Skip to main content

Advertisement

Log in

Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Though the incidence of several cancers in Western societies is regulated wisely, some cancers such as breast, lung, and colorectal cancer are currently rising in many low- and middle-income countries due to increased risk factors triggered by societal and development problems. Surgery, chemotherapy, hormone, radiation, and targeted therapies are examples of traditional cancer treatment approaches. However, multiple short- and long-term adverse effects may also significantly affect patient prognosis depending on treatment-associated clinical factors. More and more research has been carried out to find new therapeutic agents in natural products, among which the bioactive compounds derived from plants have been increasingly studied. Naringin and naringenin are abundantly found in citrus fruits, such as oranges and grapefruits. A variety of cell signaling pathways mediates their anti-carcinogenic properties. Naringin and naringenin were also documented to overcome multidrug resistance, one of the major challenges to clinical practice due to multiple defense mechanisms in cancer. The effective parameters underlying the anticancer effects of naringenin and naringin include GSK3β inactivation, suppression of the gene and protein activation of NF-kB and COX-2, JAK2/STAT3 downregulation, downregulation of intracellular adhesion molecules-1, upregulation of Notch1 and tyrocite-specific genes, and activation of p38/MAPK and caspase-3. Thus, this review outlines the potential of naringin and naringenin in managing different types of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

modified from https://www.cusabio.com/pathway/MAPK-signaling-pathway.html, with depicting of naringenin and naringin anticancer affections in targeted zones)

Fig. 3

Similar content being viewed by others

Data availability

All data presented herein are constant with the published literature.

References

  • Abaza MSI, Orabi KY, Al-Quattan E, Raja’a J, (2015) Growth inhibitory and chemo-sensitization effects of naringenin, a natural flavanone purified from Thymus vulgaris, on human breast and colorectal cancer. Cancer Cell Int 15:1–19

    Article  CAS  Google Scholar 

  • Ademosun AO, Oboh G, Passamonti S, Tramer F, Ziberna L, Boligon AA, Athayde ML (2015) Inhibition of metalloproteinase and proteasome activities in colon cancer cells by citrus peel extracts. J Basic Clin Physiol Pharmacol 26:471–477

    Article  CAS  Google Scholar 

  • Ahamad MS, Siddiqui S, Jafri A, Ahmad S, Afzal M, Arshad M (2014): Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PloS one 9, e110003

  • Ahmadian-Fard-Fini S, Ghanbari D, Salavati-Niasari M (2019) Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: hydrothermal synthesis of magnetic hollow NiFe2O4-carbon dots nanocomposite material. Compos B Eng 161:564–577

    Article  CAS  Google Scholar 

  • Álvarez-González I, Madrigal-Bujaidar E, Sánchez-García VY (2010) Inhibitory effect of grapefruit juice on the genotoxic damage induced by ifosfamide in mouse. Plant Foods Hum Nutr 65:369–373

    Article  CAS  Google Scholar 

  • Amiri M, Eskandari K, Salavati-Niasari M (2019): Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv Colloid Interface Sci 271, 101982

  • Anagnostopoulou MA, Kefalas P, Papageorgiou VP, Assimopoulou AN, Boskou D (2006) Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem 94:19–25

    Article  CAS  Google Scholar 

  • Anand K, Sarkar A, Kumar A, Ambasta RK, Kumar P (2012) Combinatorial antitumor effect of naringenin and curcumin elicit angioinhibitory activities in vivo. Nutr Cancer 64:714–724

    Article  CAS  Google Scholar 

  • Ansari F, Sobhani A, Salavati-Niasari M (2016) Green synthesis of magnetic chitosan nanocomposites by a new sol–gel auto-combustion method. J Magn Magn Mater 410:27–33

    Article  CAS  Google Scholar 

  • Arafah A, Rehman MU, Mir TM, Wali AF, Ali R, Qamar W, Khan R, Ahmad A, Aga SS, Alqahtani S (2020) Multi-therapeutic potential of naringenin (4′, 5, 7-trihydroxyflavonone): experimental evidence and mechanisms. Plants 9:1784

    Article  CAS  Google Scholar 

  • Arinç E, Yilmaz D, Bozcaarmutlu A (2015) Mechanism of inhibition of CYP1A1 and glutathione S-transferase activities in fish liver by quercetin, resveratrol, naringenin, hesperidin, and rutin. Nutr Cancer 67:137–144

    Article  CAS  Google Scholar 

  • Aroui S, Aouey B, Chtourou Y, Meunier A-C, Fetoui H, Kenani A (2016a) Naringin suppresses cell metastasis and the expression of matrix metalloproteinases (MMP-2 and MMP-9) via the inhibition of ERK-P38-JNK signaling pathway in human glioblastoma. Chem Biol Interact 244:195–203

    Article  CAS  Google Scholar 

  • Aroui S, Najlaoui F, Chtourou Y, Meunier A-C, Laajimi A, Kenani A, Fetoui H (2016b) Naringin inhibits the invasion and migration of human glioblastoma cell via downregulation of MMP-2 and MMP-9 expression and inactivation of p38 signaling pathway. Tumor Biol 37:3831–3839

