Skip to main content
Log in

An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

In this study, a new water treatment system that couples (photo-) electrochemical catalysis (PEC or EC) in a microbial fuel cell (MFC) was configured using a stainless-steel (SS) cathode coated with Fe0/TiO2. We examined the destruction of methylene blue (MB) and tetracycline. Fe0/TiO2 was prepared using a chemical reduction-deposition method and coated onto an SS wire mesh (500 mesh) using a sol technique. The anode generates electricity using microbes (bio-anode). Connected via wire and ohmic resistance, the system requires a short reaction time and operates at a low cost by effectively removing 94% MB (initial concentration 20 mg∙L–1) and 83% TOC/TOC0 under visible light illumination (50 W; 1.99 mW∙cm–2 for 120 min, MFC-PEC). The removal was similar even without light irradiation (MFC-EC). The E Eo of the MFC-PEC system was approximately 0.675 kWh∙m–3∙order–1, whereas that of the MFC-EC system was zero. The system was able to remove 70% COD in tetracycline solution (initial tetracycline concentration 100 mg∙L–1) after 120 min of visible light illumination; without light, the removal was 15% lower. The destruction of MB and tetracycline in both traditional photocatalysis and photoelectrocatalysis systems was notably low. The electron spinresonance spectroscopy (ESR) study demonstrated that ∙OH was formed under visible light, and ∙O 2 was formed without light. The bio-electricity-activated O2 and ROS (reactive oxidizing species) generation by Fe0/TiO2 effectively degraded the pollutants. This cathodic degradation improved the electricity generation by accepting and consuming more electrons from the bio-anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Y B, Li J H, Zhou B X, Li X J, Chen H C, Chen Q P, Wang Z S, Li L, Wang J L, Cai W M. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell. Water Research, 2011, 45(13): 3991–3998

    Article  CAS  Google Scholar 

  2. Lin L, Wang H Y, Luo H M, Xu P. Enhanced photocatalysis using side-glowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films. Journal of Photochemistry and Photobiology A Chemistry, 2015, 307–308: 88–98

  3. Chen Q P, Bai J, Li J H, Huang K, Li X J, Zhou B X, Cai W M. Aerated visible-light responsive photocatalytic fuel cell for wastewater treatment with producing sustainable electricity in neutral solution. Chemical Engineering Journal, 2014, 252: 89–94

    Article  CAS  Google Scholar 

  4. Lai B, Wang P, Li H R, Du Z W, Wang L J, Bi S C. Calcined polyaniline-iron composite as a high efficient cathodic catalyst in microbial fuel cells. Bioresource Technology, 2013, 131: 321–324

    Article  CAS  Google Scholar 

  5. Li J Y, Li J H, Chen Q P, Bai J, Zhou B X. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell. Journal of Hazardous Materials, 2013, 262: 304–310

    Article  CAS  Google Scholar 

  6. Jadhav D A, Ghadge A N, Ghangrekar M M. Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst. Bioresource Technology, 2015, 191: 110–116

    Article  CAS  Google Scholar 

  7. Lee K Y, RyuW S, Cho S I, Lim K H. Comparative study on power generation of dual-cathode microbial fuel cell according to polarization methods. Water Research, 2015, 84: 43–48

    Article  CAS  Google Scholar 

  8. Wang A J, Cheng H Y, Ren N Q, Cui D, Lin N,WuW M. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Frontiers of Environmental Science and Engineering, 2012, 6(4): 569–574

    Article  CAS  Google Scholar 

  9. Liang P, Wei J C, Li M, Huang X. Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode. Frontiers of Environmental Science and Engineering, 2013, 7(6): 913–919

    Article  CAS  Google Scholar 

  10. Liu W F, Cheng S A, Sun D, Huang B, Chen J, Cen K F. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer. Biosensors & Bioelectronics, 2015, 72: 44–50

    Article  CAS  Google Scholar 

  11. Liao Z H, Sun J Z, Sun D Z, Si R W, Yong Y C. Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells. Bioresource Technology, 2015, 192: 831–834

    Article  CAS  Google Scholar 

  12. Xiao Y, Zheng Y, Wu S, Yang Z H, Zhao F. Nitrogen recovery from wastewater using microbial fuel cells. Frontiers of Environmental Science and Engineering, 2016, 10(1): 185–191

    Article  CAS  Google Scholar 

  13. Wang Z J, Zhang B G, Alistair G L B, Feng C Q, Ni J R. Utilization of single-chamber microbial fuel cells as renewable power sources for electrochemical degradation of nitrogen-containing organic compounds. Chemical Engineering Journal, 2015, 280: 99–105

    Article  CAS  Google Scholar 

  14. Tang WW, Chen X Y, Xia J, Gong JM, Zeng X P. Preparation of an Fe-doped visible-light-response TiO2 film electrodeand its photoelectrocatalytic activity. Materials Science and Engineering B, 2014, 187: 39–45

    Article  CAS  Google Scholar 

  15. Ding X, Ai Z H, Zhang L Z. A dual-cell wastewater treatment system with combining anodic visible light driven photoelectrocatalytic oxidation and cathodic electro-Fenton oxidation. Separation and Purification Technology, 2014, 125: 103–110

    Article  CAS  Google Scholar 

  16. Li J, Lv S, Liu Y, Bai J, Zhou B, Hu X. Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation. Journal of Hazardous Materials, 2013, 262: 482–488

