Skip to main content
Log in

Optimum techno-eco performance requisites for vacuum annulus tube collector–assisted double-slope solar desaltification unit integrated modified parabolic concentrator

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work presents a novel approach for a double-slope solar desaltification system having parallel array of evacuated annular tube collectors with compound parabolic modified concentrators (DS-SDS-EATC-MCPC) that are observed for eco-design requisites for the optimum performance with environ-economic viabilities. The proposed scheme has been configured to obtain the utmost probable basin’s medium hotness as 99.6 °C of having greater depth of water (0.16 m) for the East–West-faced direction of basin peak cover (30°) along with South-oriented evacuated annular tube (30°). The highest circulation pace (thermo syphon) is obtained ~ 55 kg/h. The generalized efficiencies (energy-exergy) of the system are 46.53% and 3.62%, correspondingly. The everyday distillate (16.94 kg) and its production cost (energy $0.007/kWh; exergy $0.013/kWh) at a titular selling cost ($0.07/l) maintains its goodness. The CO2 mitigates (energy-exergy) and green earned credits are 139.74 and 77.30 tons, and $1396 and $772.24, in that order. The framework outlay of the scheme is quite stumpy at $200.79, and productivity of the model is set up > 100% that shows the scheme as appreciably realistic. The evident distillate at little operating cost, ecological returns, elevated alleviation, and short payoff period makes the arrangement sustainable, viable for reasonable collector areas, and optimum EATC with MCPC as eco-design requisites for the projected scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

\({A}_{a}\) :

Accumulative opening area for MCPC

\({A}_{g}\) :

Top glaze area (m2)

\({A}_{b}\) :

Basin liner area (m2)

\({A}_{rc}\) :

Annular tube receiver area

\({C}_{w}, {C}_{f}\) :

Water mass specific heat capacity (J/kg K)

\(d\) :

Interior dia of inner annular tube (m)

\({E}_{e}\) :

Energetic growth (kWh)

\({E}_{x}\) :

Exergetic growth (kWh)

\({F}^{^{\prime}}\) :

Annular tube efficiency aspect

\({G}_{r}\) :

Grashof number

\({h}_{ba}\) :

Net heat transmission factor from liner to ambiance (W/m2 K)

\({h}_{bw}\) :

Heat transmission factor (convective) from liner to water (W/m2 K)

\({h}_{t-g}, {h}_{o}\) :

Heat loss factor (convention) from top glass to ambiance (W/m2 K)

\({h}_{t-wg}\) :

Net heat transmission factor from water surface to top glaze cover (W/m2 K)

\({h}_{c-wg}\) :

Heat transmission coefficient (convective) of brackish water to top glass cover (W/m2 K)

\({h}_{e-wg}\) :

Heat transmission factor (evaporative) of brackish water to top glass cover (W/m2 K)

\({h}_{r-wg}\) :

Heat transmission factor (radiative) from brackish water to top glass cover (W/m2 K)

\({h}_{r-ev}\) :

Thermal loss factor (radiative) of annular tube along vacuum region (W/m2 K)

\({h}_{saf}\) :

Overall heat transmission factor from absorber to annular tube water (W/m2 K)

\({I}_{d}(t)\) :

Solar irradiance (diffused and reflected) (W/m2)

\({I}_{s}(a)\) :

Solar energy engrossed at annular tube receiver (W/m2)

\({I}_{s}(t)\) :

Radiative astral energy (instantaneous) at SDS unit (W/m2)

\({I}_{b}(t)\) :

Irradiated solar beam radiation over EATC collectors (W/m2)

\({K}_{g}\) :

Glass thermal conductivity (W/m K)

\({K}_{b}\) :

Basin liner thermal conductivity (W/m K)

\({K}_{w}\) :

Water thermal conductivity (W/m K)

L:

Latent heat (water) for vaporization (J/kg)

\({L}_{EATC}\) :

Annular tube length (m)

\({\dot{m}}_{ewg}\) :

Yield hourly distillation (kg/h)

\({\dot{m}}_{f}\) :

Thermo syphon flow rate in annular tube (kg/s)

\({m}_{w}\) :

Quantity of brackish medium in still (kg)

\({m}_{f}\) :

Quantity of water in EATC (kg)

\({n}_{o}\) :

Air refractive index

\({n}_{g}\) :

Glaze refractive index

\({n}_{w}\) :

Water refractive index

\({N}_{u}\) :

Nusselt no.

