Skip to main content

Advertisement

Log in

Research status and future challenge for CO2 sequestration by mineral carbonation strategy using iron and steel slag

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mineral carbonation can simultaneously realize the effective treatment of CO2 and iron and steel slag; thus, it is of great significance for the low carbon and sustainable development of iron and steel industry. In this article, the researches of mineral carbonation process using iron and steel slag as feedstock are reviewed, and the carbonation reaction mechanism and the parameters affecting the reaction rate and carbonation degree are analyzed. Furthermore, the effect of different enforcement approaches, such as ultrasonic enhancement, mixed calcination, microbial enhancement, and cyclic coprocessing on mineral carbonation reaction, is introduced. The additional effects of mineral carbonation, such as solving the problem of poor volume stability of steel slag, weakening the leaching of heavy metal ions, and reducing the pH of the leachate, are also illustrated. Moreover, issues related to mineral carbonation technology that should be emphasized upon soon, such as the production of valuable products, use of industrial wastewater, aqueous phase recycling use, multiparameter coupling analysis, and research on the properties of carbonation residues, are also discussed, which contribute some perspectives to the future development of mineral carbonation of iron and steel slag.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available in the Web of Science repository, [https://www.webofscience.com/wos/alldb/basic-search].

Abbreviations

BF:

Blast furnace

BOF:

Basic oxygen furnace

EAF:

Electric arc furnace

LF:

Ladle furnace

AOD:

Argon oxygen decarburization

CC:

Continuous casting

CSH:

Calcium silicate hydrate

RPB:

Rotating packed beds

CRW:

Cold rolling wastewater

PCC:

Precipitated calcium carbonate

CA:

Carbonic anhydrase

LCA:

Life cycle assessment

GWP:

Global warming potential

nCaCO3 :

Nano-sized calcium carbonate

References

  • Anbu P, Kang CH, Shin YJ, So JS (2016) Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 5:250

    Article  Google Scholar 

  • Araizi PK, Hills CD, Maries A, Gunning PJ, Wray DS (2016) Enhancement of accelerated carbonation of alkaline waste residues by ultrasound. Waste Manag 50:121–129

    Article  CAS  Google Scholar 

  • Arribas I, Santamaría A, Ruiz E, Ortega-López V, Manso JM (2015) Electric arc furnace slag and its use in hydraulic concrete. Constr Build Mater 90:68–79

    Article  Google Scholar 

  • Azdarpour A, Asadullah M, Mohammadian E, Hamidi H, Junin R, Karaei MA (2015) A review on carbon dioxide mineral carbonation through pH-swing process. Chem Eng J 279:615–630

    Article  CAS  Google Scholar 

  • Baciocchi R, Costa G, Polettini A, Pomi R (2009) Influence of particle size on the carbonation of stainless steel slag for CO2 storage. In: Gale J, Herzog H, Braitsch J (Editors), Greenhouse gas control technologies 9. Energy Procedia 1(1):4859–4866

  • Baciocchi R, Costa G, Di Gianfilippo M, Polettini A, Pomi R, Stramazzo A (2015) Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy. J Hazard Mater 283:302–313

    Article  CAS  Google Scholar 

  • Baena-Moreno FM, Rodriguez-Galan M, Reina TR, Zhang ZE, Vilches LF, Navarrete B (2019) Understanding the effect of Ca and Mg ions from wastes in the solvent regeneration stage of a biogas upgrading unit. Sci Total Environ 691:93–100

    Article  CAS  Google Scholar 

  • Barca C, Gérente C, Meyer D, Chazarenc F, Andrès Y (2012) Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Res 46:2376–2384

    Article  CAS  Google Scholar 

  • Bauer M, Gassen N, Stanjek H, Peiffer S (2011) Carbonation of lignite fly ash at ambient T and P in a semi-dry reaction system for CO2 sequestration. Appl Geochem 26:1502–1512

    Article  CAS  Google Scholar 

  • Bilen M, Altiner M, Yildirim M (2018) Evaluation of steelmaking slag for CO2 fixation by leaching-carbonation process. Part Sci Technol 36:368–377

    Article  CAS  Google Scholar 

  • Bodor M, Santos RM, Cristea G, Salman M, Cizer Ö, Iacobescu RI, Chiang YW, van Balen K, Vlad M, van Gerven T (2016) Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars. Cem Concr Compos 65:55–66

