Skip to main content
Log in

Evolution in mitigation approaches for petroleum oil-polluted environment: recent advances and future directions

  • Current Trends and Research in Industrial Wastewater Treatment through Bioreactor Approach
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Increasing petroleum consumption and a rise in incidental oil spillages have become global concerns owing to their aquatic and terrestrial toxicity. Various physicochemical and biological treatment strategies have been studied to tackle them and their impact on environment. One of such approaches in this regard is the use of microbial processes due to their being “green” and also apparent low cost and high effectiveness. This review presents the advancement in the physical and biological remediation methods and their progressive efficacy if employed in combination of hybrid modes. The use of biosurfactants and/or biochar along with microbes seems to be a more effective bioremediation approach as compared to their individual effects. The lacuna in research at community or molecular level has been overcome by the recent introduction of “-omics” technology in hydrocarbon degradation. Thus, the review further focuses on presenting the state-of-art information on the advancement of petroleum bioremediation strategies and identifies the research gaps for achieving total mitigation of petroleum oil.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Achuba FI, Okoh PN (2014) Effect of petroleum products on soil catalase and dehydrogenase activities. Open J Soil Sci 4:399–406

    Article  Google Scholar 

  • Adeola AO, Forbes PBC (2021) Advances in water treatment technologies for removal of polycyclic aromatic hydrocarbons: existing concepts, emerging trends, and future prospects. Water Environ Res 93:343–359

    Article  CAS  Google Scholar 

  • Ahmed F, Fakhruddin ANM (2018) A review on environmental contamination of petroleum hydrocarbons and its biodegradation. Int J Environ Sci Nat Resour 11:1–7

    Google Scholar 

  • Ajab H, Isa MH, Yaqub A (2020) Electrochemical oxidation using Ti/RuO2 anode for COD and PAHs removal from aqueous solution. Sustain Mater Technol 26:e00225

    CAS  Google Scholar 

  • Banerjee A, Roy A, Dutta S, Mondal S (2016) Bioremediation of hydrocarbon a review. Int J Adv Res 4:1303–1313

    Article  CAS  Google Scholar 

  • Bianco F, Race M, Papirio S, Esposito G (2020) Removal of polycyclic aromatic hydrocarbons during anaerobic biostimulation of marine sediments. Sci Total Environ 709:136141

    Article  CAS  Google Scholar 

  • Bustamante M, Duran N, Diez MC (2012) Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. J Soil Sci Plant Nutr 12:667–687

    Google Scholar 

  • Cai P, Ning Z, Liu Y et al (2020) Diagnosing bioremediation of crude oil-contaminated soil and related geochemical processes at the field scale through microbial community and functional genes. Ann Microbiol 70:1–15

    Article  CAS  Google Scholar 

  • Chaudhary DK, Bajagain R, Jeong S-W, Kim J (2021) Effect of consortium bioaugmentation and biostimulation on remediation efficiency and bacterial diversity of diesel-contaminated aged soil. World J Microbiol Biotechnol 37:1–12

    Article  CAS  Google Scholar 

  • Chibwe L, Geier MC, Nakamura J, Tanguay RL, Aitken MD, Simonich SLM (2015) Aerobic bioremediation of PAH contaminated soil results in increased genotoxicity and developmental toxicity. Environ Sci Technol 49:13889–13898

    Article  CAS  Google Scholar 

  • Choden D, Pokethitiyook P, Poolpak T, Kruatrachue M (2021) Phytoremediation of soil co-contaminated with zinc and crude oil using Ocimum gratissimum (L.) in association with Pseudomonas putida MU02. Int J Phytoremediation 23:181–189

    Article  CAS  Google Scholar 

  • D’Andrea MA, Reddy GK (2018) Health risks associated with benzene exposure in children: a systematic review. Glob Pediatr Health 5:1–10. https://doi.org/10.1177/2333794X18789275

  • Dados A, Omirou M, Demetriou K, Papastephanou C, Ioannides IM (2015) Rapid remediation of soil heavily contaminated with hydrocarbons: a comparison of different approaches. Ann Microbiol 65:241–251

