Skip to main content

Advertisement

Log in

Influence of catalysts on bio-oil yield and quality: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The catalytic production of bio-oil can potentially solve the impending fossil fuel depletion crisis. Two practical problems related to bio-oil are the yield and quality, which are determined by the catalyst. Until recently, little work has focused on the relationship between biomass, catalyst, yield, and quality. To cover this deficiency, this work reviews the influence of metal oxides and zeolites on the yields and qualities of bio-oil derived from woody, herbaceous, agricultural, and algae biomasses. Generally, both catalysts decreased the yield and increased the quality at the same time, and more acidic catalysts decreased the yield further. Thus, zeolites usually decreased the yield more than metal oxides. Although the quality was increased, the oxygen content and calorific value were both increased, which favored further applications. Wood biomass had a lower ash content and nitrogen content than herbaceous, agricultural, and algae biomasses, simultaneously resulting in better yield and quality. This review helps understand the current status of bio-oil investigations and can help find new research directions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Chen et al. (2020)

Fig. 2

Adapted from Zheng et al. (2017)

Fig. 3

Adapted from Wang et al. (2017)

Fig. 4

Adapted from Rahman et al. (2018)

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abu Bakar MS, Titiloye JO (2013) Catalytic pyrolysis of rice husk for bio-oil production. J Anal Appl Pyrolysis 103:362–368

    Article  CAS  Google Scholar 

  • Akubo K, Nahil MA, Williams PT (2019) Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. J Energy Inst 92:1987–1996

    Article  CAS  Google Scholar 

  • Aysu T, Küçük MM (2014) Biomass pyrolysis in a fixed-bed reactor: effects of pyrolysis parameters on product yields and characterization of products. Energy 64:1002–1025

    Article  CAS  Google Scholar 

  • Campanella A, Harold MP (2012) Fast pyrolysis of microalgae in a falling solids reactor: effects of process variables and zeolite catalysts. Biomass Bioenergy 46:218–232

    Article  CAS  Google Scholar 

  • Chen W, Yang H, Chen Y, Xia M, Yang Z, Wang X, Chen H (2017) Algae pyrolytic poly-generation: influence of component difference and temperature on products characteristics. Energy 131:1–12

    Article  CAS  Google Scholar 

  • Chen X, Chen Y, Yang H, Wang X, Che Q, Chen W, Chen H (2019) Catalytic fast pyrolysis of biomass: selective deoxygenation to balance the quality and yield of bio-oil. Bioresour Technol 273:153–158

    Article  CAS  Google Scholar 

  • Chen L, Ma X, Tang F, Li Y, Yu Z, Chen X (2020) Comparison of catalytic effect on upgrading bio-oil derived from co-pyrolysis of water hyacinth and scrap tire over multilamellar MFI nanosheets and HZSM-5. Bioresour Technol 312:123592

    Article  CAS  Google Scholar 

  • Chen L, Sun W, Wei H, Yang X, Sun C, Yu L (2021) Developing Fe/zeolite catalysts for efficient catalytic wet peroxidation of three isomeric cresols. Environ Sci Pollut Res 28:42622–42636

    Article  CAS  Google Scholar 

  • Cheng Y-T, Huber GW (2012) Production of targeted aromatics by using Diels-Alder classes of reactions with furans and olefins over ZSM-5. Green Chem 14(11):3114–3125

    Article  CAS  Google Scholar 

  • Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nat 461:246–249

    Article  CAS  Google Scholar 

  • Corma A, Huber G, Sauvanaud L, Oconnor P (2007) Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J Catal 247:307–327

    Article  CAS  Google Scholar 

  • Dahal RK, Norouzi O, Cameron J, Pandian A, Shrestha A, Acharya B, Pk S, Dutta A (2020) A study on potential recovery of energy and value-added chemicals from in-situ pyrolysis of Bambusa balcooa over basic metal oxides. J Anal Appl Pyrolysis 147:104801

