Skip to main content
Log in

Eco-design requisites for solar desaltification still augmented evacuated annular tube collectors with parabolic concentrator: an optimum-environ-economic viability

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In this paper, an eco-design criterion for a novel solar desaltification setup (SDS) with evacuated annular tube collector (EATC) and a specific set of modified combination of parabolic concentrator has been examined for maximum performance with environmental and economic circumstances. This technique approaches to rectify the irregular utilization of EATC for optimum performance with environ-economic viabilities, which evidently satisfies the eco-design requirements and boosts the solar absorption capabilities uniformly along the periphery of vacuum tubes, and results improved thermo-syphon loom significantly more than in typical applications. The suggested unit is being refined and improved water temperature by 11.4% while keeping the basin lid and annular tubes at the same direction (30°). An incremental improvement in thermo-syphon circulation of 28.1% obtained through the present study. The average solar intensity of the respective clear day has been found as 401.8 kW and the overall energy and exergy efficiency on a daily basis are 50.8%, and 3.8%, correspondingly. At a minimal retail price of 0.07 $/l, and improved daily output by 12.3 kg per day than the typical SDS-EATC system taken for comparison into consideration are determined to be more satisfactory. 131.97 and 67.44 tons alleviates for $1318.36 and $673.77 from environmental generated money based on energy-exergy are there for CO2, respectfully. The setup cost is noticeably reduced by 9.15% to the comparative system, and its productivity is determined to be 940.8% (> 100%), and this indicates that the present system is highly viable and appreciable for the feasible adaptation with the positive environ-economic possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\(A_{a}\) :

MCPC aperture area (m2)

\(A_{g}\) :

Glass area (m2)

\(A_{b}\) :

Liner area (m2)

\(A_{rc}\) :

Collector area of EATC (m2)

\(C_{w} , C_{f}\) :

Water heat capacity (J/kg K)

\(d\) :

EATC interior diameter (m)

\(E_{e}\) :

Energy get (kWh)

\(E_{x}\) :

Exergy get (kWh)

\(F^{^{\prime}}\) :

Tube collector efficiency aspect

\(G_{r}\) :

Grashof No.

\(h_{ba}\) :

Net heat transport coefficient (liner-atmosphere) (W/m2 K)

\(h_{bw}\) :

Convective heat transport coefficient (liner-water) (W/m2 K)

\(h_{t - g} , h_{o}\) :

Thermal thrashing coefficient (glaze-atmosphere) (W/m2 K)

\(h_{t - wg}\) :

Net heat transport coefficient (water-top glass) (W/m2 K)

\(h_{c - wg}\) :

Convection heat transport coefficient (water-top glass) (W/m2 K)

\(h_{e - wg}\) :

Evaporation heat transport coefficient (water-top glass) (W/m2 K)

\(h_{r - wg}\) :

Radiation heat transport coefficient (water-top glass) (W/m2 K)

\(h_{r - ev}\) :

Radiation thermal thrashing coefficient of EATC (W/m2 K)

\(h_{{{\text{saf}}}}\) :

Net heat transport coefficient from EATC absorber to water (W/m2 K)

\(I_{d} \left( t \right)\) :

Imitated radiation of ground (W/m2)

\(I_{s} \left( a \right)\) :

Absorbed sun’s ray energy (W/m2)

\(I_{s} \left( t \right)\) :

Sun’s ray energy of instance (W/m2)

\(I_{b} \left( t \right)\) :

Irradiated solar beam radiation (W/m2)

\(K_{g}\) :

Glaze conductivity (thermal) (W/m K)

\(K_{b}\) :

Lining conductivity (thermal) (W/m K)

\(K_{w}\) :

Medium (water) conductivity (thermal) (W/m K)

L:

Heat latent (vaporization) (J/kg)

\(L_{{{\text{EATC}}}}\) :

Tube length (m)

\(\dot{m}_{{{\text{ewg}}}}\) :

Hour yielding (kg/h)

\(\dot{m}_{f}\) :

Water circulation rate (kg/s)

\(m_{w}\) :

Basin water amount (kg)

\(m_{f}\) :

EATC water amount (kg)

\(n_{o}\) :

Air index (refractive)

\(n_{g}\) :

Glass index (refractive)

\(n_{w}\) :

Water index(refractive)

\(N_{u}\) :

Nusselt No.