\({N}_{sh}\) :

Sunshine hour numbers

\({P}_{r}\) :

Prandtl number

\({p}_{w}\) :

Vapor pressure (partial) at the surface of still’s water (Pa, N/m2)

\({p}_{gi}\) :

Vapor pressure (partial) at of top glaze interior face (Pa, N/m2)

\({\dot{Q}}_{N-EATC}\) :

Rate of heat grow in SDS through paralleled N-EATC-MCPC arrangement (kJ/s)

\({\dot{q}}_{ewg}\) :

Heat transmission rate of evaporation from brackish water to glass cover up (kJ/s)

\({R}_{a}\) :

Rayleigh no.

\({R}_{e}\) :

Reynold no.

\({R}_{g}\) :

Glaze reflectivity

\({R}_{i1}\) :

Internal tube interior radius (m)

\({R}_{i2}\) :

External tube interior radius (m)

\({R}_{o2}\) :

External tube exterior radius (m)

\({R}_{sc}\) :

Selective absorber reflectivity

\({T}_{a}\) :

Atmosphere temperature (°C)

\({T}_{b}\) :

Temperature of basin liner (°C)

\({t}_{b}\) :

Liner depth (m)

\(t\) :

Time (s)

\({t}_{g}\) :

Glaze thickness (m)

\({T}_{sa}\) :

Selective absorber temperature (°C)

\({T}_{f}\) :

Annular tube fluid (water medium) temperature (°C)

\({T}_{fo1}\) :

Exit water temperature from independent EATC (°C)

\({T}_{N-fo}\) :

Exit temperature of associative water medium impending through N-EATC (°C)

\({T}_{w}\) :

SDS basin water mass temperature (°C)

\({T}_{go}\) :

Top glaze temperature of external face (°C)

\({T}_{gi}\) :

Top glaze temperature of interior face (°C)

\({U}_{saa}\) :

Net heat transmission (loss) factor from external annular tube

V :

Air velocity (average) (m/s

ALN:

Aluminum nitride

CCPC:

Combined parabolic collector

CPC:

Parabolic collector

DS:

Slope

EATC:

(Vacuum) annular tube collector

FP:

Plate

MCPC:

Combined parabolic collector (modified)

OCPC:

Combined parabolic collector (oriented)

SDS:

Solar desaltification system

\(\nu\) :

Kinematic viscosity water (m2/s)

\({\beta }^{^{\prime}}\) :

Water volumetric thermal expansion coefficient (K1)

\(\alpha\) :

Absorber absorptivity

\(\mu\) :

Dynamic viscosity of water (N·s/m2)

\({\alpha }_{g}\) :

Glass absorptivity

\({\alpha }_{w}\) :

Water absorptivity

\({\alpha }_{b}\) :

Liner absorptivity

\({\eta }_{i}\) :

Instantaneous efficiency (%)

\({\eta }_{e}\) :

Energy efficiency (%)

\({\eta }_{x}\) :

Exergy efficiency (%)

\(\tau\) :

Transmissivity

\(\sigma\) :

Constant of Stefan-Boltzmann (W/m2 K4)

\(\rho\) :

Density (kg/m3)

\({\varepsilon }_{eff}\) :

Emissivity (effective)

\({\varepsilon }_{g}\) :

Glaze emissivity

\({\varepsilon }_{w}\) :

Water emissivity

References

  • Badran OO, Abu-Khader MM (2007) Evaluating thermal performance of a single slope solar still. Heat Mass Transfer 43:985–995

    Article  CAS  Google Scholar 

  • Bait O (2019) Exergy, environeeconomic and economic analyses of a tubular solar water heater assisted solar still. J Cleaner Production 212:630–646

    Article  Google Scholar 

  • Barbosa EG, Martins MA, Araujo MEV, Renato NS, Zolnier S, Pereira EG, Resende MO (2020) Experimental evaluation of a stationary parabolic trough solar collector: influence of the concentrator and heat transfer fluid. Journal of Cleaner Production 276:124174

    Article  Google Scholar 

  • Benson, F., 1952. Further notes on the productivity of machines requiring attention at random intervals. J. Roy. Stat. Soc. B XIV, 200–210.