    Article  CAS  Google Scholar 

  • Dai G, Wang S, Huang S, Zou Q (2018) Enhancement of aromatics production from catalytic pyrolysis of biomass over HZSM-5 modified by chemical liquid deposition. J Anal Appl Pyrolysis 134:439–445

    Article  CAS  Google Scholar 

  • Das P, Ganesh A, Wangikar P (2004) Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass Bioenergy 27:445–457

    Article  CAS  Google Scholar 

  • Ding L, Rahimi P, Hawkins R, Bhatt S, Shi Y (2009) Naphthenic acid removal from heavy oils on alkaline earth-metal oxides and ZnO catalysts. Appl Catal, A 371:121–130

    Article  CAS  Google Scholar 

  • Eibner S, Broust F, Blin J, Julbe A (2015) Catalytic effect of metal nitrate salts during pyrolysis of impregnated biomass. J Anal Appl Pyrolysis 113:143–152

    Article  CAS  Google Scholar 

  • Eschenbacher A, Jensen PA, Henriksen UB, Ahrenfeldt J, Li C, Duus JØ, Mentzel UV, Jensen AD (2018) Impact of ZSM-5 deactivation on bio-oil quality during upgrading of straw derived pyrolysis vapors. Energy Fuels 33:397–412

    Article  CAS  Google Scholar 

  • Gao L, Sun J, Xu W, Xiao G (2017) Catalytic pyrolysis of natural algae over Mg-Al layered double oxides/ZSM-5 (MgAl-LDO/ZSM-5) for producing bio-oil with low nitrogen content. Bioresour Technol 225:293–298

    Article  CAS  Google Scholar 

  • Guda VK, Toghiani H (2016) Catalytic pyrolysis of pinewood using metal oxide catalysts in an integrated reactor system. Biofuels 8:527–536

    Article  CAS  Google Scholar 

  • Hao J, Qi B, Li D, Zeng F (2021) Catalytic co-pyrolysis of rice straw and ulva prolifera macroalgae: effects of process parameter on bio-oil up-gradation. Renewable Energy 164:460–471

    Article  CAS  Google Scholar 

  • Hernando H, Moreno I, Fermoso J, Ochoa-Hernández C, Pizarro P, Coronado JM, Čejka J, Serrano DP (2017) Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and beta zeolites modified with Mg and Zn oxides. Biomass Convers Biorefin 7:289–304

    Article  CAS  Google Scholar 

  • Hu Z, Zheng Y, Yan F, Xiao B, Liu S (2013) Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): product distribution and bio-oil characterization. Energy 52:119–125

    Article  CAS  Google Scholar 

  • Huang J, Long W, Agrawal PK, Jones CW (2009) Effects of acidity on the conversion of the model bio-oil ketone cyclopentanone on H-Y zeolites. J Phys Chem C 113:16702–16710

    Article  CAS  Google Scholar 

  • Hui T, Wang J, Ren X, Chen D (2011) Disproportionation of toluene by modified ZSM-5 zeolite catalysts with high shape-selectivity prepared using chemical liquid deposition with tetraethyl orthosilicate. Chin J Chem Eng 19:292–298

    Article  Google Scholar 

  • Iliopoulou EF, Stefanidis SD, Kalogiannis KG, Delimitis A, Lappas AA, Triantafyllidis KS (2012) Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl Catal, B 127:281–290

    Article  CAS  Google Scholar 

  • Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279:257–268

    Article  CAS  Google Scholar 

  • Karnjanakom S, Guan G, Asep B, Du X, Hao X, Yang J, Samart C, Abudula A (2015) A green method to increase yield and quality of bio-oil: ultrasonic pretreatment of biomass and catalytic upgrading of bio-oil over metal (Cu, Fe and/or Zn)/γ-Al2O3. Rsc Adv 5:83494–83503

    Article  CAS  Google Scholar 

  • Karnjanakom S, Bayu A, Xiaoketi P, Hao X, Kongparakul S, Samart C, Abudula A, Guan G (2016) Selective production of aromatic hydrocarbons from catalytic pyrolysis of biomass over Cu or Fe loaded mesoporous rod-like alumina. Rsc Adv 6:50618–50629

