Skip to main content

Advertisement

Log in

Naringenin Enhances the Anti-Tumor Effect of Doxorubicin Through Selectively Inhibiting the Activity of Multidrug Resistance-Associated Proteins but not P-glycoprotein

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Naringenin has shown paradoxical results to modulate the function of multidrug resistance-associated proteins (MRPs). The aim of this study is to interpret whether naringenin can reverse intrinsic and/or acquired resistance of cancer cells to chemotherapeutic agents.

Methods

The effects of naringenin on the uptake, retention and cytotoxicity of doxorubicin were investigated in A549, MCF-7, HepG2 and MCF-7/DOX cells. Cellular efflux pathways modulated by naringenin were assessed with their specific substrates and inhibitors. The improved antitumor activity of doxorubicin in combination with naringenin was also investigated in vivo.

Results

The IC50 values of doxorubicin in combination with naringenin in A549 and MCF-7 cells were approximately 2-fold lower than that of doxorubicin alone. The increased sensitivity to doxorubicin by naringenin in HepG2 and MCF-7/DOX cells was not observed. Naringenin increased the cellular doxorubicin accumulation through inhibiting doxorubicin efflux in the cells expressing MRPs but not P-gp. In contrast to doxorubicin alone, doxorubicin in combination with naringenin enhanced antitumor activity in vivo with low systemic toxicity.

Conclusion

Naringenin enhances antitumor effect of doxorubicin by selective modulating drug efflux pathways. Naringenin will be a useful adjunct to improve the effectiveness of chemotherapeutic agents in treatment of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulfoxide

DOX:

Doxorubicin

FITC:

Fluorescein isothiocyanate

MRPs:

Multidrug resistance-associated proteins

MTT:

Methylthiazoletetrazolium

Nar:

Naringenin

PBS:

Phosphate-buffered saline

P-gp:

P-glycoprotein

PI:

Propidium iodide

Rho123:

Rhodamine 123

Vrp:

Verapamil

5-CFDA:

5-Carboxyfluresceindiacetate

References

  1. M. M. Gottesman, T. Fojo, and S. E. Bates. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer. 2:48–58 (2002). doi:10.1038/nrc706.

    Article  PubMed  CAS  Google Scholar 

  2. M. Bredel. Anticancer drug resistance in primary human brain tumors. Brain Res. Brain Res. Rev. 35:161–204 (2001). doi:10.1016/S0165-0173(01)00045-5.

    Article  PubMed  CAS  Google Scholar 

  3. M. M. Gottesman, and I. Pastan. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62:385–427 (1993). doi:10.1146/annurev.bi.62.070193.002125.

    Article  PubMed  CAS  Google Scholar 

  4. P. Borst, R. Evers, M. Kool, and J. Wijnholds. A family of drug transporters: the multidrug resistance-associated proteins. J. Natl. Cancer Inst. 92:1295–1302 (2000). doi:10.1093/jnci/92.16.1295.

    Article  PubMed  CAS  Google Scholar 

  5. S. P. Cole, G. Bhardwaj, J. H. Gerlach, J. E. Mackie, C. E. Grant, K. C. Almquist, A. J. Stewart, E. U. Kurz, A. M. V. Duncan, and R. G. Deeley. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 258:1650–1654 (1992). doi:10.1126/science.1360704.

    Article  PubMed  CAS  Google Scholar 

  6. L. A. Doyle, W. Yang, L. V. Abruzzo, T. Krogmann, Y. Gao, A. K. Rishi, and D. D. Ross. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA. 95:15665–15670 (1998). doi:10.1073/pnas.95.26.15665.

    Article  PubMed  CAS  Google Scholar 

  7. E. K. Rowinsky, L. Smith, Y. M. Wang, P. Chaturvedi, M. Villalona, E. Campbell, C. Aylesworth, S. G. Eckhardt, L. Hammond, M. Kraynak, R. Drengler, J. Stephenson Jr., M. W. Harding, and D. D. Von Hoff. Phase I and pharmacokinetic study of paclitaxel in combination with biricodar, a novel agent that reverses multidrug resistance conferred by overexpression of both MDR1 and MRP. J. Clin. Oncol. 16:2964–2976 (1998).

