Skip to main content

Advertisement

Log in

Removal of emerging contaminants by emulsion liquid membrane: perspective and challenges

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Emerging contaminants (ECs) originated from different agricultural, biological, chemical, and pharmaceutical sectors have been detected in our water sources for many years. Several technologies are employed to minimise EC content in the aqueous phase, including solvent extraction processes, but there is not a solution commonly accepted yet. One of the studied alternatives is based on separation processes of emulsion liquid membrane (ELM) that benefit low solvent inventory and energy needs. However, a better understanding of the process and factors influencing the operating conditions and the emulsion stability of the extraction/stripping process is crucial to enhancing ELM’s performance. This article aims to describe the applications of this technique for the EC removal and to comprehensively review the ELM properties and characteristics, phase compositions, and process parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbassian K, Kargari A (2016a) Modification of membrane formulation for stabilization of emulsion liquid membrane for extraction of phenol from aqueous solutions. Journal of Environmental Chemical Engineering 4(4, Part A):3926–3933. https://doi.org/10.1016/j.jece.2016.08.030

    Article  CAS  Google Scholar 

  • Abbassian K, Kargari A (2016b) Effect of polymer addition to membrane phase to improve the stability of emulsion liquid membrane for phenol pertraction. Desalination and Water Treatment 57(7):2942–2951. https://doi.org/10.1080/19443994.2014.983981

    Article  CAS  Google Scholar 

  • Abdulredha MM, Siti Aslina H, Luqman CA (2020) Overview on petroleum emulsions, formation, influence and demulsification treatment techniques. Arabian Journal of Chemistry 13(1):3403–3428. https://doi.org/10.1016/j.arabjc.2018.11.014

    Article  CAS  Google Scholar 

  • Abismaïl B, Canselier JP, Wilhelm AM, Delmas H, Gourdon, C (1999) Emulsification by ultrasound: drop size distribution and stability. Ultrasonics Sonochemistry 6:75–83

    Article  Google Scholar 

  • Abullah MMS, Al-Lohedan HA, Attah AM (2016) Synthesis and application of amphiphilic ionic liquid based on acrylate copolymers as demulsifier and oil spill dispersant. Journal of Molecular Liquids 219:54–62. https://doi.org/10.1016/j.molliq.2016.03.011

    Article  CAS  Google Scholar 

  • Ahmad AL, Kusumastuti A, Derek CJC, Ooi BS (2011) Emulsion liquid membrane for heavy metal removal: an overview on emulsion stabilization and destabilization. Chemical Engineering Journal 171(3):870–882

    Article  CAS  Google Scholar 

  • Ahmad, A. L., Kusumastuti, A., Derek, C. J. C., & Ooi, B. S. (2012). Emulsion liquid membrane for cadmium removal: studies on emulsion diameter and stability. Desalination, 287(0), 30–34.

  • Ahmad AL, Shah BMMH, Ooi BS, Kusumastuti A (2015) Cadmium removal using vegetable oil based emulsion liquid membrane (ELM): membrane breakage. Jurnal Teknologi

  • Ahmad AL, Zaulkiflee ND, Kusumastuti A, Buddin MMHS (2018) Removal of acetaminophen from aqueous solution by emulsion liquid membrane: emulsion stability study. Industrial & Engineering Chemistry Research 58(2):713–719

    Article  Google Scholar 

  • Akkar SAA, Mohammed SAM (2021) Design of intelligent network to predicate phenol removal from waste water by emulsion liquid membrane. Materials Science Forum 1021:115–128. https://doi.org/10.4028/www.scientific.net/MSF.1021.115

    Article  Google Scholar 

  • Al-Obaidi Q, Alabdulmuhsin M, Tolstik A, Trautman JG, Al-Dahhan M (2020) Removal of hydrocarbons of 4-nitrophenol by emulsion liquid membrane (ELM) using magnetic Fe2O3 nanoparticles and ionic liquid. Journal of Water Process Engineering 101729:101729. https://doi.org/10.1016/j.jwpe.2020.101729

    Article  Google Scholar 

  • Alreda Akkar SA, Muslim Mohammed SA (2021) The feasibility of emulsion liquid membrane for the extraction of organic acids from wastewater. IOP Conference Series: Materials Science and Engineering 1076(1):012021. https://doi.org/10.1088/1757-899X/1076/1/012021

    Article  Google Scholar 

  • Alsabagh AM, Hassan ME, Desouky SEM, Nasser NM, Elsharaky EA, Abdelhamid MM (2016) Demulsification of W/O emulsion at petroleum field and reservoir conditions using some demulsifiers based on polyethylene and propylene oxides. Egyptian Journal of Petroleum 25(4):585–595. https://doi.org/10.1016/j.ejpe.2016.05.008

    Article  Google Scholar 

  • Al-Sabagh AM, Nasser NM, Abd El-Hamid TM (2013) Investigation of kinetic and rheological properties for the demulsification process. Egyptian Journal of Petroleum 22(1):117–127. https://doi.org/10.1016/j.ejpe.2012.11.013

    Article  Google Scholar 

  • Anarakdim K, Matos M, Cambiella A, Senhadji-Kebiche O, Gutiérrez G (2020) Effect of temperature on the heat treatment to recover green solvent from emulsion liquid membranes used in the extraction of Cr(VI). Chemical Engineering and Processing - Process Intensification 158108178. https://doi.org/10.1016/j.cep.2020.108178

  • Angeles LF, Mullen RA, Huang IJ, Wilson C, Khunjar W, Sirotkin HI, McElroy AE, Aga DS (2020) Assessing pharmaceutical removal and reduction in toxicity provided by advanced wastewater treatment systems. Environmental Science: Water Research & Technology 6(1):62–77. https://doi.org/10.1039/C9EW00559E

