Skip to main content

Advertisement

Log in

Critical review of applications of iron and steel slags for carbon sequestration and environmental remediation

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

One of the major concerns faced by the iron and steel industry, other than the abundant emission of carbon dioxide into the atmosphere, is the huge quantity of slag that is generated during the manufacturing of iron and steel. A comprehensive understanding of the iron and steel slag properties has diverted them away from stockpiling or landfilling to useful engineering applications. The similarity of these slags to natural minerals used in geologic carbon dioxide sequestration has made them sustainable alternative for industrial-scale carbon capture and storage. Further, they possess properties that are conducive for remediation of soil and groundwater contaminated with heavy metals and other toxic chemicals. This paper reviews the iron and steel slag characteristics suitable for engineering applications, describes several engineering application examples, and discusses challenges and opportunities to develop practical applications using iron and steel slags. This paper also discusses the on-going research which explores the use of steel slag along with the biochar-amended soil to develop a biogeochemical landfill cover to sequester fugitive gas emissions such as CH4, CO2 and H2S from MSW landfills and attain zero-emissions landfill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMD:

Acid mine drainage

AVS:

Acid volatile sulfide

AW:

Alkaline industrial wastes

BOD:

Biochemical oxygen demand

BF:

Blast furnace

BOF:

Basic oxygen furnace

CCS:

Carbon capture and storage

C&D:

Construction and demolition

DM:

Dredged material

EAF:

Electric arc furnace

ETS:

Emissions trade system

GCS:

Geological carbon sequestration

GDP:

Gross domestic product

GHG:

Greenhouse gas

GGBS:

Ground granulated blast furnace slag

IPCC:

Intergovernmental panel on climate change

LD:

Ladle slag

LFG:

Landfill gas

L/S:

Liquid to solid ratio

MSW:

Municipal solid waste

SEM:

Scanning electron microscopy

SPLP:

Synthetic precipitation leaching procedure

SSF:

Steel slag fines

SSS:

Stainless steel slag

TCE:

Trichloroethylene

TCLP:

Toxicity characteristics leaching procedure

TGA:

Thermogravimetric analysis

XEDS:

X-ray energy dispersive spectrometer

XRD:

X-ray diffraction

References

  • Ahmad M, Lee SS, Yang JE, Ro HM, Lee YH, Ok YS (2012) Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicol Environ Saf 79:225–231

    Article  CAS  Google Scholar 

  • Andreas L, Herrmann I, Lidstrom-Larrsson M, Lagerkvist A (2005) Physical properties of steel slag to be reused in a landfill cover. In: Proceedings of Sardinia 10th international waste management and landfill symposium, Environmental Sanitary Engineering Centre, Cagliari, Italy, 3–7

  • Andreas L, Diener S, Lagerkvist A (2014) Steel slags in a landfill top cover—experiences from a full-scale experiment. Waste Manag 34(3):692–701

    Article  CAS  Google Scholar 

  • Baciocchi R, Costa G, Polettini A, Pomi R (2009) Influence of particle size on the carbonation of stainless steel slag for CO2 storage. Energy Procedia 1(1):4859–4866

    Article  CAS  Google Scholar 

  • Baciocchi R, Costa G, Di Bartolomeo E, Polettini A, Pomi R (2011) Wet versus slurry carbonation of EAF steel slag. Greenh Gases 1(4):312–319

    Article  CAS  Google Scholar 

  • Baird C, Cann M (2005) Environmental chemistry (No. TD 193. B34 2005)

  • Baker MJ, Blowes DW, Ptacek CJ (1998) Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems. Environ Sci Technol 32(15):2308–2316

    Article  CAS  Google Scholar 

  • Belhadj E, Diliberto C, Lecomte A (2012) Characterization and activation of basic oxygen furnace slag. Cem. Concr. Compos. 34(1):34–40

    Article  CAS  Google Scholar 

  • Boone MA, Nielsen P, De Kock T, Boone MN, Quaghebeur M, Cnudde V (2013) Monitoring of stainless-steel slag carbonation using X-ray computed microtomography. Environ Sci Technol 48(1):674–680