    Article  CAS  Google Scholar 

  • Arul D, Subramanian P (2013a) Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathol Oncol Res 19:763–770

    Article  CAS  Google Scholar 

  • Arul D, Subramanian P (2013b) Inhibitory effect of naringenin (citrus flavonone) on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Biochem Biophys Res Commun 434:203–209

    Article  CAS  Google Scholar 

  • Arya A, Chahal R, Rao R, Rahman MH, Kaushik D, Akhtar MF, Saleem A, Khalifa SMA, El-Seedi HR, Kamel M, Albadrani GM, Abdel-Daim MM, Mittal V (2021) Acetylcholinesterase inhibitory potential of various sesquiterpene analogues for Alzheimer’s disease therapy. Biomolecules 11:350

    Article  CAS  Google Scholar 

  • Ayob Z, Mohd Bohari SP, Abd Samad A, Jamil S (2014): Cytotoxic activities against breast cancer cells of local Justicia gendarussa crude extracts. Evid Based Complement Altern Med 2014

  • Bak Y, Kim H, Kang J-W, Lee DH, Kim MS, Park YS, Kim J-H, Jung K-Y, Lim Y, Hong J (2011) A synthetic naringenin derivative, 5-hydroxy-7, 4′-diacetyloxyflavanone-N-phenyl hydrazone (N101–43), induces apoptosis through up-regulation of Fas/FasL expression and inhibition of PI3K/Akt signaling pathways in non-small-cell lung cancer cells. J Agric Food Chem 59:10286–10297

    Article  CAS  Google Scholar 

  • Banjerdpongchai R, Wudtiwai B, Khawon P (2016) Induction of human hepatocellular carcinoma HepG2 cell apoptosis by naringin. Asian Pac J Cancer Prev 17:3289–3294

    Google Scholar 

  • Bao L, Liu F, Guo H-b, Li Y, Tan B-b, Zhang W-x, Peng Y-h (2016) Naringenin inhibits proliferation, migration, and invasion as well as induces apoptosis of gastric cancer SGC7901 cell line by downregulation of AKT pathway. Tumor Biol 37:11365–11374

    Article  CAS  Google Scholar 

  • Bhattacharya T, Maishu SP, Akter R, Rahman MH, Akhtar MF, Saleem A, Bin-Jumah M, Kamel M, Abdel-Latif MA, Abdel-Daim MM (2021) A review on natural sources derived protein nanoparticles as anticancer agents. Curr Top Med Chem 21:1014–1026

    Article  CAS  Google Scholar 

  • Bocco A, Cuvelier M-E, Richard H, Berset C (1998) Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agric Food Chem 46:2123–2129

    Article  CAS  Google Scholar 

  • Bodduluru LN, Kasala ER, Madhana RM, Barua CC, Hussain MI, Haloi P, Borah P (2016) Naringenin ameliorates inflammation and cell proliferation in benzo (a) pyrene induced pulmonary carcinogenesis by modulating CYP1A1, NFκB and PCNA expression. Int Immunopharm 30:102–110

    Article  CAS  Google Scholar 

  • Borradaile NM, de Dreu LE, Huff MW (2003) Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Diabetes 52:2554–2561

    Article  CAS  Google Scholar 

  • Bouzaiene NN, Chaabane F, Sassi A, Chekir-Ghedira L, Ghedira K (2016) Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci 144:80–85

    Article  CAS  Google Scholar 

  • Bulzomi P, Bolli A, Galluzzo P, Acconcia F, Ascenzi P, Marino M (2012) The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life 64:690–696

    Article  CAS  Google Scholar 

  • Camargo CA, Gomes-Marcondes MCC, Wutzki NC, Aoyama H (2012) Naringin inhibits tumor growth and reduces interleukin-6 and tumor necrosis factor α levels in rats with Walker 256 carcinosarcoma. Anticancer Res 32:129–133

    CAS  Google Scholar 

  • Carroll M, Marchington M, Earnshaw J, Taylor S (1999): Recruitment in small firms: processes, methods and problems. Empl Relat

  • Cha J-Y, Cho Y-S, Kim I, Anno T, Rahman S, Yanagita T (2001) Effect of hesperetin, a citrus flavonoid, on the liver triacylglycerol content and phosphatidate phosphohydrolase activity in orotic acid-fed rats. Plant Foods Hum Nutr 56:349–358

    Article  CAS  Google Scholar 

  • Chandrika BB, Steephan M, Kumar TS, Sabu A, Haridas M (2016) Hesperetin and naringenin sensitize HER2 positive cancer cells to death by serving as HER2 tyrosine kinase inhibitors. Life Sci 160:47–56

    Article  CAS  Google Scholar 

  • Chen M, Peng W, Hu S, Deng J (2018) miR-126/VCAM-1 regulation by naringin suppresses cell growth of human non-small cell lung cancer. Oncol Lett 16:4754–4760

    Google Scholar 

  • Coelho RCLA, Hermsdorff HHM, Bressan J (2013) Anti-inflammatory properties of orange juice: possible favorable molecular and metabolic effects. Plant Foods Hum Nutr 68:1–10