    Article  CAS  Google Scholar 

  • Aziz HA, Adlan MN, Ariffin KS (2008) Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresource Technology 99(6):1578–1583

    Article  CAS  Google Scholar 

  • Balabanič D, Hermosilla D, Merayo N, Klemenčič AK, Blanco Á (2012) Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters. Journal of Environmental Science and Health, Part A 47(10):1350–1363. https://doi.org/10.1080/10934529.2012.672301

    Article  CAS  Google Scholar 

  • Balasubramanian A, Venkatesan S (2012) Removal of phenolic compounds from aqueous solutions by emulsion liquid membrane containing ionic liquid [BMIM]+[PF6]− in tributyl phosphate. Desalination 289:27–34

    Article  CAS  Google Scholar 

  • Barad JM, Chakraborty M, Bart H-J (2010) Stability and performance study of water-in-oil-in-water emulsion: extraction of aromatic amines. Industrial & Engineering Chemistry Research 49(12):5808–5815. https://doi.org/10.1021/ie901698u

    Article  CAS  Google Scholar 

  • Binks BP, Desforges A, Duff DG (2007) Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant. Langmuir 23(3):1098–1106. https://doi.org/10.1021/la062510y

    Article  CAS  Google Scholar 

  • Bjorkegren S, Fassihi R (2011) A study of the heavy metal extraction process using emulsion liquid membranes. In Department of Chemical Engineering: Vol. PhD. Chalmers University of Technology

  • Boleda MR, Galceran MT, Ventura F (2011) Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments. Environmental Pollution 159(6):1584–1591

    Article  CAS  Google Scholar 

  • Borwankar RP, Lobo LA, Wasan DT (1992) Emulsion stability- kinetics of flocculation and coalescence. Colloids and Surfaces 69:135–146

    Article  CAS  Google Scholar 

  • Boyadzhiev L, Lazarova Z (1995) Chapter 7 Liquid membranes (liquid pertraction). In R. D. Noble & S. A. Stern (Eds.), Membrane Science and Technology (Vol. 2, pp. 283–352). Elsevier. http://www.sciencedirect.com/science/article/pii/S0927519306800094

  • Canselier JP, Delmas H, Wilhelm AM, Abismaïl B (2002) Ultrasound Emulsification—An Overview. Journal of Dispersion Science and Technology 23(1–3):333–349. https://doi.org/10.1080/01932690208984209

  • Chakraborty M, Bhattacharya C, Datta S (2010) Emulsion liquid membranes: definitions and classification, theories, module design, applications, new directions and perspectives. In: Kislik VS (ed) Liquid Membranes Principles and Applications in Chemical Separations and Wastewater Treatment (1st ed., pp. 141–199). Elsevier Science

    Google Scholar 

  • Chan C-C, Chen Y-C (2002) Demulsification of W/O emulsions by microwave radiation. Separation Science and Technology 37(15):3407–3420. https://doi.org/10.1081/SS-120014434

    Article  CAS  Google Scholar 

  • Chanukya BS, Navin KR (2013) Extraction of alcohol from wine and color extracts using liquid emulsion membrane. Separation and Purification Technology 105:41–47

    Article  CAS  Google Scholar 

  • Chanukya, B.S. Kumar, Manish Rastogi, & K., N. (2013). Optimization of lactic acid pertraction using liquid emulsion membranes by response surface methodology. Separation and Purification Technology, 111, 1–8, 1.

  • Chaouchi S, Hamdaoui O (2014a) Acetaminophen extraction by emulsion liquid membrane using Aliquat 336 as extractant. Separation and Purification Technology 129:32–40. https://doi.org/10.1016/j.seppur.2014.03.021

    Article  CAS  Google Scholar 

  • Chaouchi S, Hamdaoui O (2014b) Extraction of priority pollutant 4-nitrophenol from water by emulsion liquid membrane: emulsion stability, effect of operational conditions and membrane reuse. Journal of Dispersion Science and Technology 35(9):1278–1288

    Article  CAS  Google Scholar 

  • Chaouchi, S., & Hamdaoui, O. (2015a). Removal of 4-nitrophenol from water by emulsion liquid membrane. Desalination and Water Treatment, 2015(0), 1–5.

  • Chaouchi S, Hamdaoui O (2015b) Extraction of endocrine disrupting compound propylparaben from water by emulsion liquid membrane using trioctylphosphine oxide as carrier. Journal of Industrial and Engineering Chemistry 22:296–305. https://doi.org/10.1016/j.jiec.2014.07.023

    Article  CAS  Google Scholar 

  • Chaouchi S, Hamdaoui O (2016) Removal of 4-nitrophenol from water by emulsion liquid membrane. Desalination and Water Treatment 57(12):5253–5257. https://doi.org/10.1080/19443994.2015.1021104

    Article  CAS  Google Scholar 

  • Chiha M, Samar MH, Hamdaoui O (2006) Extraction of chromium (VI) from sulphuric acid aqueous solutions by a liquid surfactant membrane (LSM). Desalination 194(1–3):69–80

    Article  CAS  Google Scholar 

  • Cristina MIM, Daniela R (2003) Removal of uranyl ions uo22+ from dilute solutions by ELM technique. I. Transport Mechanism of Uranyl Ions with Ammonium Quaternary Salts as Carrier. Analele Universitatii Bucuresti : Chimie

  • Dâas A, Hamdaoui O (2010) Extraction of anionic dye from aqueous solutions by emulsion liquid membrane. Journal of Hazardous Materials 178:973–981