\(N_{sh}\) :

Sunshine hours

\(P_{r}\) :

Prandtl No.

\(p_{w}\) :

Fractional vapor pressure (water surface) (Pa, N/m2)

\(p_{gi}\) :

Fractional vapor pressure (top glaze) (Pa, N/m2)

\(\dot{Q}_{{N - {\text{EATC}}}}\) :

Heat gain rate from EATC (kJ/s)

\(R_{a}\) :

Rayleigh No.

\(R_{e}\) :

Reynold No.

\(R_{g}\) :

Glass reflectivity

\(R_{i1}\) :

Internal tube ID (m)

\(R_{i2}\) :

Internal tube OD (m)

\(R_{o2}\) :

External tube OD (m)

\(R_{sc}\) :

Absorber reflectivity

\(T_{a}\) :

Air temperature (°C)

\(T_{b}\) :

Lining temperature (°C)

\(t_{b}\) :

Lining thickness (m)

\(t\) :

Time (s)

\(t_{g}\) :

Glass thickness (m)

\(T_{sa}\) :

Temperature of EATC absorber (°C)

\(T_{f}\) :

EATC fluid temperature (°C)

\(T_{fo1}\) :

EATC outlet water (brackish) temperature (°C)

\(T_{w}\) :

Still water (brackish) temperature (°C)

\(T_{go}\) :

Outer glass facade temperature (°C)

\(T_{gi}\) :

Inner glaze facade temperature (°C)

\(U_{saa}\) :

EATC tube overall heat transmit coefficient

V:

Averaged air speed (m/s)

SDS:

Solar desaltification scheme

EATC:

Evacuated annulled tube collector

CPC:

Combination of parabolic concentrator

OCPC:

Orient combination of parabolic concentrator

MCPC:

Modified combination of parabolic concentrator

CCPC:

Cusp combination of parabolic collector

\(\nu\) :

Viscosity (kinematic) (m2/s)

\(\beta^{^{\prime}}\) :

Volumetric expansion (thermal) (K1)

\(\alpha\) :

Absorptivity (absorber)

\(\mu\) :

Viscosity (dynamic) (N.s/m2)

\(\alpha_{g}\) :

Glass absorptivity

\(\alpha_{w}\) :

Water absorptivity

\(\alpha_{b}\) :

Liner absorptivity

\(\eta_{i}\) :

Instantaneous efficiency (%)

\(\eta_{e}\) :

Energy efficiency (%)

\(\eta_{x}\) :

Exergy efficiency (%)

\(\tau\) :

Transmissivity

\(\sigma\) :

Stefan–Boltzmann constant (W/m2 K4)

\(\rho\) :

Density (kg/m3)

\(\varepsilon_{{{\text{eff}}}}\) :

Effective emissivity

\(\varepsilon_{g}\) :

Glass emissivity

\(\varepsilon_{w}\) :

Water emissivity

References

  • Alayi, R., Khalilpoor, N., Heshmati, S., Najafi, A., & Issakhov, A. (2021). Thermal and environmental analysis solar water heater system for residential buildings. International Journal of Photoenergy, 6838138, 1–9.

    Google Scholar 

  • Bait, O. (2019). Exergy, environeeconomic and economic analyses of a tubular solar water heater assisted solar still. Journal of Cleaner Production, 212, 630–646.

    Article  Google Scholar 

  • Benson, F. (1952). Further notes on the productivity of machines requiring attention at random intervals. Journal of the Royal Statistical Society: Series B (Methodological), XIV, 200–210.

  • Budihardjo, I., & Morrison, G. L. (2009). Performance of water-in-glass evacuated tube solar water heaters. Solar Energy, 83, 49–56.

    Article  Google Scholar 

  • Budihardjo, I., Morrison, G. L., & Behnia, M. (2007). Natural circulation flow through water-in- lass evacuated tube solar collectors. Solar Energy, 81, 1460–1472.

    Article  CAS  Google Scholar 

  • Cengel, X. A., & Boles, M. A. (2013). Thermodynamics, an engineering approach. McGraw-Hill Education Pvt. Ltd.