  • Budihardjo I, Morrison GL (2009) Performance of water-in-glass evacuated tube solar water heaters. Sol Energy 83:49–56

    Article  CAS  Google Scholar 

  • Budihardjo I, Morrison GL, Behnia M (2007) Natural circulation flow through water-in- lass evacuated tube solar collectors. Sol Energy 81:1460–1472

    Article  CAS  Google Scholar 

  • Cengel XA, Boles MA (2013) Thermodynamics, an engineering approach. McGraw-Hill Education Pvt. Ltd., New York

    Google Scholar 

  • Cooper PI (1973) The maximum efficiency of single-effect solar stills. Sol Energy 15:205–217

    Article  Google Scholar 

  • Cooper PI (1969) The absorption of solar energy radiation in solar stills. Sol Energy 12:133

    Google Scholar 

  • Cox DR (1951) The productivity of machines requiring attention at random intervals. J. Roy. Stat. Soc. B XIII, 65–82

  • Dev R, Tiwari GN (2012) Annual performance of evacuated tubular collector integrated solar still. Desalination Water Treatment 41:204–223

    Article  CAS  Google Scholar 

  • Dubey A, Kumar S, Arora A (2021) Enviro-energy-exergo-economic analysis of ETC augmented double slope solar still with ‘n’ parallel tubes under forced mode: environmental and economic feasibility. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.123859

    Article  Google Scholar 

  • Duffie JA, Beckman WA (2006) Solar engineering of thermal processes. Hoboken- Wiley, New Jersey

    Google Scholar 

  • Dunkle RV (1961) Solar water distillation: the roof type solar still and a multiple effect diffusion still, International Developments in Heat Transfer ASME 895–902

  • Dwivedi VK, Tiwari GN (2008) Energy and exergy analysis of single and double slope passive solar still. Trends in Applied Sciences and Research 3(3):225–241

    Article  Google Scholar 

  • IAPWS (1996) International association for the properties of water and steam, for the thermodynamic properties of ordinary water substance for general and scientific use, 1996

  • IAPWS (2008) International association for the properties of water and steam, the viscosity of ordinary water substance, 2008

  • Issa RJ, Chang B (2017) Performance study on evacuated tubular collector coupled solar stillin west texas climate. Int J Green Energy. https://doi.org/10.1080/15435075.2017.1328422

    Article  Google Scholar 

  • Kalogirou S (2003) The potential of solar industrial process heat applications. Appl Energy 76:337–361

    Article  CAS  Google Scholar 

  • Kalshian R (2008) Energy versus emissions: the big challenge of the new millennium. Info Change News and Features, www.infochangeindia.org/agenda5_01.jsp, accessed 21 March 2008

  • Koffi PME, Andoh HY, Gbaha P, Toure S, Ado G (2008) Theoretical and experimental study of solar water heater with internal exchanger using thermosiphon system. Energy Convers Manage 49:2279–2290

    Article  Google Scholar 

  • Kumar S, Dubey A, Tiwari G (2014) A solar still augmented with an evacuated tube collector in forced mode. Desalination 347:15–24

    Article  CAS  Google Scholar 

  • Liu BYH, Jordan RC (1960) The interrelationship and characteristic distribution of direct, diffuse and total solar radiation, Solar Energy 4(3)

  • Liu BYH, Jordan RC (1962) Daily insolation on surfaces tilted towards equator. ASHRAE J 3(10):53

    Google Scholar 

  • Malik MAS, Tiwari GN, Kumar A, Sodha MS (1982) Solar distillation—a practical study of a wide range of stills and their optimum design, construction and performance. Pergamon Press, Oxford, U. K.