    Article  Google Scholar 

  • Davoodi-Nasab P, Rahbar-Kelishami A, Safdari J, Abolghasemi H (2018) Evaluation of the emulsion liquid membrane performance on the removal of gadolinium from acidic solutions. Journal of Molecular Liquids 262:97–103. https://doi.org/10.1016/j.molliq.2018.04.062

    Article  CAS  Google Scholar 

  • Devulapalli R, Jones F (1999) Separation of aniline from aqueous solutions using emulsion liquid membranes. Journal of Hazardous Materials 70(3):157–170

    Article  CAS  Google Scholar 

  • Draxler J, Marr R (1986) Emulsion liquid membranes part I: phenomenon and industrial application. Chemical Engineering and Processing: Process Intensification 20(6):319–329

    Article  CAS  Google Scholar 

  • Eljaddi T, Laurent L, Miloudi H (2017) Review on mechanism of facilitated transport on liquid membranes. Journal of Membrane Science and Research 3(3). https://doi.org/10.22079/jmsr.2017.50137.1110

  • Fortuny M, Oliveira CBZ, Melo RLFV, Nele M, Coutinho RCC, Santos AF (2007) Effect of salinity, temperature, water content, and pH on the microwave demulsification of crude oil emulsions. Energy & Fuels 21(3):1358–1364

    Article  CAS  Google Scholar 

  • Galindo-Miranda JM, Guízar-González C, Becerril-Bravo EJ, Moeller-Chávez G, León-Becerril E, Vallejo-Rodríguez R (2019) Occurrence of emerging contaminants in environmental surface waters and their analytical methodology – a review. Water Supply 19(7):1871–1884. https://doi.org/10.2166/ws.2019.087

    Article  Google Scholar 

  • Garavand F, Razavi SH, Cacciotti I (2018) Synchronized extraction and purification of L-lactic acid from fermentation broth by emulsion liquid membrane technique. Journal of Dispersion Science and Technology 39(9):1291–1299. https://doi.org/10.1080/01932691.2017.1396225

    Article  CAS  Google Scholar 

  • Goyal RK, Jayakumar NS, Hashim MA (2011) Chromium removal by emulsion liquid membrane using [BMIM]+[NTf2]− as stabilizer and TOMAC as extractant. Desalination 278(1–3) 50–56. https://doi.org/10.1016/j.desal.2011.05.001

  • Grassi M, Kaykıoğlu G, Belgiorno V, Lofrano G (2012) Removal of emerging contaminants from water and wastewater by adsorption process. Emerging Compounds Removal from Wastewater: Natural and Solar Based Treatments, 15–38

  • Gros M, Petrović M, Ginebreda A, Barceló D (2010) Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environment International 36(1):15–26

    Article  CAS  Google Scholar 

  • Gupta S, Khandale PB, Chakraborty M (n.d.) Application of emulsion liquid membrane for the extraction of diclofenac and relationship with the s. 2020, Volume 41(3):10

  • Hachemaoui A, Belhamel K, Bart H-J (2010) Emulsion liquid membrane extraction of Ni(II) and Co(II) from acidic chloride solutions using bis-(2-ethylhexyl) phosphoric acid as extractant. Journal of Coordination Chemistry 63(13):2337–2348

    Article  CAS  Google Scholar 

  • Hassanshahi N, Hu G, Li J (2020) Application of ionic liquids for chemical demulsification: a review. Molecules 25(21):4915. https://doi.org/10.3390/molecules25214915

    Article  CAS  Google Scholar 

  • Helmecke M, Fries E, Schulte C (2020) Regulating water reuse for agricultural irrigation: risks related to organic micro-contaminants. Environmental Sciences Europe 32(1):4. https://doi.org/10.1186/s12302-019-0283-0

    Article  CAS  Google Scholar 

  • Hiroshi T (1990) Chemical applications. CRC Press, Japan

    Google Scholar 

  • Ho WS, Kamalesh KS (1992) Membrane handbook. Chapman & Hall

    Book  Google Scholar 

  • Holmberg K, Jönsson B, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution. John Wiley & Sons, Ltd. https://doi.org/10.1002/0470856424

  • Hosseinzadeh M, Alizadeh M, Ranjbar M, Pazouki M (2014) Improvement of the solvent extraction of rhenium from molybdenite roasting dust leaching solution using counter-current extraction by a mixer-settler extractor. International Journal of Engineering Transactions A: Basic 27(4):651–658

    Google Scholar 

  • Jarrett A (2017) Pharmaceutical Disposal and Water Quality, PennState Extension.

  • Jiang C, Liu L, Crittenden JC (2016) An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity. Frontiers of Environmental Science & Engineering 10(4):15. https://doi.org/10.1007/s11783-016-0860-z

    Article  CAS  Google Scholar 

  • Jiao H, Juntong WP, Xu ZC (2013) Extraction performance of bisphenol A from aqueous solutions by emulsion liquid membrane using response surface methodology. Desalination 313:36–43

    Article  CAS  Google Scholar 

  • Jilska MP, Geoff WS (2008) Use of emulsion liquid membrane systems in chemical and biotechnological separations. In: Pabby AK, Rizvi SSH, Sastre AM (eds) Handbook of Membrane Separations (Vol. 1–0, pp. 709–740). CRC Press. https://doi.org/10.1201/9781420009484.ch25

    Chapter  Google Scholar 

  • Juang R-S, Lin K-H (2004) Ultrasound-assisted production of W/O emulsions in liquid surfactant membrane processes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 238(1):43–49

    Article  CAS  Google Scholar 

  • Jusoh N, Othman N, Nasruddin NA (2016) Emulsion liquid membrane technology in organic acid purification. Malaysian Journal of Analytical Science 20(2):436–443. https://doi.org/10.17576/mjas-2016-2002-28