    Google Scholar 

  • Cooper, P. I. (1973). The maximum efficiency of single-effect solar stills. Solar Energy, 15, 205–217.

    Article  Google Scholar 

  • Cox, D. R. (1951). The productivity of machines requiring attention at random intervals. Journal of the Royal Statistical Society: Series B (Methodological) XIII, 65–82.

  • Dev, R., & Tiwari, G. N. (2012). Annual performance of evacuated tubular collector integrated solar still. Desalination Water Treatment, 41, 204–223.

    Article  CAS  Google Scholar 

  • Duffie, J. A., & Beckman, W. A. (2006). Solar engineering of thermal processes. Hoboken- Wiley.

    Google Scholar 

  • Dunkle, R. V. (1961). Solar water distillation: the roof type solar still and a multiple effect diffusion still, International Developments in Heat Transfer ASME 895–902.

  • IAPWS (1996). International association for the properties of water and steam, for the thermodynamic properties of ordinary water substance for general and scientific use, 1996.

  • IAPWS (2008). International association for the properties of water and steam, the viscosity of ordinary water substance, 2008.

  • Issa, R. J., & Chang, B. (2017). Performance study on evacuated tubular collector coupled solar stillin west texas climate. International Journal of Green Energy. https://doi.org/10.1080/15435075.2017.1328422

    Article  Google Scholar 

  • Koffi, P. M. E., Andoh, H. Y., Gbaha, P., Toure, S., & Ado, G. (2008a). Theoretical and experimental study of solar water heater with internal exchanger using thermosiphon system. Energy Conversion and Management, 49, 2279–2290.

    Article  Google Scholar 

  • Koffi, P. M. E., Andoh, H. Y., Gbaha, P., Toure, S., & Ado, G. (2008b). Theoretical and experimental study of solar water heater with internal exchanger using thermosiphon system, Energy Convers. Manage, 49, 2279–2290.

    Google Scholar 

  • Kumar, S., Dubey, A., & Tiwari, G. (2014). A solar still augmented with an evacuated tube collector in forced mode. Desalination, 347, 15–24.

    Article  CAS  Google Scholar 

  • Liu, B. Y. H., Jordan, R. C., (1960). The interrelationship and characteristic distribution of direct, diffuse and total solar radiation, Solar Energy, 4(3).

  • Malik, M. A. S., Tiwari, G. N., Kumar, A., & Sodha, M. S. (1982). Solar distillation—a practical study of a wide range of stills and their optimum design, construction and performance. Pergamon Press.

    Google Scholar 

  • Mittal, M. L., Sharma, C., & Singh, R. (2014). Decadal emission estimates of carbon dioxide, sulphur dioxide and nitic oxide emissions from coal burning in electric power generation plants in India. Environmental Monitoring and Assessment, 186, 6857–6866.

    Article  CAS  Google Scholar 

  • Morrison, G. L., Budihardjoa, I., & Behnia, M. (2005). Measurement and simulation of flow rate in a water-in-glass evacuated tube solar water heater. Solar Energy, 78, 257–267.

    Article  CAS  Google Scholar 

  • Patel, J., Markam, B. K., & Maiti, S. (2019). Potable water by solar thermal distillation in solar salt works and performance enhancement by integrating with evacuated tubes. Solar Energy, 188, 561–572.

    Article  Google Scholar 

  • Pissavi, P. (1982). Modelling of the dynamic behavior of a tank for solar storage with internal exchanger. Rev´ Ge´n Thermique, 246–247, 521–35.

    Google Scholar 

  • Reddy, K. S., & Sharon, H. (2017). Energy–environment–economic investigations on evacuated active multiple stage series flow solar distillation unit for potable water production. Energy Conversion and Management, 151, 259–285.

    Article  CAS  Google Scholar 

  • Reddy, K. S., Sharon, H., Krithika, D., & Philip, L. (2018). Performance, water quality and enviro-economic investigations on solar distillation treatment of reverse osmosis reject and sewage water. Solar Energy, 173, 160–172.

    Article  CAS  Google Scholar 

  • Roome, J. (2019). State and Trends of Carbon Pricing (2019). World Bank Group.