    Article  CAS  Google Scholar 

  • Cummings MC, Simpson PT, Reid LE, Jayanthan J, Skerman J, Song S, McCart Reed AE, Kutasovic JR, Morey AL, Marquart L (2014) Metastatic progression of breast cancer: insights from 50 years of autopsies. J Pathol 232:23–31

    Article  CAS  Google Scholar 

  • Curini M, Cravotto G, Epifano F, Giannone G (2006) Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Curr Med Chem 13:199–222

    Article  CAS  Google Scholar 

  • Damián-Reyna AA, González-Hernández JC, Chávez-Parga M (2016) Current procedures for extraction and purification of citrus flavonoides. Rev Colomb Biotecnol 18:135–147

    CAS  Google Scholar 

  • Drzikova B, Dongowski G, Gebhardt E, Habel A (2005) The composition of dietary fibre-rich extrudates from oat affects bile acid binding and fermentation in vitro. Food Chem 90:181–192

    Article  CAS  Google Scholar 

  • Du G, Jin L, Han X, Song Z, Zhang H, Liang W (2009) Naringenin: a potential immunomodulator for inhibiting lung fibrosis and metastasis. Can Res 69:3205–3212

    Article  CAS  Google Scholar 

  • Ekambaram G, Rajendran P, Devaraja R, Muthuvel R, Sakthisekaran D (2008a) Impact of naringenin on glycoprotein levels in N-methyl-N′-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats. Anticancer Drugs 19:885–890

    Article  CAS  Google Scholar 

  • Ekambaram G, Rajendran P, Magesh V, Sakthisekaran D (2008b) Naringenin reduces tumor size and weight lost in N-methyl-N′-nitro-N-nitrosoguanidine–induced gastric carcinogenesis in rats. Nutr Res 28:106–112

    Article  CAS  Google Scholar 

  • Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H (2011) Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: A review. Food Chem 124:411–421

    Article  CAS  Google Scholar 

  • Emadi H, Salavati-Niasari M, Sobhani A (2017) Synthesis of some transition metal (M: 25Mn, 27Co, 28Ni, 29Cu, 30Zn, 47Ag, 48Cd) sulfide nanostructures by hydrothermal method. Adv Coll Interface Sci 246:52–74

    Article  CAS  Google Scholar 

  • Fan K, Kurihara N, Abe S, Ho C-T, Ghai G, Yang K (2007) Chemopreventive effects of orange peel extract (OPE) I. OPE inhibits intestinal tumor growth in ApcMin/+ mice. J Med Food 10:11–17

    Article  CAS  Google Scholar 

  • Felix AS, Brinton LA (2018) Cancer progress and priorities: uterine cancer. Cancer Epidemiol Prevent Biomark 27:985–994

    Article  CAS  Google Scholar 

  • Fereshteh Z, Salavati-Niasari M (2017) Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds. Adv Coll Interface Sci 243:86–104

    Article  CAS  Google Scholar 

  • F Figuerola H MaL Estévez AMa, Chiffelle I, Asenjo F 2005 Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment Food Chem 91 395 401

  • Filho JCC, Sarria ALF, Becceneri AB, Fuzer AM, Batalhao JR, da Silva CMP, Carlos RM, Vieira PC, Fernandes JB, Cominetti MR (2014): Copper (II) and 2, 2′-bipyridine complexation improves chemopreventive effects of naringenin against breast tumor cells. PloS one 9, e107058

  • Frydoonfar H, McGrath D, Spigelman A (2003) The variable effect on proliferation of a colon cancer cell line by the citrus fruit flavonoid Naringenin. Colorectal Dis 5:149–152

    Article  CAS  Google Scholar 

  • Galluzzo P, Ascenzi P, Bulzomi P, Marino M (2008) The nutritional flavanone naringenin triggers antiestrogenic effects by regulating estrogen receptor α-palmitoylation. Endocrinology 149:2567–2575

    Article  CAS  Google Scholar 

  • Ganapathy E, Peramaiyan R, Rajasekaran D, Venkataraman M, Dhanapal S (2008) Modulatory effect of naringenin on N-methyl-N′-nitro-N-nitrosoguanidine-and saturated sodium chloride-induced gastric carcinogenesis in male Wistar rats. Clin Exp Pharmacol Physiol 35:1190–1196

    Article  CAS  Google Scholar 

  • Ghanbari M, Salavati-Niasari M (2018) Tl4CdI6 nanostructures: facile sonochemical synthesis and photocatalytic activity for removal of organic dyes. Inorg Chem 57:11443–11455

    Article  CAS  Google Scholar 

  • Ghiyasiyan-Arani M, Salavati-Niasari M, Naseh S (2017) Enhanced photodegradation of dye in waste water using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization. Ultrason Sonochem 39:494–503

    Article  CAS  Google Scholar 

  • Gorinstein S, Cvikrova M, Machackova I, Haruenkit R, Park Y-S, Jung S-T, Yamamoto K, Ayala ALM, Katrich E, Trakhtenberg S (2004) Characterization of antioxidant compounds in Jaffa sweeties and white grapefruits. Food Chem 84:503–510