    Article  Google Scholar 

  • Jusoh N, Noah NFM, Othman N (2019) Extraction and recovery optimization of succinic acid using green emulsion liquid membrane containing palm oil as the diluent. Environmental Progress & Sustainable Energy 38(3):e13065. https://doi.org/10.1002/ep.13065

    Article  CAS  Google Scholar 

  • Jusoh N, Rosly MB, Othman N, Rahman HA, Noah NFM, Sulaiman RNR (2020) Selective extraction and recovery of polyphenols from palm oil mill sterilization condensate using emulsion liquid membrane process. Environmental Science and Pollution Research 27(18):23246–23257. https://doi.org/10.1007/s11356-020-07972-5

    Article  CAS  Google Scholar 

  • Kamp J, Villwock J, Kraume M (2017) Drop coalescence in technical liquid/liquid applications: a review on experimental techniques and modeling approaches. Reviews in Chemical Engineering 33(1):1–47. https://doi.org/10.1515/revce-2015-0071

    Article  Google Scholar 

  • Kargari A, Abbassian K (2015) Study of phenol removal from aqueous solutions by a double emulsion (W/O/W) system stabilized with polymer. Separation Science and Technology 50(7):1083–1092. https://doi.org/10.1080/01496395.2014.982765

    Article  CAS  Google Scholar 

  • Kargari A, Kaghazchi T, Sohrabi M, Soleimani M (2006) Application of experimental design to emulsion liquid membrane pertraction of gold (III) ions from aqueous solutions. Iranian Journal of Chemical Engineering 3(1(Winter)):77–91

    Google Scholar 

  • Kawasaki J, Kosuge H, Egashira R, Asawa T (2009) Mechanical entrainment in W/O/W emulsion liquid membrane. Separation Science and Technology 44(1):151–168

    Article  CAS  Google Scholar 

  • Kedari CS, Pandit SS, Parikh KJ, Tripathi SC (2010) Removal of 241Am from aqueous nitrate solutions by liquid surfactant membrane containing 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester as ion carrier. Chemosphere 80(4):433–437. https://doi.org/10.1016/j.chemosphere.2010.04.056

    Article  CAS  Google Scholar 

  • Kislik VS (2010) Chapter 1—introduction, general description, definitions, and classification. Overview. In: Kislik VS (ed) Liquid Membranes (pp. 1–15). Elsevier. https://doi.org/10.1016/B978-0-444-53218-3.00001-5

    Chapter  Google Scholar 

  • Kohli HP, Gupta S, Chakraborty M (2018) Extraction of ethylparaben by emulsion liquid membrane: statistical analysis of operating parameters. Colloids and Surfaces A: Physicochemical and Engineering Aspects 539:371–381. https://doi.org/10.1016/j.colsurfa.2017.12.002

    Article  CAS  Google Scholar 

  • Krzeminski P, Tomei MC, Karaolia P, Langenhoff A, Almeida CMR, Felis E, Gritten F, Andersen HR, Fernandes T, Manaia CM, Rizzo L, Fatta-Kassinos D (2019) Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: a review. Science of The Total Environment 648:1052–1081. https://doi.org/10.1016/j.scitotenv.2018.08.130

    Article  CAS  Google Scholar 

  • Kulkarni PS, Mahajani VV (2002) Application of liquid emulsion membrane (LEM) process for enrichment of molybdenum from aqueous solutions. Journal of Membrane Science 201(1–2):123–135

    Article  CAS  Google Scholar 

  • Kumar A, Thakur A, Panesar PS (2019) A review on emulsion liquid membrane (ELM) for the treatment of various industrial effluent streams. Reviews in Environmental Science and Bio/Technology 18(1):153–182. https://doi.org/10.1007/s11157-019-09492-2

    Article  Google Scholar 

  • Kumar R, Ansari SA, Kandwal P, Mohapatra PK (2021) Selective permeation of 90Y from a mixture of 90Y/90Sr through diglycolamide impregnated supported liquid membranes. Applied Radiation and Isotopes 170:109604. https://doi.org/10.1016/j.apradiso.2021.109604

    Article  CAS  Google Scholar 

  • Kumar R, Murugesan SK, Nanjaian M (2012) Multiple emulsion: A review. International Journal of Recent Advances in Pharmaceutical Research 2(1):9–19

  • Kumbasar RA (2008) Selective separation of chromium (VI) from acidic solutions containing various metal ions through emulsion liquid membrane using trioctylamine as extractant. Separation and Purification Technology 64(1):56–62

    Article  CAS  Google Scholar 

  • Kumbasar RA (2009) Selective extraction and concentration of cobalt from acidic leach solution containing cobalt and nickel through emulsion liquid membrane using PC-88A as extractant. Separation and Purification Technology 64:273–279

    Article  CAS  Google Scholar 

  • Kunthakudee N, Sunsandee N, Pancharoen U, Ramakul P (2016) Separation of yttrium from rare earth using hollow fiber-supported liquid membrane: factorial design analysis. Desalination and Water Treatment 57(9):3985–3994. https://doi.org/10.1080/19443994.2014.989275

    Article  CAS  Google Scholar 

  • Kusumastuti A, Syamwil R, Anis S (2017) Emulsion liquid membrane for textile dye removal: Stability study.:020026. https://doi.org/10.1063/1.4976890

  • Kusumastuti A, Anis S, Ahmad AL, Ooi BS, Shah Buddin MMH (2020) Emulsion liquid membrane for heavy metals removal: emulsion breaking study. Jurnal Teknologi 82(5). https://doi.org/10.11113/jt.v82.14539

  • Kyzas GZ, Fu J, Lazaridis NK, Bikiaris DN, Matis KA (2015) New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials. Journal of Molecular Liquids 209:87–93