    Article  CAS  Google Scholar 

  • Bonenfant D, Kharoune L, Sauve S, Hausler R, Niquette P, Mimeault M, Kharoune M (2008) CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind Eng Chem Res 47:7610–7616

    Article  CAS  Google Scholar 

  • Chang EE, Chen C-H, Chen Y-H, Pan S-Y, Chiang P-C (2011a) Performance evaluation for carbonation of steel-making slags in a slurry reactor. J Hazard Mater 186:558–564

    Article  CAS  Google Scholar 

  • Chang EE, Pan SY, Chen YH, Chu HW, Wang CF, Chiang PC (2011b) CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor. J Hazard Mater 195:107–114

    Article  CAS  Google Scholar 

  • Chang EE, Pan SY, Chen YH, Tan CS, Chiang PC (2012) Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. J Hazard Mater 227-228:97–106

    Article  CAS  Google Scholar 

  • Chang EE, Chiu A-C, Pan S-Y, Chen Y-H, Tan C-S, Chiang P-C (2013) Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor. Int J Greenh Gas Con 12:382–389

    Article  CAS  Google Scholar 

  • Chang R, Choi D, Kim MH, Park Y (2016) Tuning crystal polymorphisms and structural investigation of precipitated calcium carbonates for CO2 mineralization. ACS Sustain Chem Eng 5:1659–1667

    Article  Google Scholar 

  • Chang R, Kim S, Lee S, Choi S, Kim M, Park Y (2017) Calcium carbonate precipitation for CO2 storage and utilization: a review of the carbonate crystallization and polymorphism. Front Energy Res 5:1–12

    Article  Google Scholar 

  • Chang J, Wang D, Fang Y (2018) Effects of mineralogical changes in BOFS during carbonation on pH and Ca and Si leaching. Constr Build Mater 192:584–592

    Article  CAS  Google Scholar 

  • Chang J, Xiong C, Zhang Y, Wang D (2019) Foaming characteristics and microstructure of aerated steel slag block prepared by accelerated carbonation. Constr Build Mater 209:222–233

    Article  CAS  Google Scholar 

  • Chen Z-Y, O ' Connor WK, Gerdemann SJ (2006) Chemistry of aqueous mineral carbonation for carbon sequestration and explanation of experimental results. Environ Prog 25:161–166

    Article  Google Scholar 

  • Chen B, Yoon S, Zhang Y, Han LX, Choi YJ (2019a) Reduction of steel slag leachate pH via humidification using water and aqueous reagents. Sci Total Environ 671:598–607

    Article  CAS  Google Scholar 

  • Chen G, Yang L, Chen J, Miki T, Li S, Bai H, Nagasaka T (2019b) Competitive mechanism and influencing factors for the simultaneous removal of Cr(III) and Zn(II) in acidic aqueous solutions using steel slag: Batch and column experiments. J Clean Prod 230:69–79

    Article  CAS  Google Scholar 

  • Chiang PC, Pan SY (2017) Carbon dioxide mineralization and utilization. Singapore, Singapore

  • Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50:40–57

    Article  Google Scholar 

  • Doucet FJ (2010) Effective CO2-specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation. Miner Eng 23:262–269

    Article  CAS  Google Scholar 

  • Ebrahimi A, Saffari M, Hong Y, Milani D, Montoya A, Valix M, Minett A, Abbas A (2018) Mineral sequestration of CO2 using saprolite mine tailings in the presence of alkaline industrial wastes. J Clean Prod 188:686–697

    Article  CAS  Google Scholar 

  • Eloneva S (2010) Reduction of CO2 emissions by mineral carbonation: steelmaking slags as raw material with a pure calcium carbonate end product. Dissertation, Aalto University

  • Eloneva S, Teir S, Salminen J, Fogelholm C-J, Zevenhoven R (2008a) Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy 33:1461–1467

    Article  CAS  Google Scholar 

  • Eloneva S, Teir S, Salminen J, Fogelholm C-J, Zevenhoven RJI, Research EC (2008b) Steel converter slag as a raw material for precipitation of pure calcium carbonate. Ind Eng Chem Res 47:7104–7111

  • Eloneva S, Teir S, Revitzer H, Salminen J, Said A, Fogelholm CJ, Zevenhoven RJSri (2009) Reduction of CO2 emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate. Proc Metall 80:415–421