    Article  CAS  Google Scholar 

  • Grönberg H (2003) Prostate cancer epidemiology. Lancet 361:859–864

    Article  Google Scholar 

  • Guimarães R, Barros L, Barreira JCM, Sousa MJ, Carvalho AM, Ferreira ICFR (2010) Targeting excessive free radicals with peels and juices of citrus fruits: Grapefruit, lemon, lime and orange. Food Chem Toxicol 48:99–106

    Article  CAS  Google Scholar 

  • Hakim IA, Harris RB, Ritenbaugh C (2000) Citrus peel use is associated with reduced risk of squamous cell carcinoma of the skin. Nutr Cancer 37:161–168

    Article  CAS  Google Scholar 

  • Harmon AW, Patel YM (2004) Naringenin inhibits glucose uptake in MCF-7 breast cancer cells: a mechanism for impaired cellular proliferation. Breast Cancer Res Treat 85:103–110

    Article  CAS  Google Scholar 

  • Hatkevich T, Ramos J, Santos-Sanchez I, Patel YM (2014) A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells. Exp Cell Res 327:331–339

    Article  CAS  Google Scholar 

  • Heyes SM, Prior KN, Whitehead D, Bond MJ (2020) Toward an understanding of patients’ and their partners’ experiences of bladder cancer. Cancer Nurs 43:E254-e263

    Article  Google Scholar 

  • Hosseinpour-Mashkani S, Mohandes F, Salavati-Niasari M, Rao K (2012) Microwave-assisted synthesis and photovoltaic measurements of CuInS2 nanoparticles prepared by using metal–organic precursors. Mater Res Bull 47:3148–3159

    Article  CAS  Google Scholar 

  • Hsiao Y-C, Kuo W-H, Chen P-N, Chang H-R, Lin T-H, Yang W-E, Hsieh Y-S, Chu S-C (2007) Flavanone and 2′-OH flavanone inhibit metastasis of lung cancer cells via down-regulation of proteinases activities and MAPK pathway. Chem Biol Interact 167:193–206

    Article  CAS  Google Scholar 

  • Huang Y-C, Yang C-H, Chiou Y-L (2011) Citrus flavanone naringenin enhances melanogenesis through the activation of Wnt/β-catenin signalling in mouse melanoma cells. Phytomedicine 18:1244–1249

    Article  CAS  Google Scholar 

  • Islas MS, Naso LG, Lezama L, Valcarcel M, Salado C, Roura-Ferrer M, Ferrer EG, Williams PA (2015) Insights into the mechanisms underlying the antitumor activity of an oxidovanadium (IV) compound with the antioxidant naringenin. Albumin binding studies. J Inorg Biochem 149:12–24

    Article  CAS  Google Scholar 

  • Jin CY, Park C, Hwang HJ, Kim GY, Choi BT, Kim WJ, Choi YH (2011) Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Mol Nutr Food Res 55:300–309

    Article  CAS  Google Scholar 

  • Jung SK, Ha SJ, Jung CH, Kim YT, Lee HK, Kim MO, Lee MH, Mottamal M, Bode AM, Lee KW (2016) Naringenin targets ERK 2 and suppresses UVB-induced photoaging. J Cell Mol Med 20:909–919

    Article  CAS  Google Scholar 

  • Kabir MT, Rahman MH, Akter R, Behl T, Kaushik D, Mittal V, Pandey P, Akhtar MF, Saleem A, Albadrani GM, Kamel M, Khalifa SAM, El-Seedi HR, Abdel-Daim MM (2021) Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules 11:392

    Article  CAS  Google Scholar 

  • Kamisawa T, Wood LD, Itoi T, Takaori K (2016) Pancreatic cancer. Lancet 388:73–85

    Article  CAS  Google Scholar 

  • Kanno S-i, Tomizawa A, Hiura T, Osanai Y, Shouji A, Ujibe M, Ohtake T, Kimura K, Ishikawa M (2005) Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice. Biol Pharm Bull 28:527–530

    Article  CAS  Google Scholar 

  • Keiler AM, Dörfelt P, Chatterjee N, Helle J, Bader MI, Vollmer G, Kretzschmar G, Kuhlee F, Thieme D, Zierau O (2015) Assessment of the effects of naringenin-type flavanones in uterus and vagina. J Steroid Biochem Mol Biol 145:49–57

    Article  CAS  Google Scholar 

  • Kim C, Lee IH, Hyun HB, Kim J-C, Gyawali R, Lee S-G, Lee J, Kim S-H, Shim BS, Cho SK (2017) Supercritical fluid extraction of Citrus iyo Hort. ex Tanaka pericarp inhibits growth and induces apoptosis through abrogation of STAT3 regulated gene products in human prostate cancer xenograft mouse model. Integr Cancer Ther 16:227–243

    Article  Google Scholar 

  • Kim J-H, Kang JW, Kim MS, Bak Y, Park YS, Jung K-Y, Lim YH, Yoon D-Y (2012) The apoptotic effects of the flavonoid N101–2 in human cervical cancer cells. Toxicol Vitro 26:67–73

    Article  CAS  Google Scholar 

  • Kim JH, Lee JK (2015) Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt’s lymphoma cells. Arch Pharmacal Res 38:2042–2048