    PubMed  CAS  Google Scholar 

  8. R. A. Peck, J. Hewett, M. W. Harding, Y. M. Wang, P. R. Chaturvedi, A. Bhatnagar, H. Ziessman, F. Atkins, and M. J. Hawkins. Phase I and pharmacokinetic study of the novel MDR1 and MRP1 inhibitor biricodar administered alone and in combination with doxorubicin. J. Clin. Oncol. 19:3130–3141 (2001).

    PubMed  CAS  Google Scholar 

  9. R. V. Kondratov, P. G. Komarov, Y. Becker, A. Ewenson, and A. V. Gudkov. Small molecules that dramatically alter multidrug resistance phenotype by modulating the substrate specificity of P-glycoprotein. Proc. Natl. Acad. Sci. USA. 98:14078–14083 (2001). doi:10.1073/pnas.241314798.

    Article  PubMed  CAS  Google Scholar 

  10. H. Minderman, K. L. O’Loughlin, L. Pendyala, and M. R. Baer. VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin. Cancer Res. 10:1826–1834 (2004). doi:10.1158/1078-0432.CCR-0914-3.

    Article  PubMed  CAS  Google Scholar 

  11. L. C. Young, B. G. Campling, S. P. Cole, R. G. Deeley, and J. H. Gerlach. Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels. Clin. Cancer Res. 7:1798–1804 (2001).

    PubMed  CAS  Google Scholar 

  12. T. Abe, S. Hasegawa, K. Taniguchi, A. Yokomizo, T. Kuwano, M. Ono, T. Mori, S. Hori, K. Kohno, and M. Kuwano. Possible involvement of multidrug-resistance-associated protein (MRP) gene expression in spontaneous drug resistance to vincristine, etoposide and adriamycin in human glioma cells. Int. J. Cancer. 58:860–864 (1994). doi:10.1002/ijc.2910580619.

    Article  PubMed  CAS  Google Scholar 

  13. C. Calatozzolo, M. Gelati, E. Ciusani, F. L. Sciacca, B. Pollo, L. Cajola, C. Marras, A. Silvani, L. Vitellaro-Zuccarello, D. Croci, A. Boiardi, and A. Salmaggi. Expression of drug resistance proteins Pgp, MRP1, MRP3, MRP5 and GST-pi in human glioma. J. Neurooncol. 74:113–121 (2005). doi:10.1007/s11060-004-6152-7.

    Article  PubMed  CAS  Google Scholar 

  14. A. T. Nies, J. König, M. Pfannschmidt, E. Klar, W. J. Hofmann, and D. Keppler. Expression of the multidrug resistance proteins MRP2 and MRP3 in human hepatocellular carcinoma. Int. J. Cancer. 94:492–499 (2001). doi:10.1002/ijc.1498.

    Article  PubMed  CAS  Google Scholar 

  15. E. H. Rubin, D. P. de Alwis, I. Pouliquen, L. Green, P. Marder, Y. Lin, R. Musanti, S. L. Grospe, S. L. Smith, D. L. Toppmeyer, J. Much, M. Kane, A. Chaudhary, C. Jordan, M. Burgess, and C. A. Slapak. A phase I trial of a potent P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), administered orally in combination with doxorubicin in patients with advanced malignancies. Clin. Cancer Res. 8:3710–3717 (2002).

    PubMed  CAS  Google Scholar 

  16. L. Gandhi, M. W. Harding, M. Neubauer, C. J. Langer, M. Moore, H. J. Ross, B. E. Johnson, and T. J. Lynch. A phase II study of the safety and efficacy of the multidrug resistance inhibitor VX-710 combined with doxorubicin and vincristine in patients with recurrent small cell lung cancer. Cancer. 109:924–932 (2007). doi:10.1002/cncr.22492.

    Article  PubMed  CAS  Google Scholar 

  17. S. Zhang, and M. E. Morris. Effects of the flavonoids biochanin A, morin, phloretin and silymarin on P-glycoprotein-mediated transport. J. Pharmacol. Exp. Ther. 304:1258–1267 (2003). doi:10.1124/jpet.102.044412.

    Article  PubMed  CAS  Google Scholar 

  18. M. Hadjeri, M. Barbier, X. Ronot, A. M. Mariotte, A. Boumendjel, and J. Boutonnat. Modulation of P-glycoprotein-mediated multidrug resistance by flavonoid derivatives and analogues. J. Med. Chem. 46:2125–2131 (2003). doi:10.1021/jm021099i.