    Article  CAS  Google Scholar 

  • Dos Santos EV, Medeiros MO, Dos Anjos ASD et al (2014) Application of electrochemical technologies to treat polluted soil by diesel. Chem Eng Trans 41:157–162

    Google Scholar 

  • Drogui P, Blais J-F, Mercier G (2007) Review of electrochemical technologies for environmental applications. Recent Pat Eng 1:257–272

    Article  CAS  Google Scholar 

  • Essien OE, John IA (2010) Impact of crude-oil spillage pollution and chemical remediation on agricultural soil properties and crop growth. J Appl Sci Environ Manag 14(4);147–154. https://doi.org/10.4314/jasem.v14i4.63304

  • Falk N, Reid T, Skoyles A, Grgicak-Mannion A, Drouillard K, Weisener CG (2019) Microbial metatranscriptomic investigations across contaminant gradients of the Detroit River. Sci Total Environ 690:121–131

    Article  CAS  Google Scholar 

  • Galitskaya P, Akhmetzyanova L, Selivanovskaya S (2016) Biochar-carrying hydrocarbon decomposers promote degradation during the early stage of bioremediation. Biogeosciences 13:5739–5752

    Article  CAS  Google Scholar 

  • Gargouri B, Gargouri OD, Gargouri B, Trabelsi SK, Abdelhedi R, Bouaziz M (2014) Application of electrochemical technology for removing petroleum hydrocarbons from produced water using lead dioxide and boron-doped diamond electrodes. Chemosphere 117:309–315

    Article  CAS  Google Scholar 

  • Gaur VK, Manickam N (2020) Microbial production of rhamnolipid: synthesis and potential application in bioremediation of hydrophobic pollutants. In: Microbial and Natural Macromolecules. Academic Press Elsevier, pp 143–176. https://doi.org/10.1016/B978-0-12-820084-1.00007-7

  • Gaur VK, Manickam N (2021) Microbial biosurfactants: production and applications in circular bioeconomy. In: Biomass, Biofuels, Biochemicals. Elsevier, 353–378. https://doi.org/10.1016/B978-0-12-821878-5.00011-8

  • Gaur VK, Bajaj A, Regar RK, Kamthan M, Jha RR, Srivastava JK, Manickam N (2019a) Rhamnolipid from a Lysinibacillus sphaericus strain IITR51 and its potential application for dissolution of hydrophobic pesticides. Bioresour Technol 272:19–25. https://doi.org/10.1016/j.biortech.2018.09.144

    Article  CAS  Google Scholar 

  • Gaur VK, Regar RK, Dhiman N, Gautam K, Srivastava JK, Patnaik S, Kamthan M, Manickam N (2019b) Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: application as food emulsifier and antibacterial agent. Bioresour Technol 285:121314. https://doi.org/10.1016/j.biortech.2019.121314

    Article  CAS  Google Scholar 

  • Gaur VK, Tripathi V, Gupta P et al (2020) Rhamnolipids from Planococcus spp. and their mechanism of action against pathogenic bacteria. Bioresour Technol 307:123206. https://doi.org/10.1016/j.biortech.2020.123206

  • Gogoi BK, Dutta NN, Goswami P, Mohan TRK (2003) A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. Adv Environ Res 7:767–782

    Article  CAS  Google Scholar 

  • Guo M, Song W, Tian J (2020a) Biochar-facilitated soil remediation: mechanisms and efficacy variations. Front Environ Sci 8:183

    Article  Google Scholar 

  • Guo Y, Wen Z, Zhang C, Jakada H (2020b) Contamination and natural attenuation characteristics of petroleum hydrocarbons in a fractured karst aquifer, North China. Environ Sci Pollut Res 27:22780–22794

    Article  CAS  Google Scholar 

  • Guzmán-López O, Cuevas-Díaz M del Martínez C Toledo A, et al (2021) Fenton-biostimulation sequential treatment of a petroleum-contaminated soil amended with oil palm bagasse (Elaeis guineensis). Chem Ecol 37:6,1–16. https://doi.org/10.1080/02757540.2021.1909003

  • Habibi A, Babaei F (2017) Biological treatment of real oilfield-produced water by bioaugmentation with sophorolipid-producing Candida catenulata. Environ Process 4:891–906