    Google Scholar 

  • Sampathkumar, K., Arjunan, T., & Senthilkumar, P. (2013). The experimental investigation of a solar still coupled with an evacuated tube collector. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465, 35, 261–270.

    Article  CAS  Google Scholar 

  • Sato, A. I., Scalon, V. L., Padilha, A., (2012). Numerical analysis of a modified evacuated tubes solar collector. International Conference on Renewable Energies and Power Quality (ICREPQ'12).

  • Sharon, H., Reddy, K. S., Krithika, D., & Philip, L. (2017). Experimental performance investigation of tilted solar still with basin and wick for distillate quality and enviro-economic aspects. Desalination, 410, 30–54.

    Article  CAS  Google Scholar 

  • Singh, A. K., Samsher (2021c). Tech-en-econ-energy-exergy-matrix (T4EM) observations of evacuated solar tube collector augmented solar desaltification unit: A modified design loom, Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021c.09.088

  • Singh, A. K. (2020). An inclusive study on new conceptual designs of passive solar desalting systems. Heliyon, 7, e05793.

    Article  Google Scholar 

  • Singh, A. K., & Gautam, S. (2022). Optimum techno-eco performance requisites for vacuum annulus tube collector-assisted double-slope solar desaltification unit integrated modified parabolic concentrator. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-18426-x

    Article  Google Scholar 

  • Singh, A. K., Samsher (2020). Analytical study of evacuated annulus tube collector assisted solar desaltification system: A review, Solar Energy, 207: 1404–1426.

  • Singh, A. K., Samsher (2021a). A review study of solar desalting units with evacuated tube collectors. Journal of Cleaner Production 279: 123542.

  • Singh, A. K., Samsher (2021b). Material conscious energy matrix and enviro-economic analysis of passive ETC solar still. Materials Today: Proceedings, 38, 1–5.

  • Singh, A. K., Samsher (2022). Techno-environ-economic-energy-exergy-matrices performance analysis of evacuated annulus tube with modified parabolic concentrator assisted single slope solar desalination system. Journal of Cleaner Production, 332:129996.

  • Singh, A. K., Yadav, R. K., Mishra, D., Prasad, R., Gupta, L. K., & Kumar, P. (2020). Active solar distillation technology: A wide overview. Desalination, 493, 114652.

    Article  CAS  Google Scholar 

  • Singh, R. V., Kumar, S., Hasan, M., Khan, M. E., & Tiwari, G. (2013). Performance of a solar still integrated with evacuated tube collector in natural mode. Desalination, 318, 25–33.

    Article  CAS  Google Scholar 

  • Tiwari, G. N., Raj, K., Maheshwari, K. P., Sawhney, R. L. (1992). Recent advances in solar distillation. In: International Journal of Solar Energy and Energy Conversion. Wiley Eastern, New Delhi, pp. 32e149 (Chapter 2).

  • Tiwari, G., Shukla, S., & Singh, I. (2003). Computer modeling of passive/active solar stills by using inner glass temperature. Desalination, 154, 171e185.

    Article  Google Scholar 

  • Tiwari, G. N., Tiwari, A., Shyam (2016). Handbook of Solar Energy Theory Analysis and Applications, Springer Nature

  • Tiwari, A. K., & Tiwari, G. N. (2007). Annual performance analysis and thermal modelling of passive solar still for different inclination of condensing cover. International Journal of Energy Research, 31(4), 1358–1382.

    Article  Google Scholar 

  • Tiwari, G. N. (2014). Solar Energy: Fundamentals, Design. Narosa Publishing House.

    Google Scholar 

  • Tiwari, G. N., Yadav, J. K., Singh, D. B., Al–Helal, I. M., Abdel–Ghany, A. M. (2015). Exergoeconomic and enviroeconomic analyses of partially covered photovoltaic flat plate collector active solar distillation system. Desalination, 367, 186–196.

  • Tsatsaronis, G., & Park, H. (2002). On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Conversion and Management, 43(9–12), 1259–1270.

    Article  Google Scholar 

  • Yari, M., Mazareh, A. E., & Mehr, A. S. (2016). A novel cogeneration system for sustainable water and power production by integration of a solar still and PV module. Desalination, 398, 1–11.