  • Eloneva S, Puheloinen E-M, Kanerva J, Ekroos A, Zevenhoven R, Fogelholm C-J (2010) Co-utilisation of CO2 and steelmaking slags for production of pure CaCO3 – legislative issues. J Clean Prod 18:1833–1839

    Article  CAS  Google Scholar 

  • Eloneva S, Said A, Fogelholm C-J, Zevenhoven R (2012) Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate. Appl Energy 90:329–334

    Article  CAS  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinee J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21

    Article  Google Scholar 

  • Gao H, Liao H, Yao X, Cheng F (2019a) Insights into the reinforcing mechanism for CO2 atmosphere in the application process of steel slag ultra-fine powder. Constr Build Mater 209:437–444

    Article  CAS  Google Scholar 

  • Gao J, Li C, Liu W, Hu J, Wang L, Liu Q, Liang B, Yue H, Zhang G, Luo D, Tang S (2019b) Process simulation and energy integration in the mineral carbonation of blast furnace slag. Chin J Chem Eng 27:157–167

    Article  CAS  Google Scholar 

  • Georgakopoulos E, Santos RM, Chiang YW, Manovic V (2016) Influence of process parameters on carbonation rate and conversion of steelmaking slags - introduction of the “carbonation weathering rate”. Greenh Gases 6:470–491

  • Ghasemi S, Costa G, Zingaretti D, Babler MU, Baciocchi R (2017) Comparative life-cycle assessment of slurry and wet accelerated carbonation of BOF slag. Energy Procedia 114:5393–5403

  • Gollapalli V, Tadivaka SR, Borra CR, Varanasi SS, Karamched PS, Venkata Rao MB (2020) Investigation on stabilization of ladle furnace slag with different additives. J Sustain Metall 6:121–131

    Article  Google Scholar 

  • Guo J, Bao Y, Wang M (2018) Steel slag in China: treatment, recycling, and management. Waste Manag 78:318–330

    Article  Google Scholar 

  • Hall C, Large DJ, Adderley B, West HM (2014) Calcium leaching from waste steelmaking slag: significance of leachate chemistry and effects on slag grain mineralogy. Miner Eng 65:156–162

    Article  CAS  Google Scholar 

  • Hobson AJ, Stewart DI, Bray AW, Mortimer RJG, Mayes WM, Riley AL, Rogerson M, Burke IT (2018) Behaviour and fate of vanadium during the aerobic neutralisation of hyperalkaline slag leachate. Sci Total Environ 643:1191–1199

    Article  CAS  Google Scholar 

  • Hoellen D, Berneder I, Tous FC, Stoellner M, Sedlazeck KP, Schwarz T, Aldrian A, Lehner M (2018) Stepwise treatment of ashes and slags by dissolution, precipitation of iron phases and carbonate precipitation for production of raw materials for industrial applications. Waste Manag 78:750–762

    Article  CAS  Google Scholar 

  • Hu J, Liu W, Wang L, Liu Q, Chen F, Yue H, Liang B, Lu L, Wang Y, Zhang G, Li C (2017) Indirect mineral carbonation of blast furnace slag with (NH4)(2)SO4 as a recyclable extractant. J Energy Chem 26:927–935

    Article  Google Scholar 

  • Huijgen WJJ, Witkamp GJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39:9676–9682

    Article  CAS  Google Scholar 

  • Huijgen WJJ, Comans RNJ, Witkamp G-J (2007) Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Convers Manag 48:1923–1935

    Article  CAS  Google Scholar 

  • Humbert PS, Castro-Gomes J (2019) CO2 activated steel slag-based materials: a review. J Clean Prod 208:448–457

    Article  CAS  Google Scholar 

  • Ibrahim MH, El-Naas MH, Zevenhoven R, Al-Sobhi SA (2019) Enhanced CO2 capture through reaction with steel-making dust in high salinity water. Int J Greenh Gas Con 91:102819

    Article  CAS  Google Scholar 

  • Jin P, Wang R, Su Y, Dong H, Wang Q (2019) Study on carbonation process of beta-C2S under microbial enzymatic action. Constr Build Mater 228:117110

    Article  CAS  Google Scholar 

  • Jo H, Lee M-G, Park J, Jung K-D (2017) Preparation of high-purity nano-CaCO3 from steel slag. Energy 120:884–894