    Google Scholar 

  • Mittal ML, Sharma C, Singh R (2014) Decadal emission estimates of carbon dioxide, sulphur dioxide and nitic oxide emissions from coal burning in electric power generation plants in India. Environ Monit Assess 186:6857–6866

    Article  CAS  Google Scholar 

  • Morrison G, Tran N, McKenzie D, Onley I, Harding G, Collins R (1984) Long term performance of evacuated tubular solar water heaters in Sydney, Australia. Sol Energy 32:785–791

    Article  Google Scholar 

  • Morrison GL, Budihardjoa I, Behnia M (2005) Measurement and simulation of flow rate in a water-in-glass evacuated tube solar water heater. Sol Energy 78:257–267

    Article  CAS  Google Scholar 

  • Patel J, Markam BK, Maiti S (2019) Potable water by solar thermal distillation in solar salt works and performance enhancement by integrating with evacuated tubes. Sol Energy 188:561–572

    Article  Google Scholar 

  • Petela R (1964) Exergy of heat radiation. Journal of Heat Transfer, ASME 2:187–192

    Article  Google Scholar 

  • Petela R (2003) Exergy of undiluted thermal radiation. Sol Energy 74:469–488

    Article  Google Scholar 

  • Petela R (2010a) 2010. McGraw Hill, Inc, Engineering thermodynamics of thermal radiation for solar power utilization

    Google Scholar 

  • Petela R (2010b) Radiation spectra of surface. Int J Exergy 7:89–109

    Article  Google Scholar 

  • Pissavi P (1982) Modelling of the dynamic behavior of a tank for solar storage with internal exchanger. Re´v Ge´n Thermique 246–247, 521–35

  • Rashidi S, Karimi N, Mahian O, Esfahani JA (2018) A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim 135:1145–1159

    Article  CAS  Google Scholar 

  • Reddy KS, Sharon H (2017) Energy–environment–economic investigations on evacuated active multiple stage series flow solar distillation unit for potable water production. Energy Convers Manage 151:259–285

    Article  CAS  Google Scholar 

  • Reddy KS, Sharon H, Krithika D, Philip L (2018) Performance, water quality and enviro-economic investigations on solar distillation treatment of reverse osmosis reject and sewage water. Sol Energy 173:160–172

    Article  CAS  Google Scholar 

  • Roome J (2019) State and Trends of Carbon Pricing (2019). World Bank Group, Washington DC

    Google Scholar 

  • Sadeghi G, Pisello AL, Nazari S, Jowzi M, Shama F (2021) Empirical data-driven multi-layer perceptron and radial basis function techniques in predicting the performance of nanofluid-based modified tubular solar collectors. J Clean Prod 295:126409

    Article  CAS  Google Scholar 

  • Sampathkumar K, Arjunan T, Senthilkumar P (2013) The experimental investigation of a solar still coupled with an evacuated tube collector. Energy Sources, Part A 35:261–270

    Article  CAS  Google Scholar 

  • Sato AI, Scalon VL, Padilha A (2012) Numerical analysis of a modified evacuated tubes solar collector. International Conference on Renewable Energies and Power Quality (ICREPQ'12)

  • Sharon H, Reddy KS, Krithika D, Philip L (2017) Experimental performance investigation of tilted solar still with basin and wick for distillate quality and enviro-economic aspects. Desalination 410:30–54

    Article  CAS  Google Scholar 

  • Singh AK (2020) An inclusive study on new conceptual designs of passive solar desalting systems. Heliyon 7:e05793

    Article  Google Scholar 

  • Singh AK, Samsher, (2020) Analytical study of evacuated annulus tube collector assisted solar desaltification system: A review. Sol Energy 207:1404–1426

    Article  Google Scholar 

  • Singh AK, Samsher, (2021) A review study of solar desalting units with evacuated tube collectors. Journal of Cleaner Production 279:123542

