess 34:151–162

    Google Scholar 

  • Chaoua S, Boussaa S, El Gharmali A, Boumezzough A (2019) Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J Saudi Soc Agric Sci 18:429–436

    Google Scholar 

  • Chatterjee S, Mondal S, De S (2018) Design and scaling up of fixed bed adsorption columns for lead removal by treated laterite. J Clean Prod 177:760–774

    CAS  Google Scholar 

  • Cruz-Olivares J, Pérez-Alonso C, Barrera-Díaz C et al (2013) Modeling of lead (II) biosorption by residue of allspice in a fixed-bed column. Chem Eng J 228:21–27

    CAS  Google Scholar 

  • Danish M, Ansari KB, Aftab RA et al (2021) gPROMS-driven modeling and simulation of fixed bed adsorption of heavy metals on a biosorbent: benchmarking and case study. Environ Sci Pollut Res 1–16

  • Danish M, Ansari KB, Danish M et al (2022) Developing convective–dispersive transport model to characterize fixed-bed adsorption of lead (II) over activated tea waste biosorbent. Biomass Convers Biorefinery 1–15

  • Díaz-Blancas V, Aguilar-Madera CG, Flores-Cano JV et al (2020) Evaluation of mass transfer mechanisms involved during the adsorption of metronidazole on granular activated carbon in fixed bed column. J Water Process Eng 36:101303

    Google Scholar 

  • Dotto GL, Mckay G (2020) Current scenario and challenges in adsorption for water treatment. J Environ Chem Eng 8:103988

    CAS  Google Scholar 

  • Faust SD, Aly OM (1986) Adsorption process for water treatment. Butterworth-Heinemann, Stoneham

    Google Scholar 

  • Foroutan R, Peighambardoust SJ, Ahmadi A et al (2021) Adsorption mercury, cobalt, and nickel with a reclaimable and magnetic composite of hydroxyapatite/Fe3O4/polydopamine. J Environ Chem Eng 9:105709

    CAS  Google Scholar 

  • Foroutan R, Peighambardoust SJ, Hemmati S et al (2021b) Zn2+ removal from the aqueous environment using a polydopamine/hydroxyapatite/Fe3O4 magnetic composite under ultrasonic waves. RSC Adv 11:27309–27321

    CAS  Google Scholar 

  • Foroutan R, Peighambardoust SJ, Hosseini SS et al (2021) Hydroxyapatite biomaterial production from chicken (femur and beak) and fishbone waste through a chemical less method for Cd2+ removal from shipbuilding wastewater. J Hazard Mater 413:125428

    CAS  Google Scholar 

  • Foroutan R, Peighambardoust SJ, Mohammadi R et al (2022) Development of new magnetic adsorbent of walnut shell ash/starch/Fe3O4 for effective copper ions removal: treatment of groundwater samples. Chemosphere 296:133978

    CAS  Google Scholar 

  • Franco DSP, Fagundes JLS, Georgin J et al (2020) A mass transfer study considering intraparticle diffusion and axial dispersion for fixed-bed adsorption of crystal violet on pecan pericarp (Carya illinoensis). Chem Eng J 397:125423

    CAS  Google Scholar 

  • Gharabaghi M, Irannajad M, Azadmehr AR (2012) Selective sulphide precipitation of heavy metals from acidic polymetallic aqueous solution by thioacetamide. Ind Eng Chem Res 51:954–963

    Google Scholar 

  • Jain R, Mathur M, Sikarwar S, Mittal A (2007) Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J Environ Manage 85:956–964

    CAS  Google Scholar 

  • Khatoon A, Uddin MK, Rao RAK (2018) Adsorptive remediation of Pb(II) from aqueous media using Schleichera oleosa bark. Environ Technol Innov 11:1–14

    Google Scholar 

  • Kumar S, Zafar M, Prajapati JK et al (2011) Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution. J Hazard Mater 185:287–294

    CAS  Google Scholar 

  • Kushwaha AK, Gupta N, Chattopadhyaya MC (2017) Adsorption behavior of lead onto a new class of functionalized silica gel. Arab J Chem 10:S81–S89

    CAS  Google Scholar 

  • Lanphear BP (2015) The impact of toxins on the developing brain. Annu Rev Public Health 36:211–230

    Google Scholar 

  • Leyva-Ramos R, Geankoplis CJ (1985) Model simulation and analysis of surface diffusion of liquids in porous solids. Chem Eng Sci 40:799–807

    CAS  Google Scholar 

  • Liu SL, Wang YN, Lu KT (2014) Preparation and pore characterization of activated carbon from Ma bamboo (Dendrocalamus latiflorus) by H3PO4 chemical activation. J Porous Mater 21:459–466

    CAS  Google Scholar 

  • Meitei MD, Prasad MNV (2013) Lead (II) and cadmium (II) biosorption on Spirodela polyrhiza (L.) Schleiden biomass. J Environ Chem Eng 1:200–207

    CAS  Google Scholar 

  • Needleman H (2004) Lead poisoning. Annu Rev Med 55:209–222

    CAS  Google Scholar 

  • Nriagu JO (1979) Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279:409–411

    CAS  Google Scholar 

  • Nzediegwu C, Naeth MA, Chang SX (2021) Lead(II) adsorption on microwave-pyrolyzed biochars and hydrochars depends on feedstock type and production temperature. J Hazard Mater 412:125255

