Skip to main content

Advertisement

Log in

Screening of chemopreventive effect of naringenin-loaded nanoparticles in DMBA-induced hamster buccal pouch carcinogenesis by FT-IR spectroscopy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of the present study is to investigate the chemopreventive effects of the prepared naringenin-loaded nanoparticles (NARNPs) relative to efficacy of free naringenin (NAR) in modifying the functional, structural, and compositional changes at the molecular level during 7, 12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis by Fourier transform infrared (FT-IR) spectroscopy. The results revealed that a significant increase in the amount of proteins and nucleic acid contents and a decrease in the amount of lipids and glycogen contents are observed in DMBA-induced tumor tissues. In addition, in tumor tissues a decrease in lipid order and a significant increase in membrane dynamics were noticed. Further, the composition and secondary structure of proteins were found to be altered, which indicates some important structural alterations in the existing proteins and/or the expression of new types of proteins occurring under the tumor transformation. Furthermore, oral administration of free NAR and NARNPs significantly increased lipids and their order as well as increased the glycogen contents and decreased the levels of proteins and nucleic acid contents. On a comparative basis, NARNPs were found to have a more potent antitumor effect than free NAR in completely preventing the formation of squamous cell carcinoma and in improving the biochemical constituents to a normal range in DMBA-induced HBP carcinogenesis. The present study further shows a great potential of FT-IR spectroscopy as a complimentary tool for the screening of various anticancer drugs and follow-up, which may allow faster response to critical problems arising during treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Warnakulasurya S (2010) Living with oral cancer: epidemiology with particular reference to prevalence and life-style changes the influence survival. Oral Oncol 46:407–410

    Article  Google Scholar 

  2. Subapriya R, Thangavelu A, Mathavan B, Ramachandran CR, Nagini S (2007) Assessment of risk factors for oral squamous cell carcinoma in Chidambaram, Southern India: a case-control study. Eur J Cancer Prev 16:251–256

    Article  PubMed  Google Scholar 

  3. Saman DM (2012) A review of the epidemiology of oral and pharyngeal carcinoma: update. Head Neck Oncol 4:1

    Article  PubMed  Google Scholar 

  4. Sharma RA, Farmer PB (2004) Biological relevance of adduct detection to the chemoprevention of cancer. Clin Cancer Res 10:4901–4912

    Article  PubMed  CAS  Google Scholar 

  5. Renugadevi J, Prabu SM (2009) Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology 256:128–134

    Article  PubMed  CAS  Google Scholar 

  6. Amaro MI, Helder Vila-Real JR, Eduardo-Figueira M, Mota-Filipe H, Sepodes B, Ribeiro MH (2009) Anti-inflammatory activity of naringin and biosynthesised naringenin by naringinase immobilized in microstructured materials in a model of DDS-induced colitis in mice. Food Res Int 42:1010–1017

    Article  Google Scholar 

  7. Ekambaram G, Rajendran P, Magesh V, Sakthisekaran D (2008) Naringenin reduces tumor size and weight loss in N-methyl-N-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats. Nutr Res 28:106–112

    Article  PubMed  CAS  Google Scholar 

  8. Yen FL, Wu TH, Lin LT, Cham TM, Lin CC (2008) Naringenin-loaded nanoparticles improve the physicochemical properties and the hepatoprotective effect of naringenin in orally-administrated rats with CCl4-induced acute liver failure. Pharm Res 26:893–902

    Article  PubMed  Google Scholar 

  9. Siddiqui IA, Adhami VM, Ahmad N, Mukhtar H (2010) Nanochemoprevention: sustained release of bioactive food components for cancer prevention. Nutr Cancer 62:883–890

    Article  PubMed  CAS  Google Scholar 

  10. Beljebbar A, Amharref N, Lévèques A, Dukic S, Venteo L, Schneider L, Pluot Manfait M (2008) Modeling and quantifying biochemical changes in C6 tumor gliomas by Fourier transform infrared imaging. Anal Chem 15:8406–8415

