Skip to main content

Advertisement

Log in

Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, we simulate the irrigation of tomato plants with arsenic (As)-contaminated water (from 0 to 3.2 mg L−1) and investigate the effect of the application of silicon nanoparticle (Si NPs) in the form of silicon dioxide (0, 250, and 1000 mg L−1) on As uptake and stress. Arsenic concentrations were determined in substrate and plant tissue at three different stratums. Phytotoxicity, As accumulation and translocation, photosynthetic pigments, and antioxidant activity of enzymatic and non-enzymatic compounds were also determined. Our results show that irrigation of tomato plants with As-contaminated water caused As substrate enrichment and As bioaccumulation (roots > leaves > steam), showing that the higher the concentration in irrigation water, the farther As translocated through the different tomato stratums. Additionally, phytotoxicity was observed at low concentrations of As, while tomato yield increased at high concentrations of As. We found that application of Si NPs decreased As translocation, tomato yield, and root biomass. Increased production of photosynthetic pigments and improved enzymatic activity (CAT and APX) suggested tomato plant adaptation at high As concentrations in the presence of Si NPs. Our results reveal likely impacts of As and nanoparticles on tomato production in places where As in groundwater is common and might represent a risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  • Adrees M, Abbas F, Zia-ur-Rehman M, Ibrahim M, Rizwan M, Ali S, Farid M, Irshad MK, Qayyum MF (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  Google Scholar 

  • Alarcón-Herrera MT, Martin-Alarcon DA, Gutiérrez M, Reynoso-Cuevas L, Martín-Domínguez A, Olmos-Márquez MA, Bundschuh J (2020) Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: geographical data visualization. Sci Total Environ 698:134168

    Article  CAS  Google Scholar 

  • Alejandro-Córdova A, Rivera-Cruz MC, Hernández-Cuevas LV, Alarcón A, Trujillo-Narcía A, De la Cruz RG (2017) Responses of arbuscular mycorrhizal fungi and grass Leersia hexandra Swartz exposed to soil with crude oil. Water Air Soil Pollut 228:65

    Article  CAS  Google Scholar 

  • Ali S, Rizwan M, Hussain A, Zia urRehman M, Ali B, Yousaf B, Wijaya L, Alyemeni MN, Ahmad P (2019) Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.). Plant Physiol Biochem 140:1–8

    Article  CAS  Google Scholar 

  • Ali W, Isayenkov SV, Zhao FJ, Maathuis FJM (2009) Arsenite transport in plants. Cell Mol Life Sci 66:2329–2339

    Article  CAS  Google Scholar 

  • Allevato E, Mauro RP, Stazi SR, Marabottini R, Leonardi C, Ierna A, Giuffrida F (2019) Arsenic accumulation in grafted melon plants: role of rootstock in modulating root-to-shoot translocation and physiological response. Agronomy 9:828

    Article  CAS  Google Scholar 

  • Alquraidi AO, Mosa KA, Ramamoorthy K (2019) Phytotoxic and genotoxic effects of copper nanoparticles in coriander (Coriandrum sativum—Apiaceae). Plants 8:19

    Article  CAS  Google Scholar 

  • Arvouet-Grand A, Vennat B, Pourrat A, Legret P (1994) Standardization of propolis extract and identification of principal constituents. J Pharm Belg 49:462–468

    CAS  Google Scholar 

  • Azeem W, Ashraf M, Shahzad SM, Imtiaz M, Akhtar M, Rizwan MS (2017) Phosphate-arsenate relations to affect arsenic concentration in plant tissues, growth, and antioxidant efficiency of sunflower (Helianthus annuus L.) under arsenic stress. Environ Sci Pollut Res 24:24376–24386

    Article  CAS  Google Scholar 

  • Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159:74–480

    Article  Google Scholar 

  • Beesley L, Marmiroli M, Pagano L, Pigoni V, Fellet G, Fresno T, Vamerali T, Bandiera M, Marmiroli N (2013) Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Sci Total Environ 454–455:598–603