    Article  CAS  Google Scholar 

  • Hamidi Y, Ataei SA, Sarrafi A (2021) Biodegradation of total petroleum hydrocarbons in oily sludge: a comparative study of biostimulation, bioaugmentation, and combination of methods. J Chem Technol Biotechnol 96:1302–1307

    Article  CAS  Google Scholar 

  • Hawley ER, Malfatti SA, Pagani I, Huntemann M, Chen A, Foster B, Copeland A, del Rio TG, Pati A, Jansson JR, Gilbert JA, Tringe SG, Lorenson TD, Hess M (2014) Metagenomes from two microbial consortia associated with Santa Barbara seep oil. Mar Genomics 18:97–99

    Article  Google Scholar 

  • Hernández-Santana A, Dussán J (2018) Lysinibacillus sphaericus proved to have potential for the remediation of petroleum hydrocarbons. Soil Sediment Contam Int J 27:538–549

    Article  CAS  Google Scholar 

  • Hewelke E, Gozdowski D (2020) Hydrophysical properties of sandy clay contaminated by petroleum hydrocarbon. Environ Sci Pollut Res 27:9697–9706. https://doi.org/10.1007/s11356-020-07627-5

  • Hoang AT, Bui XL, Pham XD (2018) A novel investigation of oil and heavy metal adsorption capacity from as-fabricated adsorbent based on agricultural by-product and porous polymer. Energy Sources Part A Recovery Util Environ Eff 40:929–939

    Article  CAS  Google Scholar 

  • Hoang AT, Nguyen XP, Duong XQ, Huynh TT (2021a) Sorbent-based devices for the removal of spilled oil from water: a review. Environ Sci Pollut Res 28:28876–28910. https://doi.org/10.1007/s11356-021-13775-z

  • Hoang AT, Nižetić S, Duong XQ, et al (2021b) Advanced super-hydrophobic polymer-based porous absorbents for the treatment of oil-polluted water. Chemosphere 277:130274. https://doi.org/10.1016/j.chemosphere.2021.130274

  • Höckenreiner M, Neugebauer H, Elango L (2015) Ex situ bioremediation method for the treatment of groundwater contaminated with PAHs. Int J Environ Sci Technol 12:285–296

    Article  CAS  Google Scholar 

  • Ite AE, Ibok UJ (2019) Role of plants and microbes in bioremediation of petroleum hydrocarbons contaminated soils. Int J 7:1–19

    CAS  Google Scholar 

  • ITOPF (2020) Oil tanker spill statistics. https://www.itopf.org/knowledge-resources/data-statistics/statistics/#:~:text= The total volume of oil,in the last five decades. Accessed 20 May 2021

  • Jho EH, Keum H, Pyo S, Kang G (2016) Hemoglobin-catalyzed oxidation for remediation of total petroleum hydrocarbons contaminated soil. CLEAN–Soil Air Water 44:654–656

    Article  CAS  Google Scholar 

  • Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, Dirisala V, Kodali VP (2018) Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4:241–249

    Article  Google Scholar 

  • Keum H, Kang G, Jho EH (2017) Optimization of hydrogen peroxide-to-hemoglobin ratio for biocatalytic mineralization of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. Chemosphere 187:206–211

    Article  CAS  Google Scholar 

  • Khudur LS, Shahsavari E, Aburto-Medina A, Ball AS (2018) A review on the bioremediation of petroleum hydrocarbons: current state of the art. Microb Action Hydrocarb Springer 643–667. https://doi.org/10.1007/978-981-13-1840-5_27

  • Kimes NE, Callaghan AV, Suflita JM, Morris PJ (2014) Microbial transformation of the Deepwater Horizon oil spill—past, present, and future perspectives. Front Microbiol 5:603

    Article  Google Scholar 

  • Kumari B, Singh SN, Singh DP (2012) Characterization of two biosurfactant producing strains in crude oil degradation. Process Biochem 47:2463–2471

    Article  CAS  Google Scholar 

  • Kumari S, Regar RK, Manickam N (2018) Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresour Technol 254:174–179