    Article  CAS  Google Scholar 

  • Kim E, Gil H, Park S, Park J (2015) Bio-oil production from pyrolysis of waste sawdust with catalyst ZSM-5. J Mater Cycles Waste Manage 19:423–431

    Article  CAS  Google Scholar 

  • Kim Y-M, Jeong J, Ryu S, Lee HW, Jung JS, Siddiqui MZ, Jung S-C, Jeon J-K, Jae J, Park Y-K (2019) Catalytic pyrolysis of wood polymer composites over hierarchical mesoporous zeolites. Energy Convers Manage 195:727–737

    Article  CAS  Google Scholar 

  • Krishna BB, Singh R, Bhaskar T (2015) Effect of catalyst contact on the pyrolysis of wheat straw and wheat husk. Fuel 160:64–70

    Article  CAS  Google Scholar 

  • Kumar P, Kumar P, Rao PVC, Choudary NV, Sriganesh G (2017) Saw dust pyrolysis: effect of temperature and catalysts. Fuel 199:339–345

    Article  CAS  Google Scholar 

  • Lazdovica K, Liepina L, Kampars V (2015) Comparative wheat straw catalytic pyrolysis in the presence of zeolites, Pt/C, and Pd/C by using TGA-FTIR method. Fuel Process Technol 138:645–653

    Article  CAS  Google Scholar 

  • Lee HW, Choi SJ, Park SH, Jeon J-K, Jung S-C, Kim SC, Park Y-K (2014) Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst. Nanoscale Res Lett 9:376

    Article  CAS  Google Scholar 

  • Lee S, Lee M-G, Park J (2018) Catalytic upgrading pyrolysis of pine sawdust for bio-oil with metal oxides. J Mater Cycles Waste Manage 20:1553–1561

    Article  CAS  Google Scholar 

  • Li L, Ma X, Xu Q, Hu Z (2013) Influence of microwave power, metal oxides and metal salts on the pyrolysis of algae. Bioresour Technol 142:469–474

    Article  CAS  Google Scholar 

  • Li P, Chen X, Wang X, Shao J, Lin G, Yang H, Yang Q, Chen H (2017) Catalytic upgrading of fast pyrolysis products with Fe-, Zr-, and Co-modified zeolites based on pyrolyzer–GC/MS analysis. Energy Fuels 31:3979–3986

    Article  CAS  Google Scholar 

  • Li Z, Yang J, Zhou Y, Cui J, Ma Y, Geng C, Kang Y, Liu J, Yang C (2020a) Influence of different preparation methods on the activity of Ce and Mo co-doped ZSM-5 catalysts for the selective catalytic reduction of NOx by NH3. Environ Sci Pollut Res 27:40495–40503

    Article  CAS  Google Scholar 

  • Li Z, Zhong Z, Zhang B, Wang W, Seufitelli GVS, Resende FLP (2020) Effect of alkali-treated HZSM-5 zeolite on the production of aromatic hydrocarbons from microwave assisted catalytic fast pyrolysis (MACFP) of rice husk. Sci Total Environ 703:134605

    Article  CAS  Google Scholar 

  • Liang J, Morgan HM, Liu Y, Shi A, Lei H, Mao H, Bu Q (2017) Enhancement of bio-oil yield and selectivity and kinetic study of catalytic pyrolysis of rice straw over transition metal modified ZSM-5 catalyst. J Anal Appl Pyrolysis 128:324–334

    Article  CAS  Google Scholar 

  • Lin Y, Zhang C, Zhang M, Zhang J (2010) Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor. Energy Fuels 24:5686–5695

    Article  CAS  Google Scholar 

  • Lu Q, Zhu X, Li W, Zhang Y, Chen D (2009) On-line catalytic upgrading of biomass fast pyrolysis products. Sci Bull 54:1941–1948