    Article  CAS  Google Scholar 

  • Bowden LI, Jarvis AP, Younger PL, Johnson KL (2009) Phosphorus removal from waste waters using basic oxygen steel slag. Environ Sci Technol 43(7):2476–2481

    Article  CAS  Google Scholar 

  • Capobianco O, Costa G, Thuy L, Magliocco E, Hartog N, Baciocchi R (2014) Carbonation of stainless steel slag in the context of in situ brownfield remediation. Miner Eng 59:91–100

    Article  CAS  Google Scholar 

  • Chang EE, Chen CH, Chen YH, Pan SY, Chiang PC (2011) Performance evaluation for carbonation of steel-making slags in a slurry reactor. J Hazard Mater 186(1):558–564

    Article  CAS  Google Scholar 

  • Chang EE, Pan SY, Chen YH, Tan CS, Chiang PC (2012) Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. J Hazard Mater 227:97–106

    Article  CAS  Google Scholar 

  • Chesner WH, Collins RJ, MacKay MH (1998) User guidelines for waste and by-product materials in pavement construction. Federal Highway Administration (FHWA), FHWA-RD-97-148

  • Chiang PC, Pan SY (2017) Carbon dioxide mineralization and utilization. Springer, Singapore

    Book  Google Scholar 

  • Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50(1):40–57

    Article  Google Scholar 

  • Department of Natural Resources (1997) Effluent standards and limitations for phosphorous. Wis. Stats., NR 217.04

  • Diener S, Andreas L, Herrmann I, Ecke H, Lagerkvist A (2010) Accelerated carbonation of steel slags in a landfill cover construction. Waste Manag 30(1):132–139

    Article  CAS  Google Scholar 

  • Freeman JS, Rowell DL (1981) The adsorption and precipitation of phosphate onto calcite. Eur J Soil Sci 32(1):75–84

    Article  CAS  Google Scholar 

  • Goldberg P, Chen ZY, O’Connor W, Walters R, Ziock H (2001) CO2 mineral sequestration studies in the US. National Energy Technology Laboratory (NETL), Pittsburgh, PA (United States)

  • Grubb DG, Wazne M (2011) Metal immobilization using slag fines. U.S. Patent Application No. 12/874,079

  • Grubb DG, Wazne M, Jagupilla SC, Malasavage NE (2011) Beneficial use of steel slag fines to immobilize arsenite and arsenate: slag characterization and metal thresholding studies. J Hazard Toxic Radioact Waste 15(3):130–150

    Article  CAS  Google Scholar 

  • Gupta JD, Kneller WA, Tamirisa R, Skrzypczak-Jankun E (1994) Characterization of base and subbase iron and steel slag aggregates causing deposition of calcareous tufa in drains. Transp Res Rec 1434:17–22

    Google Scholar 

  • Gutierrez J, Hong CO, Lee BH, Kim PJ (2010) Effect of steel-making slag as a soil amendment on arsenic uptake by radish (Raphanus sativa L.) in an upland soil. Biol Fertil Soils 46(6):617–623

    Article  Google Scholar 

  • Hamilton J, Gue J, Socotch C (2007) The use of steel slag in passive treatment design for AMD discharge in the Huff Run watershed restoration. In: Proceedings of American Society of Mining and Reclamation, Gillette, WY, pp 272–282

  • Herrmann I, Andreas L, Diener S, Lind L (2010) Steel slag used in landfill cover liners: laboratory and field tests. Waste Manag Res 28(12):1114–1121

    Article  CAS  Google Scholar 

  • Huijgen WJJ, Comans RNJ (2005) Mineral CO2 sequestration by carbonation of industrial residues. ECN, ECN-C–05-074, 22

  • Huijgen WJ, Comans RN (2006) Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environ Sci Technol 40(8):2790–2796

    Article  CAS  Google Scholar 

  • Huijgen WJ, Witkamp GJ, Comans RN (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39(24):9676–9682

    Article  CAS  Google Scholar 

  • IEA (2016) 20 years of carbon capture and storage: accelerating future deployment. International Energy Agency, France. https://www.iea.org/publications/freepublications/publication/20YearsofCarbonCaptureandStorage_WEB.pdf. Accessed on 4 Jan 2019