    Article  CAS  Google Scholar 

  • Lee SC (2000) Continuous extraction of penicillin G by emulsion liquid membranes with optimal surfactant compositions. Chemical Engineering Journal 79(1):61–67

    Article  CAS  Google Scholar 

  • Lee SC (2011) Extraction of succinic acid from simulated media by emulsion liquid membranes. Journal of Membrane Science 381(1):237–243

    Article  CAS  Google Scholar 

  • Lee S (2015) Removal of acetic acid from simulated hemicellulosic hydrolysates by emulsion liquid membrane with organophosphorus extractants. Bioresource Technology 192:340–345

    Article  CAS  Google Scholar 

  • Lee SC, Hyun K-S (2010) Development of an emulsion liquid membrane system for separation of acetic acid from succinic acid. Journal of Membrane Science 350(1):333–339

    Article  CAS  Google Scholar 

  • Li NN (1978) Separating hydrocarbons with liquid membranes, ExxonMobil Research and Engineering Co, United States (patent no. US3410794A)

  • Li NN (1968) Separating Hydrocarbons with Liquid Membranes, United States (patent no. 3410794) 

  • Lichang Z, Qinlin C, Chao K, Xin M, Zunliang Y (2016) Rare earth extraction from wet process phosphoric acid by emulsion liquid membrane. Journal of Rare Earths 34(7):717–723

    Article  Google Scholar 

  • Lin C, He G, Li X, Peng L, Dong C, Gu S, Xiao G (2007) Freeze/thaw induced demulsification of water-in-oil emulsions with loosely packed droplets. Separation and Purification Technology 56(2):175–183. https://doi.org/10.1016/j.seppur.2007.01.035

    Article  CAS  Google Scholar 

  • Lin C, He G, Dong C, Liu H, Xiao G, Liu Y (2008) Effect of oil phase transition on freeze/thaw-induced demulsification of water-in-oil emulsions. Langmuir 24(10):5291–5298. https://doi.org/10.1021/la704079s

    Article  CAS  Google Scholar 

  • Lu G, Lu Q, Li P (1997) Break-down of liquid membrane emulsion under high electric field. Journal of Membrane Science 128(1):1–6

    Article  CAS  Google Scholar 

  • Lu-ting P (2006) Extraction of amino-J acid from waste-water by emulsion liquid membrane. The Chinese Journal of Process Engineering 6(5):738–741

    Google Scholar 

  • Lyons G (2014) Pharmaceuticals in the Environment: A growing threat to our tap water and wildlife, CHEM Trust Report

  • Majeed, N., & Adnan, M. (2016). Demulsification of remaining waste (water in oil emulsions) after removal of phenol in emulsion liquid membrane process. https://doi.org/10.13140/RG.2.2.33651.68644

  • Malik MA, Hashim MA, Nabi F (2012) Extraction of metal ions by ELM separation technology. Journal of Dispersion Science and Technology 33(3):346–356

    Article  CAS  Google Scholar 

  • Manikandan GN, Bogeshwaran K, Jamuna P, Sandhya S (2014) A review on emulsion liquid membranes on heavy metal separation. International Journal of ChemTech Research 6(9):4328–4332

    CAS  Google Scholar 

  • Manzak A, Tutkun O (2005) Extraction of citric acid through an emulsion liquid membrane containing Aliquat 336 as carrier. Separation Science and Technology 39(10):2497–2512

    Article  Google Scholar 

  • Manzak A, Tutkun O (2011) The extraction of lactic acid by emulsion type of liquid membranes using Alamine 336 in Escaid 100. The Canadian Journal of Chemical Engineering 89(6):1458–1463. https://doi.org/10.1002/cjce.20501

    Article  CAS  Google Scholar 

  • Marcus Y (2004) Principles of solubility and solutions. Marcel Dekker

    Book  Google Scholar 

  • Martin TP, Davies GA (1977) The extraction of copper from dilute aqueous solutions using a liquid membrane process. Hydrometallurgy 2:315–334

    Article  CAS  Google Scholar 

  • Othman N, Mat HB, Goto M (2006) Separation of silver from photographic wastes by emulsion liquid membrane system. Journal of Membrane Science. 282:171-177.

    Article  CAS  Google Scholar 

  • Masry BA, Aly MI, Daoud JA (2021) Selective permeation of Ag+ ions from pyrosulfite solution through Nano-Emulsion Liquid Membrane (NELM) containing CYANEX 925 as carrier. Colloids Surf A Physicochem Eng Asp:610125713. https://doi.org/10.1016/j.colsurfa.2020.125713

  • Mohammed AA, Atiya MA, Hussein MA (2020a) Studies on membrane stability and extraction of ciprofloxacin from aqueous solution using Pickering emulsion liquid membrane stabilized by magnetic nano-Fe2O3. Colloids and Surfaces A: Physicochemical and Engineering Aspects 585:124044. https://doi.org/10.1016/j.colsurfa.2019.124044

    Article  CAS  Google Scholar 

  • Mohammed AA, Atiya MA, Hussein MA (2020b) Removal of antibiotic tetracycline using nano-fluid emulsion liquid membrane: breakage, extraction and stripping studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 595:124680. https://doi.org/10.1016/j.colsurfa.2020.124680

    Article  CAS  Google Scholar 

  • Mompelat S, Le BB, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environment International 35:803–814

    Article  CAS  Google Scholar 

  • Monteiro SC, Boxall ABA (2010) Occurrence and fate of human pharmaceuticals in the environment. Reviews of Environmental Contamination and Toxicology:53–154

  • Mosayebi A, Abedini R (2013) Using demulsifiers for phase breaking of water/oil emulsion. Petroleum & Coal 55(1):26–30