    Article  CAS  Google Scholar 

  • Kim JY, Han EH, Shin DW, Jeong TC, Lee ES, Woo E-R, Jeong HG (2004) Suppression of CYP1A1 expression by naringenin in murine Hepa-1c1c7 cells. Arch Pharmacal Res 27:857–862

    Article  CAS  Google Scholar 

  • Kim S, Park TI (2013) Naringenin: a partial agonist on estrogen receptor in T47D-KBluc breast cancer cells. Int J Clin Exp Med 6:890

    Google Scholar 

  • Krishnakumar N, Sulfikkarali N, Manoharan S, Nirmal RM (2013a) Screening of chemopreventive effect of naringenin-loaded nanoparticles in DMBA-induced hamster buccal pouch carcinogenesis by FT-IR spectroscopy. Mol Cell Biochem 382:27–36

    Article  CAS  Google Scholar 

  • Krishnakumar N, Sulfikkarali N, Manoharan S, Venkatachalam P (2013b) Raman spectroscopic investigation of the chemopreventive response of naringenin and its nanoparticles in DMBA-induced oral carcinogenesis. Spectrochim Acta Part A Mol Biomol Spectrosc 115:648–653

    Article  CAS  Google Scholar 

  • Kumar SP, Birundha K, Kaveri K, Devi KR (2015) Antioxidant studies of chitosan nanoparticles containing naringenin and their cytotoxicity effects in lung cancer cells. Int J Biol Macromol 78:87–95

    Article  CAS  Google Scholar 

  • Lai C-S, Li S, Miyauchi Y, Suzawa M, Ho C-T, Pan M-H (2013a) Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft tumors. Food Funct 4:944–949

    Article  CAS  Google Scholar 

  • Lai CS, Li S, Liu CB, Miyauchi Y, Suzawa M, Ho CT, Pan MH (2013b) Effective suppression of azoxymethane-induced aberrant crypt foci formation in mice with citrus peel flavonoids. Mol Nutr Food Res 57:551–555

    Article  CAS  Google Scholar 

  • Larrauri J (1999) New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends Food Sci Technol 10:3–8

    Article  CAS  Google Scholar 

  • Lee E-R, Kang Y-J, Choi H-Y, Kang G-H, Kim J-H, Kim B-W, Han YS, Nah S-Y, Paik H-D, Park Y-S (2007) Induction of apoptotic cell death by synthetic naringenin derivatives in human lung epithelial carcinoma A549 cells. Biol Pharm Bull 30:2394–2398

    Article  CAS  Google Scholar 

  • Lee ER, Kang YJ, Kim HJ, Choi HY, Kang GH, Kim JH, Kim BW, Jeong HS, Park YS, Cho SG (2008) Regulation of apoptosis by modified naringenin derivatives in human colorectal carcinoma RKO cells. J Cell Biochem 104:259–273

    Article  CAS  Google Scholar 

  • Leonardi T, Vanamala J, Taddeo SS, Davidson LA, Murphy ME, Patil BS, Wang N, Carroll RJ, Chapkin RS, Lupton JR (2010) Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp Biol Med 235:710–717

    Article  CAS  Google Scholar 

  • Li H, Yang B, Huang J, Xiang T, Yin X, Wan J, Luo F, Zhang L, Li H, Ren G (2013) Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway. Toxicol Lett 220:219–228

    Article  CAS  Google Scholar 

  • Li J, Dong Y, Hao G, Wang B, Wang J, Liang Y, Liu Y, Zhen E, Feng D, Liang G (2017) Naringin suppresses the development of glioblastoma by inhibiting FAK activity. J Drug Target 25:41–48

    Article  CAS  Google Scholar 

  • Li S, Lo C-Y, Ho C-T (2006) Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J Agric Food Chem 54:4176–4185

    Article  CAS  Google Scholar 

  • Liao ACH, Kuo CC, Huang YC, Yeh CW, Hseu YC, Liu JY, Hsu LS (2014) Naringenin inhibits migration of bladder cancer cells through downregulation of AKT and MMP-2. Mol Med Rep 10:1531–1536

    Article  CAS  Google Scholar 

  • Lien LM, Wang MJ, Chen RJ, Chiu HC, Wu JL, Shen MY, Chou DS, Sheu JR, Lin KH, Lu WJ (2016) Nobiletin, a polymethoxylated flavone, inhibits glioma cell growth and migration via arresting cell cycle and suppressing MAPK and Akt pathways. Phytother Res 30:214–221

    Article  CAS  Google Scholar 

  • Lim E, Torresi J (2014): Prevention of hepatitis C virus infection and liver cancer. Virus Human Cancer, 113–133

  • Lou C, Zhang F, Yang M, Zhao J, Zeng W, Fang X, Zhang Y, Zhang C, Liang W (2012): Naringenin decreases invasiveness and metastasis by inhibiting TGF-β-induced epithelial to mesenchymal transition in pancreatic cancer cells. PloS one 7, e50956

  • Madan V, Lear JT, Szeimies R-M (2010) Non-melanoma skin cancer. Lancet 375:673–685