  • Kasina M, Kowalski PR, Michalik M (2015) Mineral carbonation of metallurgical slags. Mineralogia 45(1–2):27–45

    Article  CAS  Google Scholar 

  • Kim K, Asaoka S, Yamamoto T, Hayakawa S, Takeda K, Katayama M, Onoue T (2012) Mechanisms of hydrogen sulfide removal with steel making slag. Environ Sci Technol 46(18):10169–10174

    CAS  Google Scholar 

  • Kimio ITO (2015) Steelmaking slag for fertilizer usage. Nippon Steel Sumitomo Metal Technical Report, no. 109, pp 130–136

  • Kunzler C, Alves N, Pereira E, Nienczewski J, Ligabue R, Einloft S, Dullius J (2011) CO2 storage with indirect carbonation using industrial waste. Energy Procedia 4:1010–1017

    Article  CAS  Google Scholar 

  • Lackner KS, Wendt CH, Butt DP, Joyce EL Jr, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20(11):1153–1170

    Article  CAS  Google Scholar 

  • Lee IS, Kim OK, Chang YY, Bae B, Kim HH, Baek KH (2002) Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range. J Biosci Bioeng 94(5):406–411

    Article  CAS  Google Scholar 

  • Leite CMDC, Cardoso LP, Mello JWVD (2013) Use of steel slag to neutralize acid mine drainage (AMD) in sulfidic material from a uranium mine. Rev Bras Ciênc Solo 37(3):804–811

    Article  CAS  Google Scholar 

  • Lekakh SN, Rawlins CH, Robertson DGC, Richards VL, Peaslee KD (2008) Kinetics of aqueous leaching and carbonization of steelmaking slag. Metall Mater Trans B 39(1):125–134

    Article  CAS  Google Scholar 

  • Leung DY, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443

    Article  CAS  Google Scholar 

  • Lu SG, Bai SQ, Shan HD (2008) Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag. J Zhejiang Univ Sci A 9(1):125–132

    Article  CAS  Google Scholar 

  • Metz B, Davidson O, Coninck H, Loos M, Meyer L (2005) Special report on carbon dioxide capture and storage. Intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 137(2):762–811

    Article  CAS  Google Scholar 

  • Montes-Morán MA, Concheso A, Canals-Batlle C, Aguirre NV, Ania CO, Martín MJ, Masaguer V (2012) Linz–Donawitz steel slag for the removal of hydrogen sulfide at room temperature. Environ Sci Technol 46(16):8992–8997

    Article  CAS  Google Scholar 

  • Moon DH, Wazne M, Cheong KH, Chang YY, Baek K, Ok YS, Park JH (2015) Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag. Environ Sci Pollut Res 22(14):11162–11169

    Article  CAS  Google Scholar 

  • Ko MS, Chen YL, Jiang JH (2015) Accelerated carbonation of basic oxygen furnace slag and the effects on its mechanical properties. Constr Build Mater 98:286–293

    Article  Google Scholar 

  • Murphy JN, Meadowcroft TR, Barr PV (1997) Enhancement of the cementitious properties of steelmaking slag. Can Metall Q 36(5):315–331

    Article  CAS  Google Scholar 

  • National Slag Association (2013) Utilizing iron and steel slag’s in environmental applications-an overview. http://www.nationalslag.org/utilizing-iron-and-steel-slag’s-environmental-applications-overview. Accessed 4 Jan 2019

  • Ng CWW, Ng M, Leung AK (2017) Removal of hydrogen sulfide using soil amended with ground granulated blast-furnace slag. J Environ Eng 143(7):04017016

    Article  CAS  Google Scholar 

  • Ning D, Liang Y, Liu Z, Xiao J, Duan A (2016) Impacts of steel-slag-based silicate fertilizer on soil acidity and silicon availability and metals-immobilization in a paddy soil. PLoS ONE 11(12):e0168163

    Article  CAS  Google Scholar 

  • NOAA (2018) National Oceanic and Atmospheric Administration, Earth System Laboratory, Global Monitoring Division. https://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed on 9 Aug 2019

  • Ochola CE, Moo-Young HK (2004) Establishing and elucidating reduction as the removal mechanism of Cr(VI) by reclaimed limestone residual RLR (modified steel slag). Environ Sci Technol 38(22):6161–6165