    Article  PubMed  CAS  Google Scholar 

  19. S. Zhang, X. Yang, and M. E. Morris. Combined effects of multiple flavonoids on breast cancer resistance protein (ABCG2)-mediated transport. Pharm. Res. 21:1263–1273 (2004). doi:10.1023/B:PHAM.0000033015.84146.4c.

    Article  PubMed  CAS  Google Scholar 

  20. J. J. van Zanden, H. M. Wortelboer, S. Bijlsma, A. Punt, M. Usta, P. J. Bladeren, I. M. Rietjens, and N. H. Cnubben. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2. Biochem. Pharmacol. 69:699–708 (2005). doi:10.1016/j.bcp.2004.11.002.

    Article  PubMed  Google Scholar 

  21. C. Zanini, G. Giribaldi, G. Mandili, F. Carta, N. Crescenzio, B. Bisaro, A. Doria, L. Foglia, L. C. di Montezemolo, F. Timeus, and F. Turrini. Inhibition of heat shock proteins (HSP) expression by quercetin and differential doxorubicin sensitization in neuroblastoma and Ewing’s sarcoma cell lines. J. Neurochem. 103:1344–1354 (2007). doi:10.1111/j.1471-4159.2007.04835.x.

    Article  PubMed  CAS  Google Scholar 

  22. A. Bast, H. Kaiserová, G. J. den Hartog, G. R. Haenen, and W. J. van der Vijgh. Protectors against doxorubicin-induced cardiotoxicity: flavonoids. Cell Biol. Toxicol. 23:39–47 (2007). doi:10.1007/s10565-006-0139-4.

    Article  PubMed  CAS  Google Scholar 

  23. H. Kaiserová, T. Simůnek, W. J. van der Vijgh, A. Bast, and E. Kvasnicková. Flavonoids as protectors against doxorubicin cardiotoxicity: role of iron chelation, antioxidant activity and inhibition of carbonyl reductase. Biochim. Biophys. Acta. 1772:1065–1074 (2007).

    PubMed  Google Scholar 

  24. S. Zhang, X. Yang, and M. E. Morris. Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol. Pharmacol. 65:1208–1216 (2004). doi:10.1124/mol.65.5.1208.

    Article  PubMed  CAS  Google Scholar 

  25. S. Kitagawa. Inhibitory effects of polyphenols on P-glycoprotein-mediated transport. Biol. Pharm. Bull. 29:1–6 (2006). doi:10.1248/bpb.29.1.

    Article  PubMed  CAS  Google Scholar 

  26. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65:55–63 (1983). doi:10.1016/0022-1759(83)90303-4.

    Article  PubMed  CAS  Google Scholar 

  27. Y. Li, and F. H. Sarkar. Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin. Cancer Res. 8:2369–2377 (2002).

    PubMed  CAS  Google Scholar 

  28. V. Jekerle, W. Klinkhammer, D. A. Scollard, K. Breitbach, R. M. Reilly, M. Piquette-Miller, and M. Wiese. In vitro and in vivo evaluation of WK-X-34, a novel inhibitor of P-glycoprotein and BCRP, using radio imaging techniques. Int. J. Cancer. 119:414–422 (2006). doi:10.1002/ijc.21827.

    Article  PubMed  CAS  Google Scholar 

  29. C. Kimchi-Sarfaty, J. M. Oh, I. W. Kim, Z. E. Sauna, A. M. Calcagno, S. V. Ambudkar, and M. M. Gottesman. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 315:525–528 (2007). doi:10.1126/science.1135308.

    Article  PubMed  CAS  Google Scholar 

  30. C. L. Hammond, R. Marchan, S. M. Krance, and N. Ballatori. Glutathione export during apoptosis requires functional multidrug resistance-associated proteins. J. Biol. Chem. 282:14337–14347 (2007). doi:10.1074/jbc.M611019200.

    Article  PubMed  CAS  Google Scholar 

  31. V. Stierlé, A. Laigle, and B. Jollès. Modulation of MDR1 gene expression in multidrug resistant MCF7 cells by low concentrations of small interfering RNAs. Biochem. Pharmacol. 70:1424–1430 (2005).

    PubMed  Google Scholar 

  32. M. Biscardi, E. Teodori, R. Caporale, R. Budriesi, F. Balestri, B. Scappini, S. Gavazzi, and A. Grossi. Multidrug reverting activity toward leukemia cells in a group of new verapamil analogues with low cardiovascular activity. Leuk. Res. 30:1–9 (2006).