    Article  CAS  Google Scholar 

  • Josephson GW (1949) Iron blast-furnace slag production, processing, properties, and uses. Washington, America

  • Kim SH, Jeong S, Chung H, Nam K (2020) Mechanism for alkaline leachate reduction through calcium carbonate precipitation on basic oxygen furnace slag by different carbonate sources: Application of NaHCO3 and CO2 gas. Waste Manag 103:122–127

    Article  CAS  Google Scholar 

  • Kodama S, Nishimoto T, Yamamoto N, Yogo K, Yamada K (2008) Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy 33:776–784

    Article  Google Scholar 

  • Komljenovic M, Tanasijevic G, Dzunuzovic N, Provis JL (2020) Immobilization of cesium with alkali-activated blast furnace slag. J Hazard Mater 388:121765

    Article  CAS  Google Scholar 

  • Lee SM, Lee SH, Jeong SK, Youn MH, Dinh Duc N, Chang SW, Kim SS (2017a) Calcium extraction from steelmaking slag and production of precipitated calcium carbonate from calcium oxide for carbon dioxide fixation. J Ind Eng Chem 53:233–240

    Article  CAS  Google Scholar 

  • Lee SW, Bang JH, Soochun C, Yoo YS, Choi HB, Kim JH, Kim JM (2017b) CO2 Sequestration and utilization of calcium-extracted slag using air-cooled blast furnace slag and convert slag. Appl Chem Eng 28:101–111

    Google Scholar 

  • Lee J, Ryu KH, Ha HY, Jung KD, Lee JH (2020) Techno-economic and environmental evaluation of nano calcium carbonate production utilizing the steel slag. J CO2 Util 37:113–121

    Article  CAS  Google Scholar 

  • Lekakh SN, Rawlins CH, Robertson DGC, Richards VL, Peaslee KD (2008) Kinetics of aqueous leaching and carbonization of steelmaking slag. Metall Mater Trans B 39:125–134

    Article  Google Scholar 

  • Li CC, Lin CM, Chang YE, Chang WT, Wu W (2020a) Stabilization and crystal characterization of electric arc furnace oxidizing slag modified with ladle furnace slag and alumina. Metals 10(4):501

  • Li Y, Meng X, Chen K, Barati M (2020b) Crystallization behaviors of spinel during cooling process of modified EAF slag. Metall Mater Trans B 51:1027–1038

    Article  CAS  Google Scholar 

  • Liu Q, Liu W, Hu J, Wang L, Gao J, Liang B, Yue H, Zhang G, Luo D, Li C (2018) Energy-efficient mineral carbonation of blast furnace slag with high value-added products. J Clean Prod 197:242–252

    Article  CAS  Google Scholar 

  • Liu G, Florea MVA, Brouwers HJH (2019a) Characterization and performance of high volume recycled waste glass and ground granulated blast furnace slag or fly ash blended mortars. J Clean Prod 235:461–472

    Article  CAS  Google Scholar 

  • Liu W, Song L, Xu C, Rohani S, Chen M, Liang B, Li C (2019b) Combined synthesis of Li4SiO4 sorbent with high CO2 uptake in the indirect carbonation of blast furnace slag process. Chem Eng J 370:71–80

    Article  CAS  Google Scholar 

  • Mahoutian M, Shao Y, Mucci A, Fournier B (2015) Carbonation and hydration behavior of EAF and BOF steel slag binders. Mater Struct 48:3075–3085

    Article  CAS  Google Scholar 

  • Maroušek J, Stehel V, Vochozka M, Kolář L, Maroušková A, Strunecký O, Peterka J, Kopecký M, Shreedhar S (2019) Ferrous sludge from water clarification: changes in waste management practices advisable. J Clean Prod 218:459–464

    Article  Google Scholar 

  • Mattila H-P, Grigaliūnaitė I, Zevenhoven R (2012) Chemical kinetics modeling and process parameter sensitivity for precipitated calcium carbonate production from steelmaking slags. Chem Eng J 192:77–89

    Article  CAS  Google Scholar 

  • Mattila H-P, Hudd H, Zevenhoven R (2014) Cradle-to-gate life cycle assessment of precipitated calcium carbonate production from steel converter slag. J Clean Prod 84:611–618

    Article  CAS  Google Scholar 

  • Moon EJ, Choi YC (2018) Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation. J Clean Prod 180:642–654