    Article  CAS  Google Scholar 

  17. Liu Y B, Li H, Zhou B X, Lv S B, Li X J, Chen H C, Chen Q P, Cai W M. Photoelectrocatalytic degradation of refractory organic compounds enhanced by a photocatalytic fuel cell. Applied Catalysis B: Environmental, 2012, 111–112: 485–491

    Article  Google Scholar 

  18. Xu S C, Pan S S, Xu Y, Luo Y Y, Zhang Y X, Li G H. Efficient removal of Cr(VI) from wastewater under sunlight by Fe(II)-doped TiO2 spherical shell. Journal of Hazardous Materials, 2015, 283: 7–13

    Article  CAS  Google Scholar 

  19. Chen C, LongMC, Zeng H, CaiWM, Zhou B X, Zhang J Y, Wu Y, Ding D W, Wu D Y. Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species. Journal of Molecular Catalysis A Chemical, 2009, 314(1–2): 35–41

    Article  CAS  Google Scholar 

  20. Yao Y, Li K, Chen S, Ji J P, Wang Y L, Wang H W. Decolorization of Rhodamine B in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2 nanotubes electrode. Chemical Engineering Journal, 2012, 187: 29–35

    Article  CAS  Google Scholar 

  21. Hsieh W P, Pan J R, Huang C, Su Y C, Juang Y J. Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron. Science of the Total Environment, 2010, 408(3): 672–679

    Article  CAS  Google Scholar 

  22. Rodriguez S, Vasquez L, Costa D, Romero A, Santos A. Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere, 2014, 101: 86–92

    Article  CAS  Google Scholar 

  23. Wang Z Q, Wen B, Hao Q Q, Liu LM, Zhou C, Mao X, Lang X, Yin W J, Dai D, Selloni A, Yang X. Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2. Journal of the American Chemical Society, 2015, 137(28): 9146–9152

    Article  CAS  Google Scholar 

  24. Xu Y L, Jia J P, Zhong D J, Wang Y L. Degradation of dye wastewater in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2/Ti anode. Chemical Engineering Journal, 2009, 150(2–3): 302–307

    Article  CAS  Google Scholar 

  25. Yang J, Cao M, Guo R, Jia J P. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water. Journal of Hazardous Materials, 2010, 184(1–3): 782–787

    Article  CAS  Google Scholar 

  26. Kim J H, Park I S, Park J Y. Electricity generation and recovery of iron hydroxides using a single chamber fuel cell with iron anode and air-cathode for electrocoagulation. Applied Energy, 2015, 160: 18–27

    Article  CAS  Google Scholar 

  27. Liu L F, Chen F, Yang F L, Che Y S, Crittenden J. Photocatalytic degradation of 2,4-dichlorophenol using nanoscale Fe/TiO2. Chemical Engineering Journal, 2012, 181–182: 189–195

    Article  Google Scholar 

  28. Daneshvar N, Aber S, Seyed DorrajiM S, Khataee A R, Rasoulifard M H. Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Separation and Purification Technology, 2007, 58(1): 91–98

    Article  CAS  Google Scholar 

  29. Muruganandham M, Selvam K, Swaminathan M. A comparative study of quantum yield and electrical energy per order (EEo) for advanced oxidative decolourisation of reactive azo dyes by UV light. Journal of Hazardous Materials, 2007, 144(1–2): 316–322

    Article  CAS  Google Scholar 

  30. Daneshvar N, Aleboyeh A, Khataee A R. The evaluation of electrical energy per order (EEo) for photooxidative decolorization of four textile dye solutions by the kinetic model. Chemosphere, 2005, 59(6): 761–767

    Article  CAS  Google Scholar 

  31. Behnajady M A, Vahid B, Modirshahla N, Shokri M. Evaluation of electrical energy per order (EEo) with kinetic modeling on the removal of Malachite Green by US/UV/H2O2 process. Desalination, 2009, 249(1): 99–103

    Article  CAS  Google Scholar 

  32. He C, Yu Y, Hu X F, Larbot A. Influence of silver doping on the photocatalytic activity of titania films. Applied Surface Science, 2002, 200(1–4): 239–247

    Article  CAS  Google Scholar 

  33. Atsushi K.A combination of Electron Spin Resonance spectroscopy/ atom transfer radical polymerization (ESR/ATRP) techniques for fundamental investigation of radical polymerizations of (meth) acrylates. Polymer, 2015, 72: 253–263

  34. Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63(12): 515–582

    Article  CAS  Google Scholar 

  35. Huang C, Hsieh W P, Pan J R, Chang S M. Characteristic of an innovative TiO2/Fe0 composite for treatment of azo dye. Separation and Purification Technology, 2007, 58(1): 152–158

    Article  CAS  Google Scholar 

  36. Jayanthi Kalaivani G, Suja S K. TiO2 (rutile) embedded inulin—A versatile bio-nanocomposite for photocatalytic degradation of methylene blue. Carbohydrate Polymers, 2016, 143: 51–60

    Article  CAS  Google Scholar 

  37. Shestakova M, Graves J, Sitarz M, Sillanpää M. Optimization of Ti/Ta2O5–SnO2 electrodes and reaction parameters for electrocatalytic oxidation of methylene blue. Journal of Applied Electrochemistry, 2016, 46(3): 349–358

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Liu, L. & Crittenden, J.C. An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity. Front. Environ. Sci. Eng. 10, 15 (2016). https://doi.org/10.1007/s11783-016-0860-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-016-0860-z

Keywords

Navigation