    Article  CAS  Google Scholar 

  • Lu Q, Zhang Y, Tang Z, Li W-z, Zhu X-f (2010) Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts. Fuel 89:2096–2103

    Article  CAS  Google Scholar 

  • Lu Q, Guo H-q, Zhou M-x, Cui M-s, Dong C-q, Yang Y-p (2018) Selective preparation of monocyclic aromatic hydrocarbons from catalytic cracking of biomass fast pyrolysis vapors over Mo2N/HZSM-5 catalyst. Fuel Process Technol 173:134–142

    Article  CAS  Google Scholar 

  • Ma Z, Troussard E, van Bokhoven JA (2012) Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Appl Catal, A 423–424:130–136

    Article  CAS  Google Scholar 

  • Ma C, Geng J, Zhang D, Ning X (2020) Non-catalytic and catalytic pyrolysis of Ulva prolifera macroalgae for production of quality bio-oil. J Energy Inst 93:303–311

    Article  CAS  Google Scholar 

  • Mahadevan R, Shakya R, Neupane S, Adhikari S (2015) Physical and chemical properties and accelerated aging test of bio-oil produced from in situ catalytic pyrolysis in a bench-scale fluidized-bed reactor. Energy Fuels 29:841–848

    Article  CAS  Google Scholar 

  • Mante OD, Dayton DC, Carpenter JR, Wang K, Peters JE (2018) Pilot-scale catalytic fast pyrolysis of loblolly pine over γ-Al2O3 catalyst. Fuel 214:569–579

    Article  CAS  Google Scholar 

  • Mihalcik DJ, Mullen CA, Boateng AA (2011) Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J Anal Appl Pyrolysis 92:224–232

    Article  CAS  Google Scholar 

  • Mochizuki T, Atong D, Chen S-Y, Toba M, Yoshimura Y (2013) Effect of SiO2 pore size on catalytic fast pyrolysis of Jatropha residues by using pyrolyzer-GC/MS. Catal Commun 36:1–4

    Article  CAS  Google Scholar 

  • Muneer B, Zeeshan M, Qaisar S, Razzaq M, Iftikhar H (2019) Influence of in-situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality. J Cleaner Prod 237:117762

    Article  CAS  Google Scholar 

  • Nagarajan D, Venkatanarasimhan S (2019) Copper(II) oxide nanoparticles coated cellulose sponge—an effective heterogeneous catalyst for the reduction of toxic organic dyes. Environ Sci Pollut Res 26:22958–22970

    Article  CAS  Google Scholar 

  • Norouzi O, Tavasoli A, Jafarian S, Esmailpour S (2017) Catalytic upgrading of bio-products derived from pyrolysis of red macroalgae Gracilaria gracilis with a promising novel micro/mesoporous catalyst. Bioresour Technol 243:1–8

    Article  CAS  Google Scholar 

  • Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils - state of the art for the end user. Energy Fuels 13:914–921

    Article  CAS  Google Scholar 

  • Ooi XY, Gao W, Ong HC, Lee HV, Juan JC, Chen WH, Lee KT (2019) Overview on catalytic deoxygenation for biofuel synthesis using metal oxide supported catalysts. Renewable Sustainable Energy Rev 112:834–852

    Article  CAS  Google Scholar 

  • Osman MEH, Abo-Shady AM, Elshobary ME, Abd El-Ghafar MO, Abomohra AE-F (2020) Screening of seaweeds for sustainable biofuel recovery through sequential biodiesel and bioethanol production. Environ Sci Pollut Res 27:32481–32493

    Article  CAS  Google Scholar 

  • Osorio J, Chejne F (2019) Bio-oil production in fluidized bed reactor at pilot plant from sugarcane bagasse by catalytic fast pyrolysis. Waste Biomass Valorization 10:187–195

    Article  CAS  Google Scholar 

  • Palizdar A, Sadrameli SM (2020) Catalytic upgrading of beech wood pyrolysis oil over iron- and zinc-promoted hierarchical MFI zeolites. Fuel 264:116813