    Article  CAS  Google Scholar 

  • Ogino T, Suzuki T, Sawada KJ (1987) The formation and transformation mechanism of calcium carbonate in water. GECA 51:2757–2767

    Article  CAS  Google Scholar 

  • Omale SO, Choong TSY, Abdullah LC, Siajam SI, Yip MW (2019) Utilization of Malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature. Heliyon 5:e02602

    Article  Google Scholar 

  • Owais M, Jarvinen M, Taskinen P, Said A (2019) Experimental study on the extraction of calcium, magnesium, vanadium and silicon from steelmaking slags for improved mineral carbonation of CO2. J CO2 Util 31:1–7

    Article  CAS  Google Scholar 

  • Pan S-Y, Chiang P-C, Chen Y-H, Tan C-S, Chang EE (2013a) Ex situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed. Environ Sci Technol 47:3308–3315

    Article  CAS  Google Scholar 

  • Pan SY, Chiang PC, Chen YH, Chen CD, Lin HY, Chang EE (2013b) Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environ Sci Technol 47:13677–13685

    Article  CAS  Google Scholar 

  • Pan S-Y, Chiang P-C, Chen Y-H, Tan C-S, Chang EE (2014) Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: maximization of carbonation conversion. Appl Energy 113:267–276

    Article  CAS  Google Scholar 

  • Pan S-Y, Adhikari R, Chen Y-H, Li P, Chiang P-C (2016a) Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. J Clean Prod 137:617–631

    Article  CAS  Google Scholar 

  • Pan S-Y, Liu H-L, Chang EE, Kim H, Chen Y-H, Chiang P-C (2016b) Multiple model approach to evaluation of accelerated carbonation for steelmaking slag in a slurry reactor. Chemosphere 154:63–71

    Article  CAS  Google Scholar 

  • Pang B, Zhou Z, Xu H (2015) Utilization of carbonated and granulated steel slag aggregate in concrete. Constr Build Mater 84:454–467

    Article  Google Scholar 

  • Pantazopoulou E, Zouboulis A (2018) Chemical toxicity and ecotoxicity evaluation of tannery sludge stabilized with ladle furnace slag. J Environ Manag 216:257–262

    Article  CAS  Google Scholar 

  • Papachristoforou M, Papayianni I (2018) Radiation shielding and mechanical properties of steel fiber reinforced concrete (SFRC) produced with EAF slag aggregates. Radiat Phys Chem 149:26–32

    Article  CAS  Google Scholar 

  • Polettini A, Pomi R, Stramazzo A (2016) CO2 sequestration through aqueous accelerated carbonation of BOF slag: a factorial study of parameters effects. J Environ Manag 167:185–195

    Article  CAS  Google Scholar 

  • Ragipani R, Bhattacharya S, Suresh AK (2019a) Kinetics of steel slag dissolution: from experiments to modelling. Proc Math Phys Eng Sci 475:20180830

    Google Scholar 

  • Ragipani R, Bhattacharya S, Suresh AK (2019b) Towards efficient calcium extraction from steel slag and carbon dioxide utilisation via pressure-swing mineral carbonation. React Chem Eng 4:52–66

    Article  CAS  Google Scholar 

  • Rao A, Anthony EJ, Jia L, Macchi A (2007) Carbonation of FBC ash by sonochemical treatment. Fuel 86:2603–2615

    Article  CAS  Google Scholar 

  • Reddy KR, Gopakumar A, Chetri JK (2019) Critical review of applications of iron and steel slags for carbon sequestration and environmental remediation. Rev Environ Sci Biotechnol 18:127–152

    Article  CAS  Google Scholar 

  • Revathy TDR, Palanivelu K, Ramachandran A (2016) Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature. Environ Sci Pollut Res 23:7349–7359

    Article  Google Scholar 

  • Rooholamini H, Sedghi R, Ghobadipour B, Adresi M (2019) Effect of electric arc furnace steel slag on the mechanical and fracture properties of roller-compacted concrete. Constr Build Mater 211:88–98

    Article  Google Scholar 

  • Said A, Mattila H-P, Järvinen M, Zevenhoven R (2013) Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Appl Energy 112:765–771

    Article  CAS  Google Scholar 

  • Said A, Mattila O, Eloneva S, Jarvinen M (2015) Enhancement of calcium dissolution from steel slag by ultrasound. Chem Eng Process Process Intensif 89:1–8