    Article  CAS  Google Scholar 

  • Biswas P, Ali SY, Patra PK (2016) Effect of arsenic in germination, growth and biochemistry of Rice (Oryza sativa). Int J Environ Agric Biotechnol 1:321–327

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Campos NV, Loureiro ME, Azevedo AA (2014) Differences in phosphorus translocation contributes to differential arsenic tolerance between plants of Borreria verticillata (Rubiaceae) from mine and non-mine sites. Environ Sci Pollut Res 21:5586–5596

    Article  CAS  Google Scholar 

  • Canadian Council of Ministers of the Environment (2001) Canadian soil quality guidelines for the protection of environmental and human health - arsenic (inorganic), Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment

  • Cao X, Ma LQ, Tu C (2004) Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ Pollut 128:317–325

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina AA, Burló F, Burgos-Hernández A, López E, Mataix J (1997) The influence of arsenite concentration on arsenic accumulation in tomato and bean plants. Sci Hortic 71:167–176

    Article  CAS  Google Scholar 

  • Chandrakar V, Naithani SC, Keshavkant S (2016) Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: a review. Biologia 71:367–377

    Article  CAS  Google Scholar 

  • Chen R, Zhang C, Zhao Y, Huang Y, Liu Z (2018) Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants. Environ Sci Pollut Res 25:2361–2368

    Article  CAS  Google Scholar 

  • Chen Y, Fu JW, Han YH, Rathinasabapathi B, Ma LQ (2016) High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata. Chemosphere 144:2189–2194

    Article  CAS  Google Scholar 

  • Choi Y, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50

    Article  CAS  Google Scholar 

  • Choi YE, Harada E, Kim GH, Yoon ES, Sano H (2004) Distribution of elements on tobacco trichomes and leaves under cadmium and sodium stresses. J Plant Biol 47:75–82

    Article  CAS  Google Scholar 

  • Codling EE, Chaney RL, Green CE (2016) Accumulation of lead and arsenic by potato grown on lead–arsenate-contaminated orchard soils. Commun Soil Sci Plant Anal 47:799–807

    Article  CAS  Google Scholar 

  • Cumplido-Nájera CF, González-Morales S, Ortega-Ortíz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A (2019) The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Sci Hortic 245:82–89

    Article  CAS  Google Scholar 

  • de Sousa A, Saleh AM, Habeeb TH, Hassan YM, Zrieq R, Wadaan MAM, Hozzein WN, Selim S, Matos M, AbdElgawad H (2019) Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. Sci Total Environ 693:133636

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase content in a trusted digital archive. We use information technology and tools to increase produ. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • DOF (2007) Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1–2004, Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. SEMARNAT, Mexico

  • DOF (1997) Norma Oficial Mexicana NOM-001-ECOL-1996, Que establece los lí mites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. SEMARNAT, Mexico

  • Drzewiecka K, Gąsecka M, Rutkowski P, Magdziak Z, Goliński P, Mleczek M (2018) Arsenic forms and their combinations induce differences in phenolic accumulation in Ulmus laevis Pall. J Plant Physiol 220:34–42

    Article  CAS  Google Scholar 

  • Du L, Xia X, Lan X, Liu M, Zhao L, Zhang P, Wu Y (2017) Influence of arsenic stress on physiological, biochemical, and morphological characteristics in seedlings of two cultivars of maize (Zea mays L.). Water Air Soil Pollut 228:55

    Article  CAS  Google Scholar 

  • El-Naggar ME, Abdelsalam NR, Fouda MMG, Mackled MI, Al-Jaddadi MAM, Ali HM, Siddiqui MH, Kandil EE (2020) Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials 10:739

    Article  CAS  Google Scholar 

  • El-Naggar ME, Hassabo AG, Mohamed AL, Shaheen TI (2017) Surface modification of SiO2 coated ZnO nanoparticles for multifunctional cotton fabrics. J Colloid Interface Sci 498:413–422