    Article  CAS  Google Scholar 

  • Pan P, Hu C, Yang W, Li Y, Dong L, Zhu L, Tong D, Qing R, Fan Y (2010) The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour Technol 101:4593–4599

    Article  CAS  Google Scholar 

  • Pang S (2019) Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnol Adv 37:589–597

    Article  CAS  Google Scholar 

  • Persson H, Duman I, Wang S, Pettersson LJ, Yang W (2019) Catalytic pyrolysis over transition metal-modified zeolites: a comparative study between catalyst activity and deactivation. J Anal Appl Pyrolysis 138:54–61

    Article  CAS  Google Scholar 

  • Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3:2456–2473

    Article  CAS  Google Scholar 

  • Rahman MM, Liu R, Cai J (2018) Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – a review. Fuel Process Technol 180:32–46

    Article  CAS  Google Scholar 

  • Ratnasari DK, Yang W, Jönsson PG (2018) Two-stage ex-situ catalytic pyrolysis of lignocellulose for the production of gasoline-range chemicals. J Anal Appl Pyrolysis 134:454–464

    Article  CAS  Google Scholar 

  • Razzaq M, Zeeshan M, Qaisar S, Iftikhar H, Muneer B (2019) Investigating use of metal-modified HZSM-5 catalyst to upgrade liquid yield in co-pyrolysis of wheat straw and polystyrene. Fuel 257:116119

    Article  CAS  Google Scholar 

  • Rezaei PS, Shafaghat H, Daud WMAW (2014) Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review. Appl Catal, A 469:490–511

    Article  CAS  Google Scholar 

  • Shao S, Zhang H, Xiao R, Shen D, Zheng J (2013) Comparison of catalytic characteristics of biomass derivates with different structures over ZSM-5. BioEnergy Res 6(4):1173–1182

    Article  CAS  Google Scholar 

  • Shao S, Zhang H, Heng L, Luo M, Xiao R, Shen D (2014) Catalytic conversion of biomass derivates over acid dealuminated ZSM-5. Ind Eng Chem Res 53:15871–15878

    Article  CAS  Google Scholar 

  • Soares Dias AP, Rego F, Fonseca F, Casquilho M, Rosa F, Rodrigues A (2019) Catalyzed pyrolysis of SRC poplar biomass. Alkaline Carbonates and Zeolites Catalysts Energy 183:1114–1122

    CAS  Google Scholar 

  • Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Lappas AA, Pilavachi PA (2011) In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor. Bioresour Technol 102:8261–8267

    Article  CAS  Google Scholar 

  • Stefanidis S, Kalogiannis K, Iliopoulou EF, Lappas AA, Triguero JM, Navarro MT, Chica A, Rey F (2013) Mesopore-modified mordenites as catalysts for catalytic pyrolysis of biomass and cracking of vacuum gasoil processes. Green Chem 15:1647

    Article  CAS  Google Scholar 

  • Stefanidis SD, Karakoulia SA, Kalogiannis KG, Iliopoulou EF, Delimitis A, Yiannoulakis H, Zampetakis T, Lappas AA, Triantafyllidis KS (2016) Natural magnesium oxide (MgO) catalysts: a cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Appl Catal, B 196:155–173

    Article  CAS  Google Scholar 

  • Sun L, Zhang X, Chen L, Zhao B, Yang S, Xie X (2016) Effects of Fe contents on fast pyrolysis of biomass with Fe/CaO catalysts. J Anal Appl Pyrolysis 119:133–138

    Article  CAS  Google Scholar 

  • Thangalazhy-Gopakumar S, Adhikari S, Chattanathan SA, Gupta RB (2012) Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Bioresour Technol 118:150–157

    Article  CAS  Google Scholar 

  • Veses A, Aznar M, Martinez I, Martinez JD, Lopez JM, Navarro MV, Callen MS, Murillo R, Garcia T (2014) Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresour Technol 162:250–258