    Article  CAS  Google Scholar 

  • Said A, Laukkanen T, Jarvinen M (2016) Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag. Appl Energy 177:602–611

    Article  CAS  Google Scholar 

  • Salimi M, Ghorbani A (2020) Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers. Appl Clay Sci 184:105390

  • Santos RM, Francois D, Mertens G, Elsen J, Van Gerven T (2013a) Ultrasound-intensified mineral carbonation. Appl Therm Eng 57:154–163

    Article  CAS  Google Scholar 

  • Santos RM, Van Bouwel J, Vandevelde E, Mertens G, Elsen J, Van Gerven T (2013b) Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties. Int J Greenh Gas Con 17:32–45

    Article  CAS  Google Scholar 

  • Schmidt R, Rmanosky B (2001): Program overviews CO2 mineral sequestration. Washington, America

  • Seo S-K, Kwon C-M, Kim FS, Lee C-J (2018) Experiment and kinetic modeling for leaching of blast furnace slag using ligand. J CO2 Util 27:188–195

    Article  CAS  Google Scholar 

  • Setién J, Hernández D, González JJ (2009) Characterization of ladle furnace basic slag for use as a construction material. Constr Build Mater 23:1788–1794

    Article  Google Scholar 

  • Shi J, Tan J, Liu B, Chen J, Dai J, He Z (2021) Experimental study on full-volume slag alkali-activated mortars: air-cooled blast furnace slag versus machine-made sand as fine aggregates. J Hazard Mater 403:123983

  • Stewart DI, Bray AW, Udoma G, Hobson AJ, Mayes WM, Rogerson M, Burke IT (2018) Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag. Environ Sci Pollut Res 25:9861–9872

    Article  CAS  Google Scholar 

  • Su T-H, Yang H-J, Shau Y-H, Takazawa E, Lee Y-C (2016) CO2 sequestration utilizing basic-oxygen furnace slag: controlling factors, reaction mechanisms and V-Cr concerns. J Environ Sci 41:99–111

    Article  CAS  Google Scholar 

  • Suer P, Lindqvist J-E, Arm M, Frogner-Kockum P (2009) Reproducing ten years of road ageing - accelerated carbonation and leaching of EAF steel slag. Sci Total Environ 407:5110–5118

    Article  CAS  Google Scholar 

  • Sun Y, Yao M-S, Zhang J-P, Yang G (2011) Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chem Eng J 173:437–445

    Article  CAS  Google Scholar 

  • Tan H, Deng X, He X, Zhang J, Zhang X, Su Y, Yang J (2019) Compressive strength and hydration process of wet-grinded granulated blast-furnace slag activated by sodium sulfate and sodium carbonate. Cem Concr Compos 97:387–398

    Article  CAS  Google Scholar 

  • Teir S, Eloneva S, Fogelholm C-J, Zevenhoven R (2007) Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy 32:528–539

    Article  CAS  Google Scholar 

  • Tong Y, Cai J, Zhang Q, Gao C, Wang L, Li P, Hu S, Liu C, He Z, Yang J (2019) Life cycle water use and wastewater discharge of steel production based on material-energy-water flows: a case study in China. J Clean Prod 241:118410

  • Ukwattage NL, Ranjith PG, Li X (2017) Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement 97:15–22

    Article  Google Scholar 

  • USGS (2020) Mineral Commodity Summaries 2020 (U.S. Geological Survey).

  • Wang Y, Suraneni P (2019) Experimental methods to determine the feasibility of steel slags as supplementary cementitious materials. Constr Build Mater 204:458–467

    Article  CAS  Google Scholar 

  • Wang C-Y, Bao W-J, Guo Z-C, Li H-Q (2018a) Carbon dioxide sequestration via steelmaking slag carbonation in alkali solutions: experimental investigation and process evaluation. Acta Metall Sin-Engl 31:771–784

    Article  CAS  Google Scholar 

  • Wang L, Liu WZ, Hu JP, Liu Q, Yue HR, Liang B, Zhang GQ, Luo DM, Xie HP, Li C (2018b) Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO2 and Al2O3. Chin J Chem Eng 26:583–592

    Article  CAS  Google Scholar 

  • Wang D, Chang J, Ansari WS (2019) The effects of carbonation and hydration on the mineralogy and microstructure of basic oxygen furnace slag products. J CO2 Util 34:87–98