    Article  CAS  Google Scholar 

  • Maeda-Yamamoto M, Kawahara H, Tahara N, Tsuji K, Hara Y, Isemura M (1999) Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells. J Agric Food Chem 47:2350–2354

    Article  CAS  Google Scholar 

  • Maggioni D, Nicolini G, Rigolio R, Biffi L, Pignataro L, Gaini R, Garavello W (2014) Myricetin and naringenin inhibit human squamous cell carcinoma proliferation and migration in vitro. Nutr Cancer 66:1257–1267

    Article  CAS  Google Scholar 

  • Magiorkinis E, Beloukas A, Diamantis A (2011) Scurvy: past, present and future. Eur J Intern Med 22:147–152

    Article  CAS  Google Scholar 

  • Manthey JA, Grohmann K (2001) Phenols in citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. J Agric Food Chem 49:3268–3273

    Article  CAS  Google Scholar 

  • Martinez RM, Pinho-Ribeiro FA, Steffen VS, Caviglione CV, Vignoli JA, Barbosa DS, Baracat MM, Georgetti SR, Verri WA Jr, Casagrande R (2015) Naringenin inhibits UVB irradiation-induced inflammation and oxidative stress in the skin of hairless mice. J Nat Prod 78:1647–1655

    Article  CAS  Google Scholar 

  • Meng S, Wu Y, Hu X, Zhang H, Li C (2015): Naringenin may block RSV-induced mucous hypersecretion in A549 cell via JNK/AP-1 signaling pathway. Zhonghua er ke za zhi= Chin J Pediatr 53, 182–186

  • Meyer AS, Yi O-S, Pearson DA, Waterhouse AL, Frankel EN (1997) Inhibition of human low-density lipoprotein oxidation in relation to composition of phenolic antioxidants in grapes (Vitis vinifera). J Agric Food Chem 45:1638–1643

    Article  CAS  Google Scholar 

  • Middleton E Jr, Kandaswami C (1994) Potential health-promoting properties of citrus flavonoids. Food Technol (chicago) 48:115–119

    CAS  Google Scholar 

  • Mitra S, Prova SR, Sultana SA, Das R, Nainu F, Emran TB, Tareq AM, Uddin MS, Alqahtani AM, Dhama K, Simal-Gandara J (2021): Therapeutic potential of indole alkaloids in respiratory diseases: a comprehensive review. Phytomedicine 90, 153649

  • Montanari A, Chen J, Widmer W (1998): Citrus flavonoids: a review of past biological activity against disease. Flavonoids Living Syst 103–116

  • Munakata R, Inoue T, Koeduka T, Sasaki K, Tsurumaru Y, Sugiyama A, Uto Y, Hori H, Azuma J-i, Yazaki K (2012) Characterization of coumarin-specific prenyltransferase activities in Citrus limon peel. Biosci Biotechnol Biochem 76:1389–1393

    Article  CAS  Google Scholar 

  • Pak CY (2004) Medical management of urinary stone disease. Nephron Clin Pract 98:c49–c53

    Article  Google Scholar 

  • Pan M-H, Chen W-J, Lin-Shiau S-Y, Ho C-T, Lin J-K (2002) Tangeretin induces cell-cycle G1 arrest through inhibiting cyclin-dependent kinases 2 and 4 activities as well as elevating Cdk inhibitors p21 and p27 in human colorectal carcinoma cells. Carcinogenesis 23:1677–1684

    Article  CAS  Google Scholar 

  • Poon CH, Wong TY, Wang Y, Tsuchiya Y, Nakajima M, Yokoi T, Leung LK (2013) The citrus flavanone naringenin suppresses CYP1B1 transactivation through antagonising xenobiotic-responsive element binding. Br J Nutr 109:1598–1605

    Article  CAS  Google Scholar 

  • Proteggente AR, Saija A, De Pasquale A, Rice-Evans CA (2003) The compositional characterisation and antioxidant activity of fresh juices from sicilian sweet orange (Citrus sinensis L. Osbeck) varieties. Free Radical Res 37:681–687

    Article  CAS  Google Scholar 

  • Qin L, Jin L, Lu L, Lu X, Zhang C, Zhang F, Liang W (2011) Naringenin reduces lung metastasis in a breast cancer resection model. Protein Cell 2:507–516

    Article  CAS  Google Scholar 

  • Raha S, Yumnam S, Hong GE, Lee HJ, Saralamma VVG, Park H-S, Heo JD, Lee SJ, Kim EH, Kim J-A (2015) Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells. Int J Oncol 47:1061–1069

    Article  CAS  Google Scholar 

  • Ramesh E, Alshatwi AA (2013) Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem Toxicol 51:97–105

    Article  CAS  Google Scholar 

  • Rasool M, Rashid S, Arooj M, Ansari SA, Khan KM, Malik A, Naseer MI, Zahid S, Manan A, Asif M (2014) New possibilities in hepatocellular carcinoma treatment. Anticancer Res 34:1563–1571

    CAS  Google Scholar 

  • Sabarinathan D, Mahalakshmi P, Vanisree AJ (2010) Naringenin promote apoptosis in cerebrally implanted C6 glioma cells. Mol Cell Biochem 345:215–222