    Article  CAS  Google Scholar 

  • Kuppusamy S, Maddela NR, Megharaj M, Venkateswarlu K (2020a) Approaches for remediation of sites contaminated with total petroleum hydrocarbons. In: Total Petroleum Hydrocarbons. Springer, Cham, pp 167–205. https://doi.org/10.1007/978-3-030-24035-6_7

  • Kuppusamy S, Maddela NR, Megharaj M, Venkateswarlu K (2020b) Case studies on remediation of sites contaminated with total petroleum hydrocarbons. In: Total Petroleum Hydrocarbons. Springer, Cham, pp 225–256. https://doi.org/10.1007/978-3-030-24035-6_9

  • Laczi K, Erdeiné Kis Á, Szilágyi Á et al (2020) New frontiers of anaerobic hydrocarbon biodegradation in the multi-omics era. Front Microbiol 11:2886

    Article  Google Scholar 

  • Ławniczak Ł, Woźniak-Karczewska M, Loibner AP, Heipieper HJ, Chrzanowski Ł (2020) Microbial degradation of hydrocarbons—basic principles for bioremediation: a review. Molecules 25:856

    Article  CAS  Google Scholar 

  • Liang M-H, Jiang J-G, Wang L, Zhu J (2020) Transcriptomic insights into the heat stress response of Dunaliella bardawil. Enzym Microb Technol 132:109436

    Article  CAS  Google Scholar 

  • Meena KR, Dhiman R, Singh K et al (2020) Purification and characterization of a surfactin-like biosurfactant produced by Bacillus velezensis KLP2016 and its application towards engine oil degradation. https://doi.org/10.21203/rs.3.rs-94498/v1

  • Miri S, Perez JAE, Brar SK et al (2021) Sustainable production and co-immobilization of cold-active enzymes from Pseudomonas sp. for BTEX biodegradation. Environ Pollut 285:117678. https://doi.org/10.1016/j.envpol.2021.117678

  • Mishra B, Varjani S, Agrawal DC, et al (2020) Engineering biocatalytic material for the remediation of pollutants: a comprehensive review. Environ Technol Innov 20:101063. https://doi.org/10.1016/j.eti.2020.101063

  • Mohanty S, Jasmine J, Mukherji S (2013) Practical considerations and challenges involved in surfactant enhanced bioremediation of oil. Biomed Res Int 2013:328608. https://doi.org/10.1155/2013/328608

  • Moon H-B, Lee D-H, Lee YS, Kannan K (2012) Occurrence and accumulation patterns of polycyclic aromatic hydrocarbons and synthetic musk compounds in adipose tissues of Korean females. Chemosphere 86:485–490

    Article  CAS  Google Scholar 

  • Mostafa AA, Hegazy AK, Mohamed NH et al (2021) Potentiality of Azolla pinnata R. Br. for phytoremediation of polluted freshwater with crude petroleum oil. Separations 8:39

    Article  CAS  Google Scholar 

  • Naeem U, Qazi MA (2020) Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environ Sci Pollut Res 27:27370–27382

    Article  CAS  Google Scholar 

  • Nero BF (2021) Phytoremediation of petroleum hydrocarbon-contaminated soils with two plant species: Jatropha curcas and Vetiveria zizanioides at Ghana Manganese Company Ltd. Int J Phytoremediation 23:171–180

    Article  CAS  Google Scholar 

  • Nie Y, Zhao J-Y, Tang Y-Q et al (2016) Species divergence vs. functional convergence characterizes crude oil microbial community assembly. Front Microbiol 7:1254

    Article  Google Scholar 

  • Nwaichi EO, Chukwuere CO, Abosi PJ, Onukwuru GI (2021) Phytoremediation of crude oil impacted soil using purple nutsedge. J Appl Sci Environ Manag 25:475–479

    Google Scholar 

  • OILZAPPER (2017) Oilzapper (bioremediation) technology – Bioremediation of oil spill in Gujarat oil field in India (Western India). http://www.otbl.co.in/Bioremediation.php. Accessed 18 Apr 2019

  • Ossai IC, Ahmed A, Hassan A, Hamid FS (2020) Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov 17:100526