    Article  CAS  Google Scholar 

  • Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156(1):11–24

    Article  CAS  Google Scholar 

  • Wang K, Kim KH, Brown RC (2014) Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem 16(2):727–735

    Article  CAS  Google Scholar 

  • Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86

    Article  Google Scholar 

  • Wang J, Zhong Z, Ding K, Deng A, Hao N, Meng X, Ben H, Ruan R, Ragauskas AJ (2018a) Catalytic fast pyrolysis of bamboo sawdust via a two-step bench scale bubbling fluidized bed/fixed bed reactor: study on synergistic effect of alkali metal oxides and HZSM-5. Energy Convers Manage 176:287–298

    Article  CAS  Google Scholar 

  • Wang S, Cao B, Feng Y, Sun C, Wang Q, Abomohra AE-F, Afonaa-Mensah S, He Z, Zhang B, Qian L, Xu L (2018b) Co-pyrolysis and catalytic co-pyrolysis of Enteromorpha clathrata and rice husk. J Therm Anal Calorim 135:2613–2623

    Article  CAS  Google Scholar 

  • Wang S, Cao B, Liu X, Xu L, Hu Y, Afonaa-Mensah S, Abomohra AE, He Z, Wang Q, Xu S (2018c) A comparative study on the quality of bio-oil derived from green macroalga Enteromorpha clathrata over metal modified ZSM-5 catalysts. Bioresour Technol 256:446–455

    Article  CAS  Google Scholar 

  • Wang J-X, Cao J-P, Zhao X-Y, Liu S-N, Huang X, Liu T-L, Wei X-Y (2020) Comprehensive research of in situ upgrading of sawdust fast pyrolysis vapors over HZSM-5 catalyst for producing renewable light aromatics. J Energy Inst 93:15–24

    Article  CAS  Google Scholar 

  • Xu J, Liao Y, Lin Y, Ma X, Yu Z (2019) Study on catalytic pyrolysis of eucalyptus to produce aromatic hydrocarbons by Zn-Fe co-modified HZSM-5 catalysts. J Anal Appl Pyrolysis 139:96–103

    Article  CAS  Google Scholar 

  • Xue Z, Zhong Z, Zhang B, Xu C (2019) Performance of catalytic fast pyrolysis using a γ-Al2O3 catalyst with compound modification of ZrO2 and CeO2. Catalysts 9:849

    Article  CAS  Google Scholar 

  • Xue XF, Pan ZY, Zhang CS, Wang DT, Xie YY, Zhang RQ (2019b) Analysis of bio-oil derived from catalytic pyrolysis of pine sawdust over sodium salts-supported γ-Al2O3. Environ Prog Sustainable Energy 38:13174

    Article  CAS  Google Scholar 

  • Yildiz G, Pronk M, Djokic M, van Geem KM, Ronsse F, van Duren R, Prins W (2013) Validation of a new set-up for continuous catalytic fast pyrolysis of biomass coupled with vapour phase upgrading. J Anal Appl Pyrolysis 103:343–351

    Article  CAS  Google Scholar 

  • Zhang H, Xiao R, Huang H, Xiao G (2009) Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol 100:1428–1434

    Article  CAS  Google Scholar 

  • Zhang H, Shao S, Xiao R, Shen D, Zeng J (2013a) Characterization of coke deposition in the catalytic fast pyrolysis of biomass derivates. Energy Fuels 28:52–57

    Article  CAS  Google Scholar 

  • Zhang H, Xiao R, Jin B, Xiao G, Chen R (2013b) Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour Technol 140:256–262

    Article  CAS  Google Scholar 

  • Zhang H, Zheng J, Xiao R (2013c) Catalytic pyrolysis of willow wood with Me/ZSM-5 (Me = Mg, K, Fe, Ga, Ni) to produce aromatics and olefins. BioResources 8:5612–5621