    Article  CAS  Google Scholar 

  • Sabarinathan D, Mahalakshmi P, Vanisree AJ (2011) Naringenin, a flavanone inhibits the proliferation of cerebrally implanted C6 glioma cells in rats. Chem Biol Interact 189:26–36

    Article  CAS  Google Scholar 

  • Sabarinathan D, Vanisree AJ (2013) Plausible role of naringenin against cerebrally implanted C6 glioma cells in rats. Mol Cell Biochem 375:171–178

    CAS  Google Scholar 

  • Sadek ES, Makris DP, Kefalas P (2009) Polyphenolic composition and antioxidant characteristics of kumquat (Fortunella margarita) peel fractions. Plant Foods Hum Nutr 64:297–302

    Article  CAS  Google Scholar 

  • Saenz del Burgo L, Hernández RM, Orive G, Pedraz JL (2014) Nanotherapeutic approaches for brain cancer management. Nanomedicine: Nanotechnology. Biol Med 10:e905–e919

    Google Scholar 

  • Salavati-Niasari M (2005) Nanodimensional microreactor-encapsulation of 18-membered decaaza macrocycle copper (II) complexes. Chem Lett 34:244–245

    Article  CAS  Google Scholar 

  • Salehabadi A, Salavati-Niasari M, Ghiyasiyan-Arani M (2018) Self-assembly of hydrogen storage materials based multi-walled carbon nanotubes (MWCNTs) and Dy3Fe5O12 (DFO) nanoparticles. J Alloy Compd 745:789–797

    Article  CAS  Google Scholar 

  • Samman S, Lyons Wall P, Cook NC (1998): Flavonoids and coronary heart disease: Diet Perspect

  • Sequetto PL, Oliveira TT, Maldonado IR, Augusto LEF, Mello VJ, Pizziolo VR, Almeida MR, Silva ME, Novaes RD (2014) Naringin accelerates the regression of pre-neoplastic lesions and the colorectal structural reorganization in a murine model of chemical carcinogenesis. Food Chem Toxicol 64:200–209

    Article  CAS  Google Scholar 

  • Sica DA (2006) Interaction of grapefruit juice and calcium channel blockers. Am J Hypertens 19:768–773

    Article  CAS  Google Scholar 

  • Singh V, Kumar K, Purohit D, Verma R, Pandey P, Bhatia S, Malik V, Mittal V, Rahman MH, Albadrani GM, Arafah MW, El-Demerdash FM, Akhtar MF, Saleem A, Kamel M, Najda A, Abdel-Daim MM, Kaushik D (2021): Exploration of therapeutic applicability and different signaling mechanism of various phytopharmacological agents for treatment of breast cancer. Biomed Pharmacothe 139, 111584

  • Song HM, Park GH, Eo HJ, Lee JW, Kim MK, Lee JR, Lee MH, Koo JS, Jeong JB (2015) Anti-proliferative effect of naringenin through p38-dependent downregulation of cyclin D1 in human colorectal cancer cells. Biomol Ther 23:339

    Article  CAS  Google Scholar 

  • Song HM, Park GH, Eo HJ, Jeong JB (2016) Naringenin-mediated ATF3 expression contributes to apoptosis in human colon cancer. Biomol Ther 24:140

    Article  CAS  Google Scholar 

  • Subramanian P, Arul D (2013) Expression of concern: attenuation of NDEA-induced hepatocarcinogenesis by naringenin in rats. Cell Biochem Funct 31:511–517

    Article  CAS  Google Scholar 

  • Sulfikkarali N, Krishnakumar N, Manoharan S, Nirmal RM (2013) Chemopreventive efficacy of naringenin-loaded nanoparticles in 7, 12-dimethylbenz (a) anthracene induced experimental oral carcinogenesis. Pathol Oncol Res 19:287–296

    Article  CAS  Google Scholar 

  • Sun Y, Gu J (2015): Study on effect of naringenin in inhibiting migration and invasion of breast cancer cells and its molecular mechanism. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China J Chi Mater Med 40, 1144–1150

  • Takahata T, Ookawa K, Suto K, Tanaka M, Yano H, Nakashima O, Kojiro M, Tamura Y, Tateishi T, Sakata Y (2008) Chemosensitivity determinants of irinotecan hydrochloride in hepatocellular carcinoma cell lines. Basic Clin Pharmacol Toxicol 102:399–407

    Article  CAS  Google Scholar 

  • Takumi S, Ikema S, Hanyu T, Shima Y, Kurimoto T, Shiozaki K, Sugiyama Y, Park H-D, Ando S, Furukawa T (2015) Naringin attenuates the cytotoxicity of hepatotoxin microcystin-LR by the curious mechanisms to OATP1B1-and OATP1B3-expressing cells. Environ Toxicol Pharmacol 39:974–981

    Article  CAS  Google Scholar 

  • Tan T-W, Chou Y-E, Yang W-H, Hsu C-J, Fong Y-C, Tang C-H (2014) Naringin suppress chondrosarcoma migration through inhibition vascular adhesion molecule-1 expression by modulating miR-126. Int Immunopharm 22:107–114

    Article  CAS  Google Scholar 

  • Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M (2018) Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 3:15

    Article  CAS  Google Scholar 

  • Totta P, Acconcia F, Leone S, Cardillo I, Marino M (2004) Mechanisms of naringenin-induced apoptotic cascade in cancer cells: involvement of estrogen receptor a and ß signalling. IUBMB Life 56:491–499

    Article  CAS  Google Scholar 

  • USDA (2010): USDA: United States Department of Agriculture/Foreign Agricultural Service Citrus: World Markets and Trade Available from: http://www.fas.usda.gov (2010).