    Article  Google Scholar 

  • Pandey AK, Gaur VK, Udayan A, Varjani S, Kim SH, Wong JWC (2021) Biocatalytic remediation of industrial pollutants for environmental sustainability: research needs and opportunities. Chemosphere 272:129936

    Article  CAS  Google Scholar 

  • Patowary K, Patowary R, Kalita MC, Deka S (2017) Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front Microbiol 8:279

    Article  Google Scholar 

  • Primeia S, Inoue C, Chien M-F (2020) Potential of biosurfactants’ production on degrading heavy oil by bacterial consortia obtained from tsunami-induced oil-spilled beach areas in Miyagi, Japan. J Mar Sci Eng 8:577

    Article  Google Scholar 

  • Qin G, Gong D, Fan M-Y (2013) Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. Int Biodeterior Biodegradation 85:150–155

    Article  CAS  Google Scholar 

  • Rabani MS, Habib A, Gupta MK (2020) Polycyclic aromatic hydrocarbons: toxic effects and their bioremediation strategies. In: Bioremediation and Biotechnology, Springer, vol 4,  pp 65–105. https://doi.org/10.1007/978-3-030-48690-7_4

  • Radha K V, Sirisha K (2018) Electrochemical oxidation processes. In: Advanced oxidation processes for wastewater treatment. Elsevier, pp 359–373. https://doi.org/10.1016/B978-0-12-810499-6.00011-5

  • Raj A, Yadav A, Rawat AP, Singh AK, Kumar S, Pandey AK, Sirohi R, Pandey A (2021) Kinetic and thermodynamic investigations of sewage sludge biochar in removal of Remazol Brilliant Blue R dye from aqueous solution and evaluation of residual dyes cytotoxicity. Environ Technol Innov 23:101556

    Article  CAS  Google Scholar 

  • Rajasekhar B, Nambi IM, Govindarajan SK (2021) Investigating the degradation of nC12 to nC23 alkanes and PAHs in petroleum-contaminated water by electrochemical advanced oxidation process using an inexpensive Ti/Sb-SnO2/PbO2 anode. Chem Eng J 404:125268

    Article  CAS  Google Scholar 

  • Ramalho AMZ, Martínez-Huitle CA, Da Silva DR (2010) Application of electrochemical technology for removing petroleum hydrocarbons from produced water using a DSA-type anode at different flow rates. Fuel 89:531–534

    Article  CAS  Google Scholar 

  • Reid T, Chaganti SR, Droppo IG, Weisener CG (2018) Novel insights into freshwater hydrocarbon-rich sediments using metatranscriptomics: opening the black box. Water Res 136:1–11

    Article  CAS  Google Scholar 

  • Rocha MJ, Dores-Sousa JL, Cruzeiro C, Rocha E (2017) PAHs in water and surface sediments from Douro River estuary and Porto Atlantic coast (Portugal)—impacts on human health. Environ Monit Assess 189:1–14

    Article  CAS  Google Scholar 

  • Sari GL, Trihadiningrum Y, Ni’matuzahroh N (2018) Petroleum hydrocarbon pollution in soil and surface water by public oil fields in Wonocolo sub-district, Indonesia. J Ecol Eng 19(2):184–193. https://doi.org/10.12911/22998993/82800

  • Sato Y, Hori T, Koike H et al (2019) Transcriptome analysis of activated sludge microbiomes reveals an unexpected role of minority nitrifiers in carbon metabolism. Commun Biol 2:1–8

    Article  Google Scholar 

  • Saxena G, Kishor R, Bharagava RN (2020) Application of microbial enzymes in degradation and detoxification of organic and inorganic pollutants. In: Bioremediation of Industrial Waste for Environmental Safety. Springer, pp 41–51. https://doi.org/10.1007/978-981-13-1891-7_3

  • Sbani NHAL, Abdullah SRS, Idris M et al (2021) PAH-degrading rhizobacteria of Lepironia articulata for phytoremediation enhancement. J Water Process Eng 39:101688

    Article  Google Scholar 

  • Shahzad A, Siddiqui S, Bano A (2016) Rhizoremediation of petroleum hydrocarbon, prospects and future. RSC Adv 6:108347–108361

    Article  CAS  Google Scholar 

  • Shakya M, Lo C-C, Chain PSG (2019) Advances and challenges in metatranscriptomic analysis. Front Genet 10:904