    Article  Google Scholar 

  • Singh AK, Samsher, (2021b) Material conscious energy matrix and enviro-economic analysis of passive ETC solar still. Materials Today: Proceedings 38:1–5

    Google Scholar 

  • Singh AK, Samsher (2021b) Tech-en-econ-energy-exergy-matrix (T4EM) observations of evacuated solar tube collector augmented solar desaltification unit: a modified design loom. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2021.09.088

  • Singh AK, Yadav RK, Mishra D, Prasad R, Gupta LK, Kumar P (2020) Active solar distillation technology: a wide overview. Desalination 493:114652

    Article  CAS  Google Scholar 

  • Singh AK, Samsher, (2022) Techno-environ-economic-energy-exergy-matrices performance analysis of evacuated annulus tube with modified parabolic concentrator assisted single slope solar desalination system. Journal of Cleaner Production 332:129996

    Article  Google Scholar 

  • Singh RV, Kumar S, Hasan M, Khan ME, Tiwari G (2013) Performance of a solar still integrated with evacuated tube collector in natural mode. Desalination 318:25–33

    Article  CAS  Google Scholar 

  • Tiwari AK, Tiwari GN (2007) Annual performance analysis and thermal modelling of passive solar still for different inclination of condensing cover. Energy Res 31(4):1358–1382

    Article  Google Scholar 

  • Tiwari G, Shukla S, Singh I (2003) Computer modeling of passive/active solar stills by using inner glass temperature. Desalination 154:171–185

    Article  CAS  Google Scholar 

  • Tiwari GN (2014) Solar energy: fundamentals, design, modelling and applications. Narosa Publishing House, New Delhi

    Google Scholar 

  • Tiwari GN, Mishra RK (2012) 2012. RSC Publishing Cambridge, UK, Advanced renewable energy sources

    Google Scholar 

  • Tiwari GN, Raj K, Maheshwari KP, Sawhney RL (1992) Recent advances in solar distillation. In: International Journal of Solar Energy and Energy Conversion. Wiley Eastern, New Delhi, pp. 32e149 (Chapter 2)

  • Tiwari GN, Tiwari A, Shyam, (2016) Handbook of Solar Energy. Theory, Analysis and Applications, Springer Nature, Singapore

    Book  Google Scholar 

  • Tiwari GN, Yadav JK, Singh DB, Al–Helal, I.M., Abdel-Ghany, A.M., (2015) Exergoeconomic and enviroeconomic analyses of partially covered photovoltaic flat plate collector active solar distillation system. Desalination 367:186–196

    Article  CAS  Google Scholar 

  • Tsatsaronis G, Lin L, Pisa J (1993) Exergy costing in exergoeconomics. J. Energy Resour. – ASME 115, 9–16

  • Tsatsaronis G, Park H (2002) On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Convers Manage 43(9–12):1259–1270

    Article  Google Scholar 

  • Tsatsaronis G, Winhold M (1985) Exergoeconomic analysis and evaluation of energy conversion plants – a new general methodology. Energy 10:69–94

    Article  Google Scholar 

  • Watt M, Jonhnson A, Ellis M, Quthred N (1998) Prog Photovolt Res Appl 6(2):127–136

    Article  CAS  Google Scholar 

  • Xu L, Liu Z, Li S, Shao Z, Xia N (2019) Performance of solar mid-temperature evacuated tube collector for steam generation. Sol Energy 183:162–172

    Article  Google Scholar 

  • Yari M, Mazareh AE, Mehr AS (2016) A novel cogeneration system for sustainable water and power production by integration of a solar still and PV module. Desalination 398:1–11

    Article  CAS  Google Scholar 

  • Yousef MS, Hassan H, Sekiguchi H (2019) Energy, exergy, economic and enviro economic (4E) analyses of solar distillation system using different absorbing materials. Appl Therm Eng 150:30–41

    Article  Google Scholar 

  • Yousef MdS, Hassan H (2019) Assessment of different passive solar stills via exergoeconomic, exergoenvironmental, and exergoenviroeconomic approaches: a comparative study. Sol Energy 182:316–331

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ashok Kumar Singh: conceptualization, data curation, formal analysis, validation, investigation, methodology, software, writing—original draft.