    Article  CAS  Google Scholar 

  • Elsheery NI, Helaly MN, El-Hoseiny HM, Alam-Eldein SM (2020) Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 10:558

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y, Zheng X, Wang Y (2020) Silicon dioxide nanoparticles improve plant growth by enhancing antioxidant enzyme capacity in bamboo (Pleioblastus pygmaeus) under lead toxicity. Trees Struct Funct 34:469–481

    Article  CAS  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:1–18

    Article  CAS  Google Scholar 

  • FIRA (2017) Panorama Agroalimentario: Tomate rojo, Fideicomisos Instituidos en Relación con la Agricultura

  • Garbinski LD, Rosen BP, Chen J (2019) Pathways of arsenic uptake and efflux. Environ Int 126:585–597

    Article  CAS  Google Scholar 

  • García-López JI, Niño-Medina G, Olivares-Sáenz E, Lira-Saldivar RH, Barriga-Castro ED, Vázquez-Alvarado R, Rodríguez-Salinas PA, Zavala-García F (2019) Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 8:254

    Article  CAS  Google Scholar 

  • Ghoto K, Simon M, Shen ZJ, Gao GF, Li PF, Li H, Zheng HL (2020) Physiological and root exudation response of maize seedlings to TiO2 and SiO2 nanoparticles exposure. Bionanoscience 10:473–485

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  CAS  Google Scholar 

  • Gomes MP, Soares AM, Garcia QS (2014) Phosphorous and sulfur nutrition modulate antioxidant defenses in Myracrodruom urundeuva plants exposed to arsenic. J Hazard Mater 276:97–104

    Article  CAS  Google Scholar 

  • González-Moscoso M, Martínez-Villegas NV, Cadenas-Pliego G, Benavides-Mendoza A, Rivera-Cruz MC, González-Morales S, Juárez-Maldonado A (2019) Impact of silicon nanoparticles on the antioxidant compounds of tomato fruits stressed by arsenic. Foods 8:612

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic-phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220

    Article  CAS  Google Scholar 

  • Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Pereira LB, Castro GY, Srivastava S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484

    Article  CAS  Google Scholar 

  • Haichar FZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Huang TL, Nguyen QTT, Fu SF, Lin CY, Chen YC, Huang HJ (2012) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol 80:587–608

    Article  CAS  Google Scholar 

  • Islam F, Mao B, Najeeb U, Zhou W, Yan G, Farooq MA, Ali B, Gill RA, Siddique KHM (2016) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environ Exp Bot 132:42–52

    Article  CAS  Google Scholar 

  • Jiang W, Hou Q, Yang Z, Zhong C, Zheng G, Yang Z, Li J (2014) Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content. Environ Pollut 188:159–165

    Article  CAS  Google Scholar 

  • Jośko I, Oleszczuk P (2013) Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere 92:91–99. https://doi.org/10.1016/j.chemosphere.2013.02.048

    Article  CAS  Google Scholar 

  • Juárez-Maldonado A, Ortega-Ortíz H, Morales-Díaz AB, González-Morales S, Morelos-Moreno Á, Cabrera-De la Fuente M, Sandoval-Rangel A, Cadenas-Pliego G, Benavides-Mendoza A (2019) Nanoparticles and nanomaterials as plant biostimulants. Int J Mol Sci 20:162

    Article  CAS  Google Scholar 

  • Kalita J, Pradhan AK, Shandilya ZM, Tanti B (2018) Arsenic stress responses and tolerance in rice: physiological, cellular and molecular approaches. Rice Sci 25:235–249

    Article  Google Scholar 

  • Kasote DM, Katyare SS, Hegde MV, Bae H (2015) Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 11:982–991

    Article  CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunsé B, Barceló J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    CAS  Google Scholar 

  • Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnology 12:50

    Article  CAS  Google Scholar 

  • Li G, Zheng M, Tang J, Shim H, Cai C (2018) Effect of silicon on arsenic concentration and speciation in different rice tissues. Pedosphere 28:511–520