    Article  PubMed  CAS  Google Scholar 

  33. E. Teodori, S. Dei, A. Garnier-Suillerot, F. Gualtieri, D. Manetti, C. Martelli, M. N. Romanelli, S. Scapecchi, P. Sudwan, and M. Salerno. Exploratory chemistry toward the identification of a new class of multidrug resistance reverters inspired by pervilleine and verapamil models. J. Med. Chem. 48:7426–7436 (2005). doi:10.1021/jm050542x.

    Article  PubMed  CAS  Google Scholar 

  34. P. Mitra, C. A. Oskeritzian, S. G. Payne, M. A. Beaven, S. Milstien, and S. Spiegel. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc. Natl. Acad. Sci. USA. 103:16394–16399 (2006). doi:10.1073/pnas.0603734103.

    Article  PubMed  CAS  Google Scholar 

  35. S. Kitagawa, T. Nabekura, T. Takahashi, Y. Nakamura, H. Sakamoto, H. Tano, M. Hirai, and G. Tsukahara. Structure-activity relationships of the inhibitory effects of flavonoids on P-glycoprotein-mediated transport in KB-C2 cells. Biol. Pharm. Bull. 28:2274–2278 (2005). doi:10.1248/bpb.28.2274.

    Article  PubMed  CAS  Google Scholar 

  36. G. A. Thomas, M. A. Barrand, S. Stewart, P. H. Rabbitts, E. D. Williams, and P. R. Twentyman. Expression of the multidrug resistance-associated protein (MRP) gene in human lung tumours and normal tissue as determined by in situ hybridisation. Eur. J. Cancer. 30:1705–1709 (1994). doi:10.1016/0959-8049(94)00290-L.

    Article  Google Scholar 

  37. C. M. Laurençot, G. L. Scheffer, R. J. Scheper, and R. H. Shoemaker. Increased LRP mRNA expression is associated with the MDR phenotype in intrinsically resistant human cancer cell lines. Int. J. Cancer. 72:1021–1026 (1997). doi:10.1002/(SICI)1097-0215(19970917)72:6<1021::AID-IJC17>3.0.CO;2-7.

    Article  PubMed  Google Scholar 

  38. L. Beketic-Oreskovic, G. E. Durán, G. Chen, C. Dumontet, and B. I. Sikic. Decreased mutation rate for cellular resistance to doxorubicin and suppression of mdr1 gene activation by the cyclosporin PSC 833. J. Natl. Cancer Inst. 87:1593–1602 (1995). doi:10.1093/jnci/87.21.1593.

    Article  PubMed  CAS  Google Scholar 

  39. X. F. Hu, A. Slater, P. Kantharidis, D. Rischin, S. Juneja, R. Rossi, G. Lee, J. D. Parkin, and J. R. Zalcberg. Altered multidrug resistance phenotype caused by anthracycline analogues and cytosine arabinoside in myeloid leukemia. Blood. 93:4086–4095 (1999).

    PubMed  CAS  Google Scholar 

  40. F. Zhang, G. Du, and W. Liang. Naringenin exerts its anti-tumor effect via antiangiogenesis. 8th world congress for microcirculation. Milwaukee, Wisconsin, USA, 2007, pp. 159–163.

  41. F. Tosetti, N. Ferrari, S. De Flora, and A. Albini. Angioprevention: angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J. 16:2–14 (2002). doi:10.1096/fj.01-0300rev.

    Article  PubMed  CAS  Google Scholar 

  42. H. M. Arafa, M. F. Abd-Ellah, and H. F. Hafez. Abatement by naringenin of doxorubicin-induced cardiac toxicity in rats. J. Egypt Natl. Canc. Inst. 17:291–300 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the State Key Development Plan Project (2006CB705706 and 2007CB935801), National Natural Science Foundation of China (90606019, 90713024) and the Chinese Academy of Sciences (KSCX2-YW-R-21 and KJCX2-YW-M02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F.Y., Du, G.J., Zhang, L. et al. Naringenin Enhances the Anti-Tumor Effect of Doxorubicin Through Selectively Inhibiting the Activity of Multidrug Resistance-Associated Proteins but not P-glycoprotein. Pharm Res 26, 914–925 (2009). https://doi.org/10.1007/s11095-008-9793-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9793-y

KEY WORDS

Navigation