    Google Scholar 

  • Zhang H, Nie J, Xiao R, Jin B, Dong C, Xiao G (2014a) Catalytic co-pyrolysis of biomass and different plastics (polyethylene, polypropylene, and polystyrene) to improve hydrocarbon yield in a fluidized-bed reactor. Energy Fuels 28:1940–1947

    Article  CAS  Google Scholar 

  • Zhang H, Zheng J, Xiao R, Jia Y, Shen D, Jin B, Xiao G (2014b) Study on pyrolysis of pine sawdust with solid base and acid mixed catalysts by thermogravimetry–Fourier transform infrared spectroscopy and pyrolysis–gas chromatography/mass spectrometry. Energy Fuels 28:4294–4299

    Article  CAS  Google Scholar 

  • Zhang X, Sun L, Chen L, Xie X, Zhao B, Si H, Meng G (2014c) Comparison of catalytic upgrading of biomass fast pyrolysis vapors over CaO and Fe(III)/CaO catalysts. J Anal Appl Pyrolysis 108:35–40

    Article  CAS  Google Scholar 

  • Zhang B, Zhong Z, Chen P, Ruan R (2015) Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst. Bioresour Technol 197:79–84

    Article  CAS  Google Scholar 

  • Zhang H, Shao S, Luo M, Xiao R (2017) The comparison of chemical liquid deposition and acid dealumination modified ZSM-5 for catalytic pyrolysis of pinewood using pyrolysis-gas chromatography/mass spectrometry. Bioresour Technol 244:726–732

    Article  CAS  Google Scholar 

  • Zhang C, Hu X, Guo H, Wei T, Dong D, Hu G, Hu S, Xiang J, Liu Q, Wang Y (2018) Pyrolysis of poplar, cellulose and lignin: effects of acidity and alkalinity of the metal oxide catalysts. J Anal Appl Pyrolysis 134:590–605

    Article  CAS  Google Scholar 

  • Zhang C, Zhang L, Li Q, Wang Y, Liu Q, Wei T, Dong D, Salavati S, Gholizadeh M, Hu X (2019) Catalytic pyrolysis of poplar wood over transition metal oxides: correlation of catalytic behaviors with physiochemical properties of the oxides. Biomass Bioenergy 124:125–141

    Article  CAS  Google Scholar 

  • Zhao Z, Jiang Z, Xu H, Yan K (2021) Selective production of phenol-rich bio-oil from corn straw waste by direct microwave pyrolysis without extra catalyst. Front Chem 9:700887

    Article  CAS  Google Scholar 

  • Zheng A, Zhao Z, Chang S, Huang Z, Wu H, Wang X, He F, Li H (2014) Effect of crystal size of ZSM-5 on the aromatic yield and selectivity from catalytic fast pyrolysis of biomass. J Mol Catal a: Chem 383–384:23–30

    Article  CAS  Google Scholar 

  • Zheng Y, Wang F, Yang X, Huang Y, Liu C, Zheng Z, Gu J (2017) Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5. J Anal Appl Pyrolysis 126:169–179

    Article  CAS  Google Scholar 

  • Zhou L, Yang H, Wu H, Wang M, Cheng D (2013) Catalytic pyrolysis of rice husk by mixing with zinc oxide: characterization of bio-oil and its rheological behavior. Fuel Process Technol 106:385–391

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the help of the Instrumental Analysis & Research Center of Shanghai University in sample characterization.

Funding

This project was financially supported by the National Key Research and Development program of China (2019YFC0408204). Training Program for academic and technical leaders of major disciplines in Jiangxi Province (Leading Talents Project, S2020RCDT2K0080).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yimin Yang, Jin Zhang and Jia Zhang. The first draft of the manuscript was written by Yimin Yang and Jin Zhang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jia Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Ta Yeong Wu.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Ta Yeong Wu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, J., Zhang, J. et al. Influence of catalysts on bio-oil yield and quality: a review. Environ Sci Pollut Res 29, 30986–31001 (2022). https://doi.org/10.1007/s11356-022-18801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18801-2

Keywords

Navigation