    Article  CAS  Google Scholar 

  • Liu Y, Mi Y, Zhang J, Li Q, Chen L (2016) Illumina-based transcriptomic profiling of Panax notoginseng in response to arsenic stress. Bot Stud 57:13

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 411:438–438

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    Article  CAS  Google Scholar 

  • Madannejad R, Shoaie N, Jahanpeyma F, Darvishi MH, Azimzadeh M, Javadi H (2019) Toxicity of carbon-based nanomaterials: reviewing recent reports in medical and biological systems. Chem Biol Interact 307:206–222

    Article  CAS  Google Scholar 

  • Mali SC, Raj S, Trivedi R (2020) Nanotechnology a novel approach to enhance crop productivity. Biochem Biophys Rep 24:100821

    Google Scholar 

  • Marmiroli M, Pigoni V, Savo-Sardaro ML, Marmiroli N (2014) The effect of silicon on the uptake and translocation of arsenic in tomato (Solanum lycopersicum L.). Environ Exp Bot 99:9–17

    Article  CAS  Google Scholar 

  • Martí R, Leiva-Brondo M, Lahoz I, Campillo C, Cebolla-Cornejo J, Roselló S (2018) Polyphenol and L-ascorbic acid content in tomato as influenced by high lycopene genotypes and organic farming at different environments. Food Chem 239:148–156

    Article  CAS  Google Scholar 

  • Masood S, Saleh L, Witzel K, Plieth C, Mühling KH (2012) Determination of oxidative stress in wheat leaves as influenced by boron toxicity and NaCl stress. Plant Physiol Biochem 56:56–61

    Article  CAS  Google Scholar 

  • Miteva E, Hristova D, Nenova V, Maneva S (2005) Arsenic as a factor affecting virus infection in tomato plants: changes in plant growth, peroxidase activity and chloroplast pigments. Sci Hortic 105:343–358

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mohamed AL, El-Naggar ME, Shaheen TI, Hassabo AG (2017) Laminating of chemically modified silan based nanosols for advanced functionalization of cotton textiles. Int J Biol Macromol 95:429–437

    Article  CAS  Google Scholar 

  • Momoki K, Manabe T, Li L, Yan J (2020) Silicon nanoparticle generation and deposition on glass from waste silicon powder by nanosecond pulsed laser irradiation. Mater Sci Semicond Process 111:104998

    Article  CAS  Google Scholar 

  • Nagata M, Yamashita I (1992) Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit Masayasu N. J. Japan Soc Food Sci Technol 39:925–928

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ni J, Hao J, Jiang Z, Zhan X, Dong L, Yang X, Sun Z, Xu W, Wang Z, Xu M (2017) NaCl induces flavonoid biosynthesis through a putative novel pathway in post-harvest ginkgo leaves. Front Plant Sci 8:1–11

    Article  CAS  Google Scholar 

  • Otero XL, Tierra W, Atiaga O, Guanoluisa D, Nunes LM, Ferreira TO, Ruales J (2016) Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador. Sci Total Environ 573:778–787

    Article  CAS  Google Scholar 

  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32:902–907

    Article  CAS  Google Scholar 

  • Pandey C, Gupta M (2015) Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mater 287:384–391

    Article  CAS  Google Scholar 

  • Pandey C, Khan E, Panthri M, Tripathi RD, Gupta M (2016) Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress modulators under arsenic stress. Plant Physiol Biochem 104:216–225

    Article  CAS  Google Scholar 

  • Pereira LB, Mazzanti CMA, Gonçalves JF, Cargnelutti D, Tabaldi LA, Becker AG, Calgaroto NS, Farias JG, Battisti V, Bohrer D, Nicoloso FT, Morsch VM, Schetinger MRC (2010) Aluminum-induced oxidative stress in cucumber. Plant Physiol Biochem 48:683–689