    Article  CAS  Google Scholar 

  • Sharma K, Kalita S, Sarma NS, Devi A (2020) Treatment of crude oil contaminated wastewater via an electrochemical reaction. RSC Adv 10:1925–1936

    Article  CAS  Google Scholar 

  • Sharma P, Tripathi S, Sirohi R, Kim SH, Ngo HH, Pandey A (2021a) Uptake and mobilization of heavy metals through phytoremediation employing native plants species: antioxidant enzymes and photosynthetic pigment response. Environ Technol Innov 23:101629

    Article  CAS  Google Scholar 

  • Sharma P, Sirohi R, Tong YW, Kim SH, Pandey A (2021b) Metal and metal(loids) removal efficiency using genetically engineered microbes: applications and challenges. J Hazard Mater 416:125855

    Article  CAS  Google Scholar 

  • Shin K-H, Kim K-W, Ahn Y (2006) Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization–biodegradation process. J Hazard Mater 137:1831–1837

    Article  CAS  Google Scholar 

  • Suganthi SH, Murshid S, Sriram S, Ramani K (2018) Enhanced biodegradation of hydrocarbons in petroleum tank bottom oil sludge and characterization of biocatalysts and biosurfactants. J Environ Manag 220:87–95

    Article  CAS  Google Scholar 

  • Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta 1543:223–238

    Article  CAS  Google Scholar 

  • Tan L, Li H, Ning S, Xu B (2014) Aerobic decolorization and degradation of azo dyes by suspended growing cells and immobilized cells of a newly isolated yeast Magnusiomyces ingens LH-F1. Bioresour Technol 158:321–328

    Article  CAS  Google Scholar 

  • Tao K, Liu X, Chen X, Hu X, Cao L, Yuan X (2017) Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis. Bioresour Technol 224:327–332

    Article  CAS  Google Scholar 

  • Tarafdar A, Sinha A (2018) Public health risk assessment with bioaccessibility considerations for soil PAHs at oil refinery vicinity areas in India. Sci Total Environ 616:1477–1484

    Article  CAS  Google Scholar 

  • Telesiński A, Kiepas-Kokot A (2021) Five-year enhanced natural attenuation of historically coal-tar-contaminated soil: analysis of polycyclic aromatic hydrocarbon and phenol contents. Int J Environ Res Public Health 18:2265

    Article  CAS  Google Scholar 

  • Tongo I, Ogbeide O, Ezemonye L (2017) Human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in smoked fish species from markets in Southern Nigeria. Toxicol Rep 4:55–61

    Article  CAS  Google Scholar 

  • Tran L-H, Drogui P, Mercier G, Blais J-F (2009) Electrochemical degradation of polycyclic aromatic hydrocarbons in creosote solution using ruthenium oxide on titanium expanded mesh anode. J Hazard Mater 164:1118–1129

    Article  CAS  Google Scholar 

  • Treviño-Reséndez J, Nacheva PM (2021) Removal of naphthalene and phenanthrene in synthetic solutions by electro-oxidation coupled with membrane bioreactor. Environ Sci Pollut Res 1–13. https://doi.org/10.1007/s11356-021-13787-9

  • Tripathi V, Gaur VK, Dhiman N, Gautam K, Manickam N (2019) Characterization and properties of the biosurfactant produced by PAH-degrading bacteria isolated from contaminated oily sludge environment. Environ Sci Pollut Res 27:27268–27278. https://doi.org/10.1007/s11356-019-05591-3

    Article  CAS  Google Scholar 

  • U.S. Energy Information Administration (2021) Short-term energy outlook

  • Ugwu P, Achadu AM (2021) Assessment of the bioaccumulation of TPH and heavy metals in tissue of selected fishes’ species caught from stream near a petroleum processing plant. Asian Food Sci J 20(2):34–39. https://doi.org/10.9734/afsj/2021/v20i230262

  • Usman MM, Dadrasnia A, Lim KT et al (2016) Application of biosurfactants in environmental biotechnology; remediation of oil and heavy metal. AIMS Bioeng 3:289–304