    Article  CAS  Google Scholar 

  • Oelkers EH, Gislason SR, Matter J (2008) Mineral carbonation of CO2. Elements 4(5):333–337

    Article  CAS  Google Scholar 

  • Olajire AA (2013) A review of mineral carbonation technology in sequestration of CO2. J Pet Sci Technol 109:364–392

    CAS  Google Scholar 

  • OSHA (2019) Occupational Safety and Health Administration: Safety and health topics-Hydrogen Sulfide. US Department of Labor. https://www.osha.gov/SLTC/hydrogensulfide/hydrogensulfide_found.html. Accessed on 4 June 2018

  • Pan SY, Adhikari R, Chen YH, Li P, Chiang PC (2016) Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. J Clean Prod 137:617–631

    Article  CAS  Google Scholar 

  • Reddy KR, Yargicoglu EN, Yue D, Yaghoubi P (2014) Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J Geotech Geoenviron Eng 140(9):04014047

    Article  CAS  Google Scholar 

  • Reddy KR, Kumar G, Grubb D (2018a) Innovative biogeochemical soil cover to mitigate landfill gas emissions. In: Protection and restoration of the environment XIV (PREXIV), Greece, 3–6 July 2018

  • Reddy KR, Kumar G, Gopakumar A, Grubb D (2018b) CO2 sequestration using BOF slag: application in landfill cover. In: Protection and restoration of the environment XIV (PREXIV), Greece, 3–6 July 2018

  • Russell HH, Matthews JE, Guy WS (1992) TCE removal from contaminated soil and groundwater. In: Russell Boulding J (ed) EPA environmental engineering sourcebook. CRC Press, Boca Raton

    Google Scholar 

  • Sadasivam BY, Reddy KR (2014) Landfill methane oxidation in soil and bio-based cover systems: a review. Rev Environ Sci Biotechnol 13(1):79–107

    Article  CAS  Google Scholar 

  • Sarperi L, Surbrenat A, Kerihuel A, Chazarenc F (2014) The use of an industrial by-product as a sorbent to remove CO2 and H2S from biogas. J Environ Chem Eng 2(2):1207–1213

    Article  CAS  Google Scholar 

  • Scott RI (2001) Lead contamination in soil at outdoor firing ranges. https://www.princeton.edu/~rmizzo/firingrange.htm. Accessed on 4 June 2018

  • Sheridan C (2014) Remediation of acid mine drainage using metallurgical slags. Miner Eng 64:15–22

    Article  CAS  Google Scholar 

  • Shi C (2004) Steel slag—its production, processing, characteristics, and cementitious properties. J Mater Civ Eng 16(3):230–236

    Article  CAS  Google Scholar 

  • Smith JS (2003) Method for purifying contaminated groundwater using steel slag. U.S. Patent No. 6,602,421

  • Smyth DJA, Blowes DW, Ptacek CJ, Groza LE, Baker MJ, Crawford W (2004) Phosphorus and pathogen removal from wastewater, storm water and groundwater using permeable reactive materials. Canadian water network meeting, Ottawa, ON

  • Solomon S, Carpenter M, Flach TA (2008) Intermediate storage of carbon dioxide in geological formations: a technical perspective. Int J Greenh Gas Control 2(4):502–510

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Mohan D (1997) Removal of lead and chromium by activated slag—a blast-furnace waste. J Environ Eng 123(5):461–468

    Article  CAS  Google Scholar 

  • Stolaroff JK, Lowry GV, Keith DW (2005) Using CaO-and MgO-rich industrial waste streams for carbon sequestration. Energy Convers Manag 46(5):687–699

    Article  CAS  Google Scholar 

  • Su TH, Yang HJ, Shau YH, Takazawa E, Lee YC (2016) CO2 sequestration utilizing basic-oxygen furnace slag: controlling factors, reaction mechanisms and V–Cr concerns. J Environ Sci 41:99–111

    Article  Google Scholar 

  • Takahashi T, Yabuta K (2002) New application of iron and steelmaking slag. NKK Technical Report-Japanese Edition, pp 43–48

  • Tsai TT, Kao CM, Wang JY (2011) Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation. Chemosphere 83(5):687–692