  • Victor MM, David JM, Sakukuma MC, França EL, Nunes AV (2018) A simple and efficient process for the extraction of naringin from grapefruit peel waste. Green Proc Synth 7:524–529

    Article  CAS  Google Scholar 

  • Watanabe T et al (2015) Japanese Society for Cancer of the Colon and Rectum (JSCCR) Guidelines 2014 for treatment of colorectal cancer. Int J Clin Oncol 20:207–239

    Article  Google Scholar 

  • Wilcox LJ, Borradaile NM, de Dreu LE, Huff MW (2001) Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J Lipid Res 42:725–734

    Article  CAS  Google Scholar 

  • Woo Y, Shin SY, Hyun J, Lee SD, Lee YH, Lim Y (2012) Flavanones inhibit the clonogenicity of HCT116 colorectal cancer cells. Int J Mol Med 29:403–408

    CAS  Google Scholar 

  • Wu L-H, Lin C, Lin H-Y, Liu Y-S, Wu CY-J, Tsai C-F, Chang P-C, Yeh W-L, Lu D-Y (2016) Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expression. Mol Neurobiol 53:1080–1091

    Article  CAS  Google Scholar 

  • Yang S-F, Yang W-E, Kuo W-H, Chang H-R, Chu S-C, Hsieh Y-S (2008) Antimetastatic potentials of flavones on oral cancer cell via an inhibition of matrix-degrading proteases. Arch Oral Biol 53:287–294

    Article  CAS  Google Scholar 

  • Yen H-R, Liu C-J, Yeh C-C (2015) Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Chem Biol Interact 235:1–9

    Article  CAS  Google Scholar 

  • Yoon H, Kim TW, Shin SY, Park MJ, Yong Y, Kim DW, Islam T, Lee YH, Jung K-Y, Lim Y (2013) Design, synthesis and inhibitory activities of naringenin derivatives on human colon cancer cells. Bioorg Med Chem Lett 23:232–238

    Article  CAS  Google Scholar 

  • Zeng L, Zhen Y, Chen Y, Zou L, Zhang Y, Hu F, Feng J, Shen J, Wei B (2014) Naringin inhibits growth and induces apoptosis by a mechanism dependent on reduced activation of NF-κB/COX-2-caspase-1 pathway in HeLa cervical cancer cells. Int J Oncol 45:1929–1936

    Article  CAS  Google Scholar 

  • Zhang F, Dong W, Zeng W, Zhang L, Zhang C, Qiu Y, Wang L, Yin X, Zhang C, Liang W (2016a) Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res 18:1–16

    Article  CAS  Google Scholar 

  • Zhang FY, Du GJ, Zhang L, Zhang CL, Lu WL, Liang W (2009) Naringenin enhances the anti-tumor effect of doxorubicin through selectively inhibiting the activity of multidrug resistance-associated proteins but not P-glycoprotein. Pharm Res 26:914–925

    Article  CAS  Google Scholar 

  • Zhang H, Zhong X, Zhang X, Shang D, Zhou Y, Zhang C (2016b) Enhanced anticancer effect of ABT-737 in combination with naringenin on gastric cancer cells. Exp Ther Med 11:669–673

    Article  CAS  Google Scholar 

  • Zhang Y-S, Li Y, Wang Y, Sun S-Y, Jiang T, Li C, Cui S-X, Qu X-J (2016c) Naringin, a natural dietary compound, prevents intestinal tumorigenesis in Apc Min/+ mouse model. J Cancer Res Clin Oncol 142:913–925

    Article  CAS  Google Scholar 

  • Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M (2018) Nd2O3-SiO2 nanocomposites: a simple sonochemical preparation, characterization and photocatalytic activity. Ultrason Sonochem 42:171–182

    Article  CAS  Google Scholar 

  • Zinatloo-Ajabshir S, Morassaei MS, Salavati-Niasari M (2019) Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos B Eng 167:643–653

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University of Swabi and Higher Education Commission of Pakistan for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AR, MAS, and MI; methodology, KB1, SAK, SM, TBE, and KB2; formal analysis and investigation, AR, KD, MSU, MSM, ASMA, FAA, MD, SK, and GZ; writing (original draft preparation), AR, MAS, and MI; writing (review and editing), AR, SK, and GZ; funding acquisition, AR; resources, AR and MAS; and supervision, AR and GZ.

Corresponding author

Correspondence to Gokhan Zengin.

Ethics declarations

Ethical statement

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauf, A., Shariati, M.A., Imran, M. et al. Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent. Environ Sci Pollut Res 29, 31025–31041 (2022). https://doi.org/10.1007/s11356-022-18754-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18754-6

Keywords

Navigation