Samsher Gautam: supervision, resources, visualization, project administration.

Corresponding author

Correspondence to Ashok Kumar Singh.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Relations were utilized to solve Eq. (1) following Singh and Samsher (2020), Duffie and Beckman (2006), and Dunkle (1961) as stated,

$${U}_{saa}={\left(\frac{{R}_{o2}\mathrm{ln}\left(\frac{{R}_{i2}}{{R}_{i1}}\right)}{{K}_{g}}+\frac{1}{{h}_{r-v}}+\frac{{R}_{o2}\mathrm{ln}\left(\frac{{R}_{o2}}{{R}_{o1}}\right)}{{K}_{g}}+\frac{1}{{h}_{o}}\right)}^{-1}$$
$${I}_{s}\left(a\right)={I}_{b}\left(t\right).{(\propto \tau )}_{eff}$$
$${(\propto \tau )}_{eff}={R}_{sc}\alpha {\tau }^{2}\left({A}_{a}/{A}_{rc}\right)$$
$${h}_{o}={h}_{c-wg}+{h}_{r-wg}=5.7+3.8V$$
$${h}_{r-v}={\varepsilon }_{eff}.\sigma \left[{\left({T}_{f}+273.15\right)}^{2}+{\left({T}_{sa}+273.15\right)}^{2}\right]\times \left[{T}_{f}+{T}_{sa}+546.30\right]$$
$${\varepsilon }_{eff}={\left(1/{\varepsilon }_{g}+1/{\varepsilon }_{w}-1\right)}^{-1}$$

Expressions were utilized to solve Eqs. (7), (10), (17), and (19) as mentioned,

$${F}_{1}=\frac{{F}^{\mathrm{^{\prime}}}.{h}_{saf}}{({F}^{\mathrm{^{\prime}}}{h}_{saf}+{U}_{saa})};{F}_{2}=1-\frac{\left({A}_{rc}.{F}_{r}\right){U}_{L}}{{\dot{m}}_{f}{C}_{f}};{U}_{L}=\frac{{F}^{\mathrm{^{\prime}}}.{h}_{saf}.{U}_{saa}}{({F}^{\mathrm{^{\prime}}}{h}_{saf}+{U}_{saa})}$$
$${F}_{r}=\frac{{\dot{m}}_{f}{C}_{f}}{{A}_{rc}.{U}_{L}}\left\{1-exp\left(-\frac{2\pi {R}_{i1}{L}_{EATC}.{U}_{L}}{{\dot{m}}_{f}{C}_{f}}\right)\right\}$$
$${h}_{t-gE}={h}_{t-gW}=5.7+3.8V$$
$${U}_{cE}={h}_{t-gE}/\left(1+\frac{{h}_{t-gE}}{{K}_{g}/{t}_{g}}\right);{U}_{cW}={h}_{t-gW}/\left(1+\frac{{h}_{t-gW}}{{K}_{g}/{t}_{g}}\right)$$

Relations were utilized to solve Eqs. (20)-(21) as mentioned (Cooper 1973; Dunkle 1961; Singh and Samsher 2021a, b, c; Singh and Samsher 2022),