    Article  CAS  Google Scholar 

  • Tu M, Zhao H, Lei Z, Wang L, Chen D, Yu H, Qi T (2015) Aqueous carbonation of steel slag: a kinetics study. ISIJ Int 55(11):2509–2514

    Article  CAS  Google Scholar 

  • Ukwattage NL, Ranjith PG, Li X (2017) Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement 97:15–22

    Article  Google Scholar 

  • US EPA (2017) Carbon dioxide capture and sequestration: storage safety and security. https://19january2017snapshot.epa.gov/climatechange/carbon-dioxide-capture-and-sequestration-storage-safety-and-security_.html. Accessed on 4 June 2018

  • US EPA, Underground Injection Control (UIC) (2016) Class VI—wells used for geologic sequestration of CO2. https://www.epa.gov/uic/class-vi-wells-used-geologic-sequestration-co2. Accessed on 4 June 2018

  • U.S. Geological Survey (USGS) (2018) Mineral Commodity Summaries. Iron and steel slag. https://minerals.usgs.gov/minerals/pubs/commodity/iron_and_steel_slag/. Accessed on 4 June 2018

  • van Zomeren A, Van der Laan SR, Kobesen HB, Huijgen WJ, Comans RN (2011) Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Manag 31(11):2236–2244

    Article  CAS  Google Scholar 

  • Wang X, Cai Q-S (2006) Steel slag as an iron fertilizer for corn growth and soil improvement in a pot experiment. Pedosphere 16(4):519–524

    Article  CAS  Google Scholar 

  • Wu HZ, Chang J, Wang H (2011) Pore structural changes and carbonated depth of carbonated steel slag. Adv Mater Res 306:1122–1125

    Article  CAS  Google Scholar 

  • Xiong J, He Z, Mahmood Q, Liu D, Yang X, Islam E (2008) Phosphate removal from solution using steel slag through magnetic separation. J Hazard Mater 152(1):211–215

    Article  CAS  Google Scholar 

  • Yargicoglu EN, Reddy KR (2017) Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: a laboratory column study. J Environ Manag 193:19–31

    Article  CAS  Google Scholar 

  • Yargicoglu EN, Reddy KR (2018) Biochar-amended soil cover for microbial methane oxidation: effect of biochar amendment ratio and cover profile. J Geotech Geoenviron Eng 144(3):04017123

    Article  Google Scholar 

  • Yildirim IZ, Prezzi M (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv Civ Eng. https://doi.org/10.1155/2011/463638

    Article  Google Scholar 

  • Yilmaz D, Lassabatere L, Deneele D, Angulo-Jaramillo R, Legret M (2013) Influence of carbonation on the microstructure and hydraulic properties of a basic oxygen furnace slag. Vadose Zone J. https://doi.org/10.2136/vzj2012.0121

    Article  Google Scholar 

  • Yu J, Wang K (2011) Study on characteristics of steel slag for CO2 capture. Energy Fuels 25(11):5483–5492

    Article  CAS  Google Scholar 

  • Zhang YL, Liu MD, Wang YJ, Du LD (2003) Effects of slag application on Si, Fe and Mn in paddy soil and rice plant. Chin J Soil Sci 4:016

    CAS  Google Scholar 

  • Zhang T, Yu Q, Wei J, Li J, Zhang P (2011) Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resour Conserv Recycl 56(1):48–55

    Article  Google Scholar 

  • Ziemkiewicz P, Skousen J (1999) Steel slag in acid mine drainage treatment and control. In: Proceedings of annual national meeting of the society for surface mining and reclamation, vol 16, pp 651–656

Download references

Acknowledgements

This project is funded by the U.S. National Science Foundation (Grant CMMI # 1724773), which is gratefully acknowledged. The authors thank Girish Kumar, Iziquiel Cecchin, Dennis Grubb for their guidance and assistance during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna R. Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, K.R., Gopakumar, A. & Chetri, J.K. Critical review of applications of iron and steel slags for carbon sequestration and environmental remediation. Rev Environ Sci Biotechnol 18, 127–152 (2019). https://doi.org/10.1007/s11157-018-09490-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-018-09490-w

Keywords

Navigation