    Article  CAS  Google Scholar 

  • Wang Y-J, Zeng Y-N, Li J-G, Zhang Y-Z, Zhang Y-J, Zhao Q-Z (2020) Carbonation of argon oxygen decarburization stainless steel slag and its effect on chromium leachability. J Clean Prod 256:120377

    Article  CAS  Google Scholar 

  • Wei C, Dong J, Zhang H, Wang X (2020) Kinetics model adaptability analysis of CO2 sequestration process utilizing steelmaking slag and cold-rolling wastewater. J Hazard Mater 404:124094

    Article  Google Scholar 

  • Xiao L-S, Wang R, Chiang P-C, Pan S-Y, Guo Q-H, Chang EE (2014) Comparative life cycle assessment (LCA) of accelerated carbonation processes using steelmaking slag for CO2 fixation. Aerosol Air Qual Res 14:892–904

    Article  CAS  Google Scholar 

  • Xu B, Yi Y (2020) Use of ladle furnace slag containing heavy metals as a binding material in civil engineering. Sci Total Environ 705:135854

    Article  CAS  Google Scholar 

  • Yadav S, Mehra A (2017) Experimental study of dissolution of minerals and CO2 sequestration in steel slag. Waste Manag 64:348–357

    Article  CAS  Google Scholar 

  • Yi H, Qian CX (2018) The influence of microbial agent on the mineralization rate of steel slag. Adv Mater Sci Eng 2018:1–10

  • Yildirim IZ, Prezzi M (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv Civ Eng 2011:1–13

    Article  Google Scholar 

  • Yuen YT, Sharratt PN, Jie B (2016) Carbon dioxide mineralization process design and evaluation: concepts, case studies, and considerations. Environ Sci Pollut Res Int 23:22309–22330

    Article  CAS  Google Scholar 

  • Zhang H, Lu Y, Dong J, Gan L, Tong Z (2016) Roles of mineralogical phases in aqueous carbonation of steelmaking slag. Metals 6(5):117

  • Zhang H, Dong J, Li H, Xiong H, Xu A (2018) Calcite phase conversion prediction model for CaO-Al2O3-SiO2 slag: an aqueous carbonation process at ambient pressure. Jom 70:938–945

    Article  CAS  Google Scholar 

  • Zhang N, Wu L, Liu X, Zhang Y (2019) Structural characteristics and cementitious behavior of basic oxygen furnace slag mud and electric arc furnace slag. Constr Build Mater 219:11–18

    Article  CAS  Google Scholar 

  • Zhang H, Wei C, Dong J (2020a) Inhibition kinetics of chromium leaching by calcite coating on the surface of stainless steel slag via the gas-solid accelerated carbonation process. Waste and Biomass Valorization 12(1):475–485

  • Zhang H, Zuo Q, Wei C, Lin X, Dong J, Liao C, Xu A (2020b) Closed-circulating CO2 sequestration process evaluation utilizing wastes in steelmaking plant. Sci Total Environ 738:139747

    Article  CAS  Google Scholar 

  • Zhang X, Chen J, Jiang J, Li J, Tyagi RD, Surampalli RY (2020d) The potential utilization of slag generated from iron- and steelmaking industries: a review. Environ Geochem Health 42:1321–1334

    Article  CAS  Google Scholar 

  • Zhao Q, Li J, You K, Liu C (2020) Recovery of calcium and magnesium bearing phases from iron- and steelmaking slag for CO2 sequestration. Process Saf Environ Prot 135:81–90

    Article  CAS  Google Scholar 

  • Ziaee SA, Behnia K (2020) Evaluating the effect of electric arc furnace steel slag on dynamic and static mechanical behavior of warm mix asphalt mixtures. J Clean Prod 274:123092

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51534001).

Author information

Authors and Affiliations

Authors

Contributions

Yinbo Luo had the idea for the article, he performed the literature search and data analysis, and he drafted and critically revised the work. Dongfeng He put forward valuable opinions and suggestions on the revision of the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dongfeng He.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., He, D. Research status and future challenge for CO2 sequestration by mineral carbonation strategy using iron and steel slag. Environ Sci Pollut Res 28, 49383–49409 (2021). https://doi.org/10.1007/s11356-021-15254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15254-x

Keywords

Navigation