$${\alpha }_{g}^{A}=\left(1-{R}_{g}\right){\alpha }_{g};{R}_{g}=1-\left[4{n}_{o}{n}_{g}/\left\{\left({n}_{o}+{n}_{g}^{2}\right)\times (1+{n}_{o})\right\}\right]$$
$${h}_{t-wgE}={h}_{e-wgE}+{h}_{r-wgE}+{h}_{c-wgE}$$
$${h}_{t-wgW}={h}_{c-wgW}+{h}_{e-wgW}+{h}_{r-wgW}$$
$${h}_{r-wgE}={\varepsilon }_{eff}.\sigma \left\{{\left({T}_{w}+273.15\right)}^{2}+{\left({T}_{giE}+273.15\right)}^{2}\right\}\left\{{T}_{w}+{T}_{giE}+546.30\right\}$$
$${h}_{r-wgW}={\varepsilon }_{eff}.\sigma \left\{{\left({T}_{w}+273.15\right)}^{2}+{\left({T}_{giW}+273.15\right)}^{2}\right\}\left\{{T}_{w}+{T}_{giW}+546.30\right\}$$
$${h}_{c-wgW}=0.88\times {\left\{\left({T}_{w}-{T}_{giW}\right)+\frac{\left({T}_{w}+273.15\right)\times \left({P}_{w}-{P}_{giW}\right)}{(268.9\times {10}^{3}-{P}_{w})}\right\}}^{(1/3)}$$
$${h}_{c-wgE}=0.884{\left\{\left({T}_{w}-{T}_{giE}\right)+\frac{\left({P}_{w}-{P}_{giE}\right)\left({T}_{w}+273.15\right)}{268.9\times {10}^{3}-{P}_{w}}\right\}}^{1/3}$$
$${h}_{e-wgE}=16.273 \times {10}^{-3}{h}_{c-wgE}\left\{\frac{{P}_{w}-{P}_{giE}}{{T}_{w}-{T}_{giE}}\right\}$$
$${h}_{e-wgW}=16.273 \times {10}^{-3}{h}_{c-wgW}\left\{\frac{{P}_{w}-{P}_{giW}}{{T}_{w}-{T}_{giW}}\right\}$$
$${h}_{r-EW}={h}_{r-WE}=0.034\times \sigma \left\{{\left({T}_{giE}+273.15\right)}^{2}+{\left({T}_{giW}+273.15\right)}^{2}\right\}\left\{{T}_{giE}+{T}_{giW}+546.3\right\}$$
$${P}_{w}=\mathrm{exp}[25.317-\frac{5144}{({T}_{w}+273.15)}]$$
$${P}_{giE}=exp[25.317-\frac{5144}{{T}_{giE}+273.15}]$$
$${P}_{giW}=exp\left(25.317-\frac{5144}{{T}_{giW}+273.15}\right)$$

Equations were utilized to solve Eq. (22) as mentioned (Tiwari 2014; Singh and Samsher 2021a, b, c),

$${h}_{bw}=\left({K}_{w}/{t}_{b}\right)\left\{C{\left({R}_{a}\right)}^{1/n}\right\}$$
$${\alpha }_{w}^{A}=\left\{\left(1-{R}_{g}\right)\left(1-{\alpha }_{g}\right)(1-{R}_{w}){\alpha }_{w}\right\}$$
$${R}_{w}=\left[1-\left(4{n}_{o}{n}_{w}\right)/\left\{\left({n}_{o}+{n}_{w}^{2}\right)(1+{n}_{o})\right\}\right]$$
$${R}_{a}=\frac{g{\beta }^{\mathrm{^{\prime}}}{\rho }^{2}{X}^{3}{C}_{w}\Delta T}{\mu {K}_{w}};{G}_{r}=\frac{g{\beta }^{\mathrm{^{\prime}}}{\rho }^{2}{X}^{3}\Delta T}{{\mu }^{2}};{P}_{r}=\frac{\mu {C}_{w}}{{K}_{w}}$$
$$X=\left({L}_{o}-{B}_{o}\right)/2(\mathrm{For rectangular horizontal surface})$$
$$X=\frac{\mathrm{Area} (A)}{\mathrm{Perimeter} (P)} (\mathrm{For other surfaces})$$

Expressions were utilized to solve Eq. (25) as mentioned (Tiwari 2014),

$${h}_{ba}={\left\{\left({t}_{b}/{K}_{b}\right)+0.357\right\}}^{-1}$$
$${\alpha }_{beff}=\left({\alpha }_{b}^{A}.{h}_{bw}\right)/\left({h}_{ba}+{h}_{bw}\right)$$
$${U}_{bwa}=\left({h}_{bw}\times {h}_{ba}\right)/\left({h}_{ba}+{h}_{bw}\right)$$