    Article  CAS  Google Scholar 

  • Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29–36

    Article  CAS  Google Scholar 

  • Praveen A, Khan E, Ngiimei S, Perwez M, Sardar M, Gupta M (2018) Iron oxide nanoparticles as nano-adsorbents: a possible way to reduce arsenic phytotoxicity in Indian mustard plant (Brassica juncea L.). J Plant Growth Regul 37:612–624

    Article  CAS  Google Scholar 

  • Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Lou GM (2017) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ 581–582:209–220

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M, Del Río LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Ronzan M, Piacentini D, Fattorini L, Federica DR, Caboni E, Eiche E, Ziegler J, Hause B, Riemann M, Betti C, Altamura MM, Falasca G (2019) Auxin-jasmonate crosstalk in Oryza sativa L. root system formation after cadmium and/or arsenic exposure. Environ Exp Bot 165:59–69

    Article  CAS  Google Scholar 

  • Ruíz-Huerta EA, de la Garza VA, Gómez-Bernal JM, Castillo F, Avalos-Borja M, SenGupta B, Martínez-Villegas N (2017) Arsenic contamination in irrigation water, agricultural soil and maize crop from an abandoned smelter site in Matehuala, Mexico. J Hazard Mater 339:330–339

    Article  CAS  Google Scholar 

  • Saeid ZD, Zahra A, Abdolhamid NS (2014) Investigation of synergistic action between coronatine and nitric oxide in alleviating arsenic-induced toxicity in sweet basil seedlings. Plant Growth Regul 74:119–130

    Article  CAS  Google Scholar 

  • Salachna P, Byczyńska A, Zawadzińska A, Piechocki R, Mizielińska M (2019) Stimulatory effect of silver nanoparticles on the growth and flowering of potted oriental lilies. Agronomy 9:610

    Article  CAS  Google Scholar 

  • Sanal F, Şeren G, Guuner U (2014) Effects of arsenate and arsenite on germination and some physiological attributes of barley Hordeum vulgare L. Bull Environ Contam Toxicol 92:483–489

    Article  CAS  Google Scholar 

  • Santos AE, Cruz-Ortega R, Meza-Figueroa D, Romero FM, Sanchez-Escalante JJ, Maier RM, Neilson JW, Alcaraz LD, Molina Freaner FE (2017) Nacozari mine abandoned tailings plants: evaluation of their phytostabilization potential. PeerJ 5:e3280

    Article  CAS  Google Scholar 

  • Savvas D, Ntatsi G (2015) Biostimulant activity of silicon in horticulture. Sci Hortic 196:66–81

    Article  CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Article  CAS  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92

    Article  CAS  Google Scholar 

  • Silva S, Silva P, Oliveira H, Gaivão I, Matos M, Pinto-Carnide O, Santos C (2017) Pb low doses induced genotoxicity in Lactuca sativa plants. Plant Physiol Biochem 112:109–116

    Article  CAS  Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270

    Article  CAS  Google Scholar 

  • Song C, Ye F, Zhang H, Hong J, Hua C, Wang B, Chen Y, Ji R, Zhao L (2019) Metal(loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants. Environ Pollut 255:113354

    Article  CAS  Google Scholar 

  • Stazi SR, Mancinelli R, Marabottini R, Allevato E, Radicetti E, Campiglia E, Marinari S (2018) Influence of organic management on As bioavailability: soil quality and tomato As uptake. Chemosphere 211:352–359

    Article  CAS  Google Scholar 

  • Steiner AA (1961) A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15:134–154

    Article  CAS  Google Scholar 

  • Tolaymat T, Genaidy A, Abdelraheem W, Dionysiou D, Andersen C (2017) The effects of metallic engineered nanoparticles upon plant systems: an analytic examination of scientific evidence. Sci Total Environ 579:93–106

    Article  CAS  Google Scholar 

  • Torrent L, Iglesias M, Marguí E, Hidalgo M, Verdaguer D, Llorens L, Kodre A, Kavčič A, Vogel-Mikuš K (2020) Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration. J Hazard Mater 384:121201

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2016) Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance. Front Environ Sci 4:46