    Article  CAS  Google Scholar 

  • Yousef, Md. S., & Hassan, H. (2019). Assessment of different passive solar stills via exergoeconomic, exergoenvironmental, and exergoenviroeconomic approaches: A comparative study. Solar Energy, 182, 316–331.

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AKS: Conceptualization, Data curation, Formal analysis, Validation, Investigation, Methodology, Software, Writing—original draft. SG: Supervision, Resources, Visualization, Project administration.

Corresponding author

Correspondence to Ashok Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Relationships employed to resolve Eq. (1), (2) (Duffie & Beckman, 2006; Singh & Gautam, 2022)

$${U}_{saa}={\left(\frac{{R}_{o2}\mathrm{ln}\left(\frac{{R}_{i2}}{{R}_{i1}}\right)}{{K}_{g}}+\frac{1}{{h}_{r-v}}+\frac{{R}_{o2}\mathrm{ln}\left(\frac{{R}_{o2}}{{R}_{o1}}\right)}{{K}_{g}}+\frac{1}{{h}_{o}}\right)}^{-1}$$
$${I}_{s}\left(a\right)={I}_{b}\left(t\right).{(\propto \tau )}_{eff}$$
$${(\propto \tau )}_{eff}={R}_{sc}\alpha {\tau }^{2}\left({A}_{a}/{A}_{rc}\right)$$
$${h}_{o}={h}_{c-wg}+{h}_{r-wg}=3.8V+5.7$$
$${h}_{r-v}={\varepsilon }_{eff}.\sigma \left[{\left({T}_{f}+273.15\right)}^{2}+{\left({T}_{sa}+273.15\right)}^{2}\right]\times \left[{T}_{f}+{T}_{sa}+546.30\right]$$
$${\varepsilon }_{\mathrm{eff}}={\left(1/{\varepsilon }_{g}+1/{\varepsilon }_{w}-1\right)}^{-1}$$

Terminologies utilized in Eqs. (7), (10), and (17) as stated,

$$F_{1} = \frac{{F^{\prime}.h_{{{\text{saf}}}} }}{{\left( {F^{\prime}h_{{{\text{saf}}}} + U_{{{\text{saa}}}} } \right)}}$$
$${U}_{L}=\frac{{F}^{^{\prime}}.{h}_{\mathrm{saf}}.{U}_{\mathrm{saa}}}{({F}^{^{\prime}}{h}_{\mathrm{saf}}+{U}_{\mathrm{saa}})}$$
$$F_{2} = 1 - \frac{{\left( {A_{rc} .F_{r} } \right)U_{L} }}{{\dot{m}_{f} C_{f} }}$$
$${F}_{r}=\frac{{\dot{m}}_{f}{C}_{f}}{{A}_{rc}.{U}_{L}}\left\{ 1-\mathrm{exp}\left(-\frac{2\pi {R}_{i1}{L}_{\mathrm{EATC}}.{U}_{L}}{{\dot{m}}_{f}{C}_{f}}\right)\right\}$$
$${h}_{t-g}=5.7+3.8V$$
$${U}_{c}={h}_{t-g}/\left(1+\frac{{h}_{t-g}}{{K}_{g}/{t}_{g}}\right)$$

Relationships utilized for Eq. (18) as expressed (Cooper, 1973; Dunkle, 1961; Singh & Gautam, 2022; Singh & Samsher, 2020),

$${\alpha }_{g}^{A}=\left(1-{R}_{g}\right){\alpha }_{g}$$
$${R}_{g}=1-\frac{4{n}_{o}{n}_{g}}{\left({n}_{o}+{n}_{g}^{2}\right)(1+{n}_{o})}$$
$${h}_{t-wg}={h}_{r-wg}+{h}_{c-wg}+{h}_{e-wg}$$
$${h}_{r-wg}={\varepsilon }_{\mathrm{eff}}.\sigma \left\{{\left({T}_{w}+273.15\right)}^{2}+{\left({T}_{gi}+273.15\right)}^{2}\right\}\left\{{T}_{w}+{T}_{gi}+546.30\right\}$$
$${h}_{c-wg}=0.884{\left\{\left({T}_{w}-{T}_{gi}\right)+\frac{\left({P}_{w}-{P}_{gi}\right)\left({T}_{w}+273.15\right)}{268.9\times {10}^{3}-{P}_{w}}\right\}}^{1/3}$$
$${h}_{e-wg}=16.273 \times {10}^{-3}{h}_{c-wg}\left\{\frac{{P}_{w}-{P}_{gi}}{{T}_{w}-{T}_{gi}}\right\}$$
$${P}_{w}=\mathrm{exp}\left(25.32-\frac{5144}{{T}_{w}+273.15}\right)$$
$${P}_{gi}=\mathrm{exp}\left(25.32-\frac{5144}{{T}_{gi}+273.15}\right)$$