    Article  CAS  Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286

    Article  CAS  Google Scholar 

  • Varjani SJ, Gnansounou E (2017) Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresour Technol 245:1258–1265

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2016a) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 222:195–201

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2016b) Core flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo-and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 220:175–182

    Article  CAS  Google Scholar 

  • Varjani SJ, Joshi RR, Kumar PS, et al (2018) Polycyclic aromatic hydrocarbons from petroleum oil industry activities: effect on human health and their biodegradation. In: Waste bioremediation. Springer, pp 185–199. https://doi.org/10.1007/978-981-10-7413-4_9

  • Varjani S, Joshi R, Srivastava VK, Ngo HH, Guo W (2020a) Treatment of wastewater from petroleum industry: current practices and perspectives. Environ Sci Pollut Res 27:27172–27180

    Article  CAS  Google Scholar 

  • Varjani S, Upasani VN, Pandey A (2020b) Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci Total Environ 737:139766. https://doi.org/10.1016/j.scitotenv.2020.139766

  • Varjani S, Pandey A, Upasani VN (2021) Petroleum sludge polluted soil remediation: integrated approach involving novel bacterial consortium and nutrient application. Sci Total Environ 763:142934

    Article  CAS  Google Scholar 

  • Verâne J, Dos Santos NCP, da Silva VL et al (2020) Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle. Mar Pollut Bull 160:111687

    Article  CAS  Google Scholar 

  • Xiang W, Zhang X, Chen J, Zou W, He F, Hu X, Tsang DCW, Ok YS, Gao B (2020) Biochar technology in wastewater treatment: a critical review. Chemosphere 252:126539

    Article  CAS  Google Scholar 

  • Yap HS, Zakaria NN, Zulkharnain A et al (2021) Bibliometric analysis of hydrocarbon bioremediation in cold regions and a review on enhanced soil bioremediation. Biology (Basel) 10:354

    CAS  Google Scholar 

  • Yuniati MD (2018) Bioremediation of petroleum-contaminated soil: a review. In: IOP conference series: earth and environmental science. IOP Publishing 118:12063. https://doi.org/10.1088/1755-1315/118/1/012063

  • Zahed MA, Salehi S, Madadi R, Hejabi F (2021) Biochar as a sustainable product for remediation of petroleum contaminated soil. Curr Res Green Sustain Chem 4:100055

    Article  CAS  Google Scholar 

  • Zeneli A, Kastanaki E, Simantiraki F, Gidarakos E (2019) Monitoring the biodegradation of TPH and PAHs in refinery solid waste by biostimulation and bioaugmentation. J Environ Chem Eng 7:103054

    Article  CAS  Google Scholar 

  • Zhang B, Zhang L, Zhang X (2019) Bioremediation of petroleum hydrocarbon-contaminated soil by petroleum-degrading bacteria immobilized on biochar. RSC Adv 9:35304–35311

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang K, Ouyang H, Li MKK, Luo Z, Li Y, Chen C, Yang X, Shao Z, Yan DYS (2021) Simultaneous PAHs degradation, odour mitigation and energy harvesting by sediment microbial fuel cell coupled with nitrate-induced biostimulation. J Environ Manag 284:112045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Vivek Kumar Gaur acknowledge the Amity University, Lucknow Uttar Pradesh for providing PhD registration.

Author information

Authors and Affiliations

Authors

Contributions

Vivek Kumar Gaur and Shivangi Gupta: Conceptualization, literature search, data analysis, original draft writing, and revision. Ashok Pandey: Conceptualization, reviewing, editing, and supervision.

Corresponding author

Correspondence to Ashok Pandey.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Petroleum constituents pose serious terrestrial and aquatic hazards.

• Traditional bioremediation methods do not provide complete solution to petroleum oil mitigation.

• Bacteria supplemented with biosurfactant or biochar offer a more effective strategy.

• Lacuna in community level understanding can be filled by omics approaches.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, .K., Gupta, S. & Pandey, A. Evolution in mitigation approaches for petroleum oil-polluted environment: recent advances and future directions. Environ Sci Pollut Res 29, 61821–61837 (2022). https://doi.org/10.1007/s11356-021-16047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16047-y

Keywords

Navigation