    Article  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  Google Scholar 

  • Tyagi S, Rawtani D, Khatri N, Tharmavaram M (2018) Strategies for nitrate removal from aqueous environment using nanotechnology: a review. J Water Process Eng 21:84–95

    Article  Google Scholar 

  • Vaculík M, Jurkovič L, Matejkovič P, Molnárová M, Lux A (2013) Potential risk of arsenic and antimony accumulation by medicinal plants naturally growing on old mining sites. Water Air Soil Pollut 224:1446

    Article  CAS  Google Scholar 

  • Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69

    Article  CAS  Google Scholar 

  • Wang HB, Wong MH, Lan CY, Qin YR, Shu WS, Qiu RL, Ye ZH (2010) Effect of arsenic on flavonoid contents in Pteris species. Biochem Syst Ecol 38:529–537

    Article  CAS  Google Scholar 

  • Woźniak A, Drzewiecka K, Kȩsy J, Marczak Ł, Narozna D, Grobela M, Motała R, Bocianowski J, Morkunas I (2017) The influence of lead on generation of signalling molecules and accumulation of flavonoids in pea seedlings in response to pea aphid infestation. Molecules 22:1404

    Article  CAS  Google Scholar 

  • Xue T, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237:55–61

    Article  CAS  Google Scholar 

  • Zargar SM, Mahajan R, Bhat JA, Nazir M, Deshmukh R (2019) Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech 9:73

    Article  Google Scholar 

  • Zhang Y, Shi Y, Gong HJ, Zhao HL, Li HY, Hu YH, Wang YC (2018) Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. J Integr Agric 17:2151–2159

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  Google Scholar 

  • Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, López-Moreno ML, Komárek M, Peralta-Videa JR, Gardea-Torresdey JL (2017) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses-a review. Plant Physiol Biochem 110:236–264

    Article  CAS  Google Scholar 

  • Zvobgo G, Lwalaba JLW, Sagonda T, Mapodzeke JM, Muhammad N, Shamsi IH, Zhang GP (2019) Alleviation of arsenic toxicity by phosphate is associated with its regulation of detoxification, defense, and transport gene expression in barley. J Integr Agric 18:381–394

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the B.Sc. Sergio Braham Sagab for the facilities provided at the greenhouse. We also thank the University of Sonora (UNISON) for providing access to FRX analysis. MGM is thankful to the National Council for Science and Technology (CONACYT) for PhD scholarship No. 2018-000012-01NACF. NVM and BSG are thankful to CONACYT, Royal Society, and British Council-COPOCYT for Grant Numbers 7073, NA140182, and 62908622, respectively.

Funding

This research was partially supported by CONACYT 7073, Royal Society NA140182, and British council-COPOCYT 629008622 grants, while MGM was supported by a PhD scholarship (No. 2018–000012-01NACF) from CONACYT.

Consejo Nacional de Ciencia y Tecnología,2018–000012-01NACF,Magin González-Moscoso,7073,Nadia Martinez-Villegas,Newton Fund,Royal Society NA140182,Nadia Martinez-Villegas,British council-COPOCYT,629008622,Nadia Martinez-Villegas

Author information

Authors and Affiliations

Authors

Contributions

Magín González-Moscoso: Investigation, writing—original draft, writing—review and amp, editing. Antonio Juárez-Maldonado: Investigation, methodology, editing, supervision. Gregorio Cadenas-Pliego: Investigation, editing, supervision. Diana Meza-Figueroa: Investigation, editing, supervision. Bhaskar SenGupta: Investigation, editing, supervision. Nadia Martínez-Villegas: Conceptualization, writing—review and amp, editing, supervision.

Corresponding author

Correspondence to Nadia Martínez-Villegas.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Moscoso, M., Juárez-Maldonado, A., Cadenas-Pliego, G. et al. Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants. Environ Sci Pollut Res 29, 34147–34163 (2022). https://doi.org/10.1007/s11356-021-17665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17665-2

Keywords

Navigation