    CAS  Google Scholar 

  • Moyo F, Tandlich R (2015) Optimisation of the emulsion liquid membrane composition and demulsification for rhodium extraction. Waste Treatment and Recovery 1(1). https://doi.org/10.1515/lwr-2015-0002

  • Murugan A, Palanivelu K, Manickam V (2009) Removal of Cu (II) using emulsion liquid membrane. International Journal of ChemTech Research, 1

  • Muthusaravanan S, Priyadharshini SV, Sivarajasekar N, Subashini R, Sivamani S, Dharaskar S, Dhakal N (2019) Optimization and extraction of pharmaceutical micro-pollutant—norfloxacin using emulsion liquid membranes. Desalination and Water Treatment 156:238–244. https://doi.org/10.5004/dwt.2019.23833

    Article  CAS  Google Scholar 

  • Ng YS, Jayakumar NS, Hashim MA (2010) Performance evaluation of organic emulsion liquid membrane on phenol removal. Journal of Hazardous Materials 184(1–3):255–260

    Article  CAS  Google Scholar 

  • Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bional Chem 387(4):1225–1234

    Article  CAS  Google Scholar 

  • Noguera-Oviedo K, Aga DS (2016) Lessons learned from more than two decades of research on emerging contaminants in the environment. J Hazard Mater 316:242–251

    Article  CAS  Google Scholar 

  • Ooi Z-Y, Harruddin N, Othman N (2015) Recovery of Kraft lignin from pulping wastewater via emulsion liquid membrane process. Biotechnology Progress, In Press 31:1305–1314

    Article  CAS  Google Scholar 

  • Othman N, Mat HB, Goto M (2006) Separation of silver from photographic wastes by emulsion liquid membrane system. J Membr Sci 282:171–177

    Article  CAS  Google Scholar 

  • Othman N, Mili N, Zailani SN, Mohammad NAB (2010) Extraction of Remazol Brilliant Orange 3R from textile wastewater using tetrabutyl ammonium bromide. Jurnal Teknologi 53:29–39

    Google Scholar 

  • Othman N, Zailani S, Mili N (2011) Recovery of synthetic dye from simulated wastewater using emulsion liquid membrane process containing tri-dodecyl amine as a mobile carrier. Journal of Hazardous Materials 198:103–112

    Article  CAS  Google Scholar 

  • Othman N, Zing-Yi O, Harruddin N, Norimie R, Jusoh N, Zailani SN (2014) Carrier assisted emulsion liquid membrane process for recovery of basic dye from wastewater using continuous extractor. Jurnal Teknologi 67(2):69–74

    Article  Google Scholar 

  • Othman N, Noah NFM, Poh KW, Yi OZ (2016) High performance of chromium recovery from aqueous waste solution using mixture of palm-oil in emulsion liquid membrane. Procedia Engineering 148:765–773

    Article  CAS  Google Scholar 

  • Parhi PK (2013) Supported liquid membrane principle and its practices: a short review. Journal of Chemistry 2013:1–11

    Article  Google Scholar 

  • Park Y (2006) Development and optimization of novel emulsion liquid membranes stabilized by non-Newtonian conversion in Taylor-Couette flow for extraction of selected organic and metallic content. In School of Civil and Environmental Engineering: Vol. PhD. Georgia Institute of Technology

  • Park Y, Forney LJ, Kima JH, Skelland AHP (2004) Optimum emulsion liquid membranes stabilized by non-Newtonian conversion in Taylor–Couette flow. Chemical Engineering Science 59(2004):5725–5734

    Article  CAS  Google Scholar 

  • Park Y, Skelland AHP, Forney LJ, Kim J-H (2006) Removal of phenol and substituted phenols by newly developed emulsion liquid membrane process. Water Research 40(9):1763–1772. https://doi.org/10.1016/j.watres.2006.03.005

    Article  CAS  Google Scholar 

  • Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chemical Reviews 119(6):3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299

    Article  CAS  Google Scholar 

  • Patnaik PR (1995) Liquid emulsion membranes: principles, problems and applications in fermentation processes. Biotechnology Advances 13(2):175–208. https://doi.org/10.1016/0734-9750(95)00001-7

    Article  CAS  Google Scholar 

  • Peng W, Jiao H, Shi H, Xu C (2012) The application of emulsion liquid membrane process and heat-induced demulsification for removal of pyridine from aqueous solutions. Desalination 286:372–378

    Article  CAS  Google Scholar 

  • Perera JM, Stevens G (2009) Use of emulsion liquid membrane systems in chemical and biotechnological separations. Handbook of Membrane Separations : Chemical, Pharmaceutical, Food and Biotechnology Applications

  • Petrovic M, Radjenovic J, Postigo C, Kuster M, Farre M, Lopez de Alda M, Barcelo D (2008) Emerging contaminants in wastewaters: sources and occurrence: emerging contaminants from industrial and municipal waste-occurrence, analysis and effects. Handbook of Environmental Chemistry, Vol. 5. Part S1: Water Pollution, 1–36

  • Porter MC (1990) Handbook of industrial membrane technology. Noyes Publications

    Google Scholar 

  • Rajendaren V, Saufi SM, Zahari MAKM, Mohammad AW (2021) Membrane support formulation and carrier selection in supported liquid membrane for extraction of zwitterionic form of glutamic acid. 11th Malaysian Technical Universities Conference on Engineering & Technology, 41, 116–121. https://doi.org/10.1016/j.matpr.2020.11.1016