    Article  Google Scholar 

  11. Bozkurt O, Severcan M, Severcan F (2010) Diabetes induces compositional, structural and functional alterations on rat skeletal soleus muscle revealed by FT-IR spectroscopy: a comparative study with EDL muscle. Analyst 135:3110–3119

    Article  PubMed  CAS  Google Scholar 

  12. Ozek NS, Sara Y, Onur R, Severcan F (2009) Low dose simvastatin induces compositional, structural and dynamic changes in rat skeletal extensor digitorum longus muscle tissue. Biosci Rep 30:41–50

    Article  Google Scholar 

  13. Krishnakumar N, Prabu SM, Sulfikkarali NK (2012) Quercetin protects against cadmium-induced biochemical and structural changes in rat liver revealed by FT-IR spectroscopy. Biomed Prev Nutr 2:179–185

    Article  Google Scholar 

  14. Anastassopoulou J, Boukaki E, Conti C, Ferraris P, Giorgini E, Rubini C, Sabbatini S, Theophanides T, Tosi G (2009) Microimaging FT-IR spectroscopy on pathological breast tissues. Vib Spectrosc 51:270–275

    Article  CAS  Google Scholar 

  15. Mehrotra R, Tyagi G, Jangir DK, Dawar R, Gupta N (2010) Analysis of ovarian tumor pathology by Fourier transform infrared spectroscopy. J Ovarian Res 3:27

    Article  PubMed  CAS  Google Scholar 

  16. Khanmohammadi M, Garmarudi BA, Samani S, Ghasemi K, Ashuri A (2010) Application of linear discriminant analysis and attenuated total reflectance Fourier transform infrared microspectroscopy for diagnosis of colon cancer. Pathol Oncol Res 17:435–441

    Article  PubMed  Google Scholar 

  17. Lewis PD, Lewis KE, Ghosal R, Bayliss S, Lloyd AJ, Wills J, Godfrey R, Kloer P, Mur LA (2010) Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer 10:640

    Article  PubMed  CAS  Google Scholar 

  18. Conti C, Ferraris P, Giorgini E, Pieramici T, Possati L, Rocchetti R, Rubini C, Sabbatini S, Tosi G, Mariggio MA, Muzio Lo L (2007) Microimaging FT-IR of oral cavity tumours. Part III: cells, inoculated tissues and human tissues. J Mol Struct 834–836:86–94

    Article  Google Scholar 

  19. Shklar G (1999) Development of experimental oral carcinogenesis and its impact on current oral cancer research. J Dent Res 78:1768–1772

    Article  PubMed  CAS  Google Scholar 

  20. Palaniappan PLRM, Pramod KS (2010) FT-IR study of the effect of nTiO2 on the biochemical constituents of gill tissues of Zebrafish (Danio rerio). Food Chem Toxicol 48:2337–2343

    Article  PubMed  CAS  Google Scholar 

  21. Krishnakumar N, Sulfikkarali NK, Rajendraprasad N, Karthikeyan S (2011) Enhanced anticancer activity of naringenin-loaded nanoparticles in human cervical (HeLa) cancer cells. Biomed Prev Nutr 1:223–231

    Article  Google Scholar 

  22. Sulfikkarali NK, Krishnakumar N, Manoharan S, Nirmal RM (2013) Chemopreventive efficacy of naringenin-loaded nanoparticles in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Pathol Oncol Res 19:287–296

    Article  PubMed  CAS  Google Scholar 

  23. Toyran N, Turan B, Severcan F (2007) Selenium alters the lipid content and protein profile of rat heart: an FTIR microspectroscopic study. Arch Biochem Biophys 458:184–193

    Article  PubMed  CAS  Google Scholar 

  24. Cakmak G, Zorlu F, Severcan M, Severcan F (2011) Screening of protective effect of amifostine on radiation-induced structural and functional variations in rat liver microsomal membranes by FT-IR spectroscopy. Anal Chem 83:2438–2444

    Article  PubMed  CAS  Google Scholar 

  25. Eckel R, Huo H, Guan HW, Hu X, Che X, Huang WD (2001) Characteristic infrared spectroscopic patterns in the protein bands of human breast cancer tissue. Vib Spectrosc 27:165–173