Equations used in Eq. (20) as,

$${\alpha }_{w}^{A}=\left\{\left(1-{R}_{g}\right)\left(1-{\alpha }_{g}\right)(1-{R}_{w}){\alpha }_{w}\right\}$$
$${R}_{w}=\left[1-\left(4{n}_{o}{n}_{w}\right)/\left\{\left({n}_{o}+{n}_{w}^{2}\right)(1+{n}_{o})\right\}\right]$$
$${R}_{a}=\frac{g{\beta }^{^{\prime}}{\rho }^{2}{X}^{3}{C}_{w}\Delta T}{\mu {K}_{w}}$$
$${G}_{r}=\frac{g{\beta }^{^{\prime}}{\rho }^{2}{X}^{3}\Delta T}{{\mu }^{2}}$$
$${P}_{r}=\frac{\mu {C}_{w}}{{K}_{w}}$$

Equations used in Eq. (22) as written (Tiwari, 2014),

$${h}_{ba}={\left\{\left({t}_{b}/{K}_{b}\right)+0.357\right\}}^{-1}$$
$${\alpha }_{beff}=\left({\alpha }_{b}^{A}.{h}_{bw}\right)/\left({h}_{ba}+{h}_{bw}\right)$$
$${U}_{bwa}=\left({h}_{bw}.{h}_{ba}\right)/\left({h}_{bw}+{h}_{ba}\right)$$

Relationships involved in Eqs. (25), (28), and (34) as,

$${U}_{ta}=\left({h}_{t-wg}.{A}_{g}.{U}_{c}\right)/\left({A}_{b}.{h}_{t-wg}+{U}_{c}.{A}_{g}\right)$$
$${h}_{1}^{^{\prime}}=\left({A}_{g}.{h}_{t-wg}\right)/\left({h}_{t-wg}.{A}_{b}+{A}_{g}.{U}_{c}\right)$$
$$a=\left\{{U}_{eff}+{\dot{m}}_{f}{C}_{f}\left(N-1\right)\right\}/\left({m}_{w}{C}_{w}\right)$$
$${U}_{\mathrm{eff}}=\left\{\left({U}_{ta}+{U}_{bwa}\right){A}_{b}+\left({A}_{rc}{F}_{r}\right){U}_{L}\right\}$$
$${\alpha }_{\mathrm{eff}}^{A}=\left({\alpha }_{w}^{A}+{\alpha }_{beff}+{h}_{1}^{^{\prime}}.{\alpha }_{g}^{A}\right)$$
$$f\left(t\right)=\left\{{I}_{s}\left(t\right){A}_{b}.{\alpha }_{eff}^{A}+{T}_{a}.{U}_{eff}+{F}_{1}.{\left(\propto \tau \right)}_{eff}.\left({A}_{rc}{F}_{r}\right){I}_{b}(t)\right\}/\left({m}_{w}{C}_{w}\right)$$
$$\left(Gr.Nu\right)/Pr=\left(g.{d}^{4}.\dot{q}.{\beta }^{^{\prime}}\right)/\left({\nu }^{2}.{C}_{f}.\mu \right)$$
$$Nu=\frac{h.X}{{K}_{w}}$$
$$\nu =\mu /\rho$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Samsher Eco-design requisites for solar desaltification still augmented evacuated annular tube collectors with parabolic concentrator: an optimum-environ-economic viability. Environ Dev Sustain 25, 11057–11094 (2023). https://doi.org/10.1007/s10668-022-02518-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02518-w

Keywords

Navigation