  • Razo-Lazcano TA, del Pilar González-Muñoz M, Stambouli M, Pareau D, Hernández-Perales L, Avila-Rodriguez M (2018) Chlorpheniramine recovery from aqueous solutions by emulsion liquid membranes using soy lecithin as carrier. Special Issue on Formula VIII 536:68–73. https://doi.org/10.1016/j.colsurfa.2017.07.050

    Article  CAS  Google Scholar 

  • Richardson SD, Kimura SY (2017) Emerging environmental contaminants: challenges facing our next generation and potential engineering solutions. Environmental Technology & Innovation 8:40–56

    Article  Google Scholar 

  • Ritchey GM, Ashbrook AW (1984) Solvent extraction principles and applications to process metallurgy, Prt I. Elsevier Science Publisher

  • Rivera-Utrilla J, Sanchez-Polo M, Ferro-Garcia MA, Prados-Joya G, Ocampo-Perez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93(7):1268–1287

    Article  CAS  Google Scholar 

  • Rosly MB, Jusoh N, Othman N, Rahman HA, Sulaiman RNR, Noah NFM (2020) Stability of emulsion liquid membrane using bifunctional diluent and blended nonionic surfactant for phenol removal. Chemical Engineering and Processing - Process Intensification 148:107790. https://doi.org/10.1016/j.cep.2019.107790

    Article  CAS  Google Scholar 

  • San Román MF, Bringas E, Ibañez R, Ortiz I (2010) Liquid membrane technology: fundamentals and review of its applications. Journal of Chemical Technology & Biotechnology 85(1):2–10. https://doi.org/10.1002/jctb.2252

    Article  CAS  Google Scholar 

  • Schöller C, Chaudhuri JB, Pyle DL (1993) Emulsion liquid membrane extraction of lactic acid from aqueous solutions and fermentation broth. Biotechnology and Bioengineering 42(1):50–58

  • Seifollahi Z, Rahbar-Kelishami A (2017) Diclofenac extraction from aqueous solution by an emulsion liquid membrane: parameter study and optimization using the response surface methodology. Journal of Molecular Liquids 231:1–10. https://doi.org/10.1016/j.molliq.2017.01.081

    Article  CAS  Google Scholar 

  • Sengupta B, Bhakhar MS, Sengupta R (2007) Extraction of copper from ammoniacal solutions into emulsion liquid membranes using LIX 84 I®. Hydrometallurgy 89(3–4):311–318

    Article  CAS  Google Scholar 

  • Shirasangi R, Kohli HP, Gupta S, Chakraborty M (2020) Separation of methylparaben by emulsion liquid membrane: optimization, characterization, stability and multiple cycles studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 597:124761. https://doi.org/10.1016/j.colsurfa.2020.124761

    Article  CAS  Google Scholar 

  • Skoumal M, Cabot P-L, Centellas F, Arias C, Rodríguez RM, Garrido JA, Brillas E (2006) Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light. Applied Catalysis B: Environmental 66(3–4):228–240

    Article  CAS  Google Scholar 

  • Stackelberg PE, Gibs J, Furlong ET, Meyer MT, Zaugg SD, Lippincott RL (2007) Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Science of the Total Environment 377:255–272

    Article  CAS  Google Scholar 

  • Sujatha S, Rajasimman M (2021) Development of a green emulsion liquid membrane using waste cooking oil as diluent for the extraction of arsenic from aqueous solution – screening, optimization, kinetics and thermodynamics studies. Journal of Water Process Engineering 41:102055. https://doi.org/10.1016/j.jwpe.2021.102055

    Article  Google Scholar 

  • Sun D, Duan X, Li W, Zhou D (1998) Demulsification of water-in-oil emulsion by using porous glass membrane. Journal of Membrane Science 146(1):65–72. https://doi.org/10.1016/S0376-7388(98)00096-9

    Article  CAS  Google Scholar 

  • Sunsandee N, Leepipatpiboon N, Ramakul P (2013) Selective enantioseparation of levocetirizine via a hollow fiber supported liquid membrane and mass transfer prediction. Korean Journal of Chemical Engineering 30(6):1312–1320. https://doi.org/10.1007/s11814-013-0044-5

    Article  CAS  Google Scholar 

  • Sunsandee N, Kunthakudee N, Chutvirasakul B, Phatanasri S, Ramakul P (2017) Enantioseparation of (S)-amlodipine from pharmaceutical wastewater by hollow-fiber supported liquid membrane: Central composite design and optimization. Https://Www.Crossref.Org/WebDeposit/, 72, 207–215. https://doi.org/10.5004/dwt.2017.20191

  • Susunu N, Kikumoto S, Tokuyama H (2008) Quantitative approach to ultrasonic emulsion separation. Ultrasonics Sonochemistry 16:145–149

    Google Scholar 

  • Teng TT, Soniya M, Muthuraman G, Talebi A (2014) Role of emulsion liquid membrane (ELM) in separation processes. In: Aziz HA, Mojiri A (eds) Wastewater Engineering: Advanced Wastewater Treatment Systems (pp. 149–157). IJSR Publications

    Google Scholar 

  • Teramoto M, Yamashiro T, Inoue A, Yamamoto A, Matsuyama H, Miyake Y (1991) Extraction of amino acids by emulsion liquid membranes containing di (2-ethylhexyl)phosphoric acid as a carrier biotechnology; coupled, facilitated transport; diffusion. Journal of Membrane Science 58(1):11–32

    Article  CAS  Google Scholar 

  • Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36(17):3855–3863

    Article  CAS  Google Scholar 

  • Treacy J (2019) Drinking water treatment and challenges in developing countries. In: Potgieter N, Hoffman ANT (eds) The relevance of hygiene to health in developing countries. IntechOpen. https://doi.org/10.5772/intechopen.80780