    Article  CAS  Google Scholar 

  26. Liu KZ, Bose R, Mantsch HH (2002) Infrared spectroscopic study of diabetic platelets. Vib Spectrsc 28:131–136

    Article  CAS  Google Scholar 

  27. Munro KL, Bambery KR, Carter EA, Puskar L, Tobin MJ, Wood BR, Dillon CT (2010) Synchrotron radiation infrared microspectroscopy of arsenic-induced changes to intracellular biomolecules in live leukemia cells. Vib Spectrosc 53:39–44

    Article  CAS  Google Scholar 

  28. Ci YX, Gao TY, Feng J, Guo ZQ (1999) Fourier transform infrared spectroscopic characterization of human breast tissue: implications for breast cancer diagnosis. Appl Spectrosc 53:312–315

    Article  CAS  Google Scholar 

  29. Wood BR, Quinn MA, Tait Ashdown M, Hislop T, Romeo M, McNaughton D (1998) FT-IR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies. Biospectroscopy 4:75–91

    Article  PubMed  CAS  Google Scholar 

  30. Sahu RK, Argov S, Salman A, Zelig U, Huleihel M, Grossman N, Gopas J, Kapelushnik J, Mordechai S (2005) Can Fourier transform infrared spectroscopy at higher wavenumbers (mid IR) shed light on biomarkers for carcinogenesis in tissues? J Biomed Opt 4:054017

    Article  Google Scholar 

  31. Krishnakumar N, Manoharan S, Palaniappan PLRM, Venkatachalam P, Arun Manohar MG (2009) Chemopreventive efficacy of piperine in 7,12-dimethyl benz [a] anthracene (DMBA)-induced hamster buccal pouch carcinogenesis: an FT-IR study. Food Chem Toxicol 47:2813–2820

    Article  PubMed  CAS  Google Scholar 

  32. Korkmaz F, Kirbiyik H, Severcan F (2005) Concentration dependent different action of progesterone on the order, dynamics and hydration states of the head group of dipalmitoyl-phosphatidylcholine membrane. Spectrosc Int J 19(213):19

    Google Scholar 

  33. Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621

    Article  PubMed  CAS  Google Scholar 

  34. Sok M, Sentjurc M, Schara M, Stare J, Rott T (2002) Cell membrane fluidity and prognosis of lung cancer. Ann Thorac Surg 73:1567–1571

    Article  PubMed  Google Scholar 

  35. Sade A, Tunçay S, Cimen I, Severcan F, Banerjee S (2012) Celecoxib reduces fluidity and decreases metastatic potential of colon cancer cell lines irrespective of COX-2 expression. Biosci Rep 32:35–44

    Article  PubMed  CAS  Google Scholar 

  36. Kanwar SS, Vaiphei K, Nehru B, Sanyal SN (2007) Chemopreventive effects of nonsteroidal anti-inflammatory drugs in the membrane lipid composition and fluidity parameters of the 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. Drug Chem Toxicol 30:293–309

    Article  PubMed  CAS  Google Scholar 

  37. Garip S, Yapici E, Ozek NS, Severcan M, Severcan F (2010) Evaluation and discrimination of simvastatin-induced structural alterations in proteins of different rat tissues by FT-IR spectroscopy and neural network analysis. Analyst 135:3233–3241

    Article  PubMed  CAS  Google Scholar 

  38. Bogomolny E, Argov S, Mordechai S, Huleihel M (2008) Monitoring of viral cancer progression using FT-IR microscopy: a comparative study of intact cells and tissues. Biochim Biophys Acta 1780:1038–1046

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Krishnakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnakumar, N., Sulfikkarali, N.K., Manoharan, S. et al. Screening of chemopreventive effect of naringenin-loaded nanoparticles in DMBA-induced hamster buccal pouch carcinogenesis by FT-IR spectroscopy. Mol Cell Biochem 382, 27–36 (2013). https://doi.org/10.1007/s11010-013-1715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1715-6

Keywords

Navigation