    CAS  Google Scholar 

  • Ocampo-Pérez R, Leyva-Ramos R, Sanchez-Polo M, Rivera-Utrilla J (2013) Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon. Adsorption 19:945–957

    Google Scholar 

  • Patel H (2020) Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder. Sci Rep 1–12

  • Peighambardoust SJ, Foroutan R, Peighambardoust SH, et al (2021) Decoration of Citrus limon wood carbon with Fe3O4 to enhanced Cd2+ removal: a reclaimable and magnetic nanocomposite. Chemosphere 282:131088

  • Qian W, Song Q, Ding H, Xie W (2018) Computational simulations of the mass transfer zone in GS adsorption column packed with Fe3+ type ion exchanger. Chemosphere 215:507–514

    Google Scholar 

  • Rahmani A, Mousavi HZ, Fazli M (2010) Effect of nanostructure alumina on adsorption of heavy metals. Desalination 253:94–100

    CAS  Google Scholar 

  • Rastegar SO, Gu T (2017) Empirical correlations for axial dispersion coefficient and Peclet number in fixed-bed columns. J Chromatogr A 1490:133–137

    CAS  Google Scholar 

  • Riazi M, Keshtkar AR, Moosavian MA (2016) Biosorption of Th(IV) in a fixed-bed column by Ca-pretreated Cystoseira indica. J Environ Chem Eng 4:1890–1898

    CAS  Google Scholar 

  • Romero-Gonzalez J, Walton JC, Peralta-videa JR et al (2009) Modeling the adsorption of Cr(III) from aqueous solution onto Agave lechuguilla biomass: study of the advective and dispersive transport. J Hazard Mater 161:360–365

    CAS  Google Scholar 

  • Saadi Z, Saadi R, Fazaeli R (2013) Fixed-bed adsorption dynamics of Pb (II) adsorption from aqueous solution using nanostructured γ-alumina. J Nanostructure Chem 3:2–9

    Google Scholar 

  • Saadi Z, Saadi R, Fazaeli R (2015) Dynamics of Pb(II) adsorption on nanostructured γ-alumina: calculations of axial dispersion and overall mass transfer coefficients in the fixed-bed column. J Water Health 13:790–800

    Google Scholar 

  • Sanchez-Valente J, Bokhimi X, Toledo JA (2004) Synthesis and catalytic properties of nanostructured aluminas obtained by sol-gel method. Appl Catal A Gen 264:175–181

    CAS  Google Scholar 

  • Shaidan NH, Eldemerdash U, Awad S (2012) Removal of Ni(II) ions from aqueous solutions using fixed-bed ion exchange column technique. J Taiwan Inst Chem Eng 43:40–45

    CAS  Google Scholar 

  • Shek CH, Lai JKL (1997) Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al2O3 powders. Nanostructured Mater 8:605–610

    CAS  Google Scholar 

  • Souza PR, Dotto GL, Salau NPG (2017) Detailed numerical solution of pore volume and surface diffusion model in adsorption systems. Chem Eng Res Des 122:298–307

    CAS  Google Scholar 

  • Sultana M, Rownok MH, Sabrin M et al (2022) A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean Eng Technol 6:100382

    Google Scholar 

  • Tehrani-Bagha AR, Mahmoodi NM, Menger FM (2010) Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination 260:34–38

    CAS  Google Scholar 

  • Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66:1664–1666

    CAS  Google Scholar 

  • Triantafyllidou S, Edwards M (2012) Lead (Pb) in tap water and in blood: implications for lead exposure in the United States. Crit Rev Environ Sci Technol 42:1297–1352

    CAS  Google Scholar 

  • Usman MA, Aftab RA, Zaidi S et al (2021) Adsorption of aniline blue dye on activated pomegranate peel: equilibrium, kinetics, thermodynamics and support vector regression modelling. Int J Environ Sci Technol 1–18

  • Varatharajan K, Dash S, Arunkumar A et al (2003) Synthesis of nanocrystalline α-Al2O3 by ultrasonic flame pyrolysis. Mater Res Bull 38:577–583

    CAS  Google Scholar 

  • Verma A, Kumar S, Kumar S (2016) Biosorption of lead ions from the aqueous solution by Sargassum filipendula: equilibrium and kinetic studies. J Environ Chem Eng 4:4587–4599

    CAS  Google Scholar 

  • Verma A, Kumar S, Kumar S (2017) Statistical modeling, equilibrium and kinetic studies of cadmium ions biosorption from aqueous solution using S. filipendula. J Environ Chem Eng 5:2290–2304

    CAS  Google Scholar 

  • Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1:264–270

    CAS  Google Scholar 

  • Yoon YH, Nelson J (1992) Breakthrough time and adsorption capacity of respirator cartridges. Am Ind Hyg Assoc J 53:303–316

    CAS  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the University Grant Commission (UGC) for the non-NET financial support.

Author information

Authors and Affiliations

Authors

Contributions

Mohd Danish: gPROMS-driven modeling of Pb(II) adsorption and initial draft preparation; Khursheed B. Ansari: conceptualization, draft editing, and revision; Mohammad Danish: initial concept of the work, visualization, and supervision.

Corresponding author

Correspondence to Mohammad Danish.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danish, M., Ansari, K.B. & Danish, M. Adsorptive removal of Pb(II) using nanostructured γ-alumina in a packed bed adsorber: Simulation using gPROMS. Environ Sci Pollut Res 30, 42629–42642 (2023). https://doi.org/10.1007/s11356-022-20175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20175-4

Keywords

Navigation