Relations utilized to solve Eqs. (26)-(29), (31) as mentioned,

$${U}_{taE}=\left({U}_{cE}\times {A}_{gE}\times {h}_{t-wgE}\right)/\left[\frac{{A}_{b}}{2}\times {h}_{t-wgE}+{A}_{gE}\times ({h}_{r-EW}+{U}_{cE})\right]$$
$${U}_{taW}=\left({U}_{cW}\times {h}_{t-wgW}\times {A}_{gW}\right)/\left[{h}_{t-wgW}.\frac{{A}_{b}}{2}+{A}_{gW}.({h}_{r-WE}+{U}_{cW})\right]$$
$${h}_{1E}^{^{\prime}}=\left({A}_{gE}.{h}_{t-wgE}\right)/\left[\frac{{A}_{b}}{2}.{h}_{t-wgE}+{A}_{gE}.({h}_{r-EW}+{U}_{cE})\right]$$
$${h}_{1W}^{^{\prime}}=\left({h}_{t-wgW}.{A}_{gW}\right)/\left[\frac{{A}_{b}}{2}.{h}_{t-wgW}+{A}_{gW}.({h}_{r-WE}+{U}_{cW})\right]$$
$${h}_{2E}^{^{\prime}}=\left(\frac{{A}_{b}}{2}.{h}_{t-wgE}\right)/\left[{h}_{t-wgE}.\frac{{A}_{b}}{2}+{A}_{gE}\times ({h}_{r-EW}+{U}_{cE})\right]$$
$${h}_{2W}^{^{\prime}}=\left(\frac{{A}_{b}}{2}.{h}_{t-wgW}\right)/\left[{h}_{t-wgW}.\frac{{A}_{b}}{2}+{A}_{gW}\times ({h}_{r-WE}+{U}_{cW})\right]$$
$$a=\frac{1}{{m}_{w}{C}_{w}}\times \left[{U}_{eff}^{DS}+{h}_{r-EW}.\frac{{A}_{b}}{2}.\left({h}_{1E}^{^{\prime}}+{h}_{1W}^{^{\prime}}\right)+{\dot{m}}_{f}{C}_{f}.\left(N-1\right)\right]$$
$${U}_{eff}^{DS}=\left(\frac{{U}_{taE}}{2}+\frac{{U}_{taW}}{2}+{U}_{bwa}\right)\times {A}_{b}+{U}_{L}\times \left({A}_{rc}\times {F}_{r}\right)$$
$$f\left(t\right)=\left[{{U}_{eff}^{DS}\times T}_{a}+\left\{{I}_{sE}\left(t\right)+{I}_{sW}\left(t\right)\right\}\times \left({{\alpha }_{beff}\times \frac{{A}_{b}}{2}+\alpha }_{w}^{A}\times \frac{{A}_{g}}{2}\right)+\left({A}_{rc}.{F}_{r}\right).{F}_{1}.{\left(\propto \tau \right)}_{eff}.{I}_{b}\left(t\right)+\frac{{A}_{b}}{2}\left\{{T}_{giW}.{h}_{r-EW}({h}_{1E}^{^{\prime}}+{h}_{1W}^{^{\prime}})+{\alpha }_{g}^{A}\left({h}_{1E}^{^{\prime}}.{I}_{sE}\left(t\right)+{h}_{1W}^{^{\prime}}.{I}_{sW}\left(t\right)\right)\right\}\right]/\left({m}_{w}{C}_{w}\right)$$
$$\left(Nu.Gr\right)/Pr=\left(g.{\beta }^{^{\prime}}.{d}^{4}.\dot{q}\right)/\left({\nu }^{2}.\mu .{C}_{f}\right)$$
$$Nu=\frac{h.X}{{K}_{w}};\nu =\mu /\rho$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Gautam, S. Optimum techno-eco performance requisites for vacuum annulus tube collector–assisted double-slope solar desaltification unit integrated modified parabolic concentrator. Environ Sci Pollut Res 29, 34379–34405 (2022). https://doi.org/10.1007/s11356-021-18426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-18426-x

Keywords

Navigation