    Chapter  Google Scholar 

  • Valdez-Carrillo M, Abrell L, Ramírez-Hernández J, Reyes-López JA, Carreón-Diazconti C (2020) Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review. Environmental Science and Pollution Research 27(36):44863–44891. https://doi.org/10.1007/s11356-020-10842-9

    Article  CAS  Google Scholar 

  • Valenzuela F, Fonseca C, Basualto C, Correa O, Tapia C, Sapag J (2005) Removal of copper ions from a waste mine water by a liquid emulsion membrane method. Minerals Engineering 18(1):33–40

    Article  CAS  Google Scholar 

  • Van N-X, Huang S-A, Shi Y-J (1987) Removal of acetic acid from wastewater with liquid surfactant membranes: an external boundary layer and membrane diffusion controlled model. Separation Science and Technology 22(2–3):801–818

    Article  Google Scholar 

  • Wan YH, Zhang XJ (2002) Swelling determination of W/O/W emulsion liquid membranes. Journal of Membrane Science 196(2):185–201

    Article  CAS  Google Scholar 

  • Wan YH, Wang XD, Zhang XJ (1997) Treatment of high concentration phenolic waste water by liquid membrane with N503 as mobile carrier. Journal of Membrane Science 135(2):263–270

    Article  CAS  Google Scholar 

  • Weidemann E, Niinipuu M, Fick J, Jansson S (2018) Using carbonized low-cost materials for removal of chemicals of environmental concern from water. Environmental Science and Pollution Research 25(16):15793–15801. https://doi.org/10.1007/s11356-018-1781-0

    Article  CAS  Google Scholar 

  • Wen L, Papadopoulos KD (2000) Visualization of water transport in W1/O/W2 emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 174(1–2):159–167

    Article  CAS  Google Scholar 

  • Wu D, Sun F, Zhou Y (2017) Degradation of chloramphenicol with novel metal foam electrodes in bioelectrochemical systems. Electrochimica Acta 240:136–145. https://doi.org/10.1016/j.electacta.2017.04.059

    Article  CAS  Google Scholar 

  • Xie ZN, Chen QL (2014) Demulsification of emulsion liquid membrane extracting rare earth ions in leaching liquid of phosphate rock. Advanced Materials Research 926–930:64–67. https://doi.org/10.4028/www.scientific.net/AMR.926-930.64

    Article  CAS  Google Scholar 

  • Yan J, Pal R (2001) Osmotic swelling behavior of globules of W/O/W emulsion liquid membranes. Journal of Membrane Science 190(1):79–91

    Article  CAS  Google Scholar 

  • Yang W, Han H, Zhou M, Yang J (2015) Simultaneous electricity generation and tetracycline removal in continuous flow electrosorption driven by microbial fuel cells. RSC Advances 5(61):49513–49520. https://doi.org/10.1039/C5RA05545H

    Article  CAS  Google Scholar 

  • Zereshki S, Daraei P, Shokri A (2018) Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane. Journal of Hazardous Materials 356:1–8. https://doi.org/10.1016/j.jhazmat.2018.05.037

    Article  CAS  Google Scholar 

  • Zhang S, Song H-L, Yang X-L, Yang K-Y, Wang X-Y (2016) Effect of electrical stimulation on the fate of sulfamethoxazole and tetracycline with their corresponding resistance genes in three-dimensional biofilm-electrode reactors. Chemosphere 164:113–119. https://doi.org/10.1016/j.chemosphere.2016.08.076

    Article  CAS  Google Scholar 

  • Zhang S, Song H-L, Yang X-L, Huang S, Dai Z-Q, Li H, Zhang Y-Y (2017) Dynamics of antibiotic resistance genes in microbial fuel cell-coupled constructed wetlands treating antibiotic-polluted water. Chemosphere 178:548–555. https://doi.org/10.1016/j.chemosphere.2017.03.088

    Article  CAS  Google Scholar 

  • Zhang S, Song H-L, Yang X-L, Li H, Wang Y-W (2018) A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes. Bioresource Technology 256:224–231. https://doi.org/10.1016/j.biortech.2018.02.023

    Article  CAS  Google Scholar 

  • Zhao L, Fei D, Dang Y, Zhou X, Xiao J (2010) Studies on the extraction of chromium(III) by emulsion liquid membrane. Journal of Hazardous Materials 178(1):130–135

    Article  CAS  Google Scholar 

  • Zihao W, Jufu F (1992) Viscosity effects on the swelling of liquid surfactant membrane. CIESC Journal 43:148–153

    Google Scholar 

  • Zuccato E, Castiglioni S (2009) Illicit drugs in the environment. Phil. Trans. R. Soc. A 367:3965–3978

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Ministry of Higher Education Malaysia grant under the LRGS scheme (203/PJKIMIA/67215002) and FRGS scheme (FRGS/1/2017/TK02/UITM/03/11). Financial assistance under the USM Fellowship programme is also acknowledged. We thank the anonymous reviewers whose insightful comments and suggestions helped improve and clarify this manuscript.

Availability of data and materials

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Nur Dina Zaulkiflee: Collected the data, performed the analysis, wrote the paper.

Abdul Latif Ahmad: Supervising, checking, performed the analysis.

Nuur Fahanis Che Lah: Performed the analysis, wrote the paper.

Meor Muhammad Hafiz Shah Buddin: Performed the analysis, wrote the paper.

Corresponding author

Correspondence to Abdul Latif Ahmad.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaulkiflee, N.D., Ahmad, A.L., Che Lah, N.F. et al. Removal of emerging contaminants by emulsion liquid membrane: perspective and challenges. Environ Sci Pollut Res 29, 12997–13023 (2022). https://doi.org/10.1007/s11356-021-16658-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16658-5

Keywords

Navigation