Skip to main content

Advertisement

Log in

Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This article is an extensive collection of scientific literature related to the impact of fertilizers on soil microbial and enzymatic activity. Due to the significance of technology in quantitative and qualitative evaluation of agricultural production, this is a basic problem for the present and future of mankind, where the scientific data being of utmost importance related to the topic. The comparison, including pedo-enzymological evaluation of minerals along with organic fertilization, highlights significant differences between mineral and organic fertilizers, confirming the superiority of complex mineral-organic fertilization. Enzymatic indicators that describe and define the soil quality resulted from enzymatic activities value and provide valuable information regarding the soil fertility status. Moreover, soil enzyme responds to soil management as well as to environmental pollutants. Changes of environmental conditions and pollutants like heavy metals and other toxic substances result in a shift in the biological activity of the soil. These changes can destabilize the soil system and cause a decrease in the nutrient pools. To ensure the improvement of fertilization techniques, the properties of nanoparticles are exploited that can efficiently release nutrients to plant cells. Numerous researches were performed in order to follow the long-term effects of incorporating nanofertilizers into the soil, obtaining an exhaustive overview of this new technology over the development of sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in the manuscript.

References

  • Acosta-Martínez V, Tabatabai MA (2000) Enzyme activities in a limed agricultural soil. Biol Fertil Soils 31:85–91

    Article  Google Scholar 

  • Adetunji A, Lewu F, Mulidzi A, Ncube B (2017) The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: a review. J Soil Sci Plant Nutr 17:794–807

    Article  CAS  Google Scholar 

  • Al-Khafaji AA, Tabatabai MA (1979) Effect of trace elements on arylsulphatase activity in soils. Soil Sci 127:129–133

    Article  CAS  Google Scholar 

  • Albert E, Tanee FBG (2011) A laboratory trial of bioaugmentation for removal of total petroleum hydrocarbon (TPH) in Niger Delta soil using Oscillatoria bornettia. J Microbiol Biotechnol 1:147–168

    CAS  Google Scholar 

  • Aleya L, Grisey E, Bourioug M, Bourgeade P, Bungau SG (2019) Proposed changes for post-closure monitoring of Etueffont landfill (France) from a 9-year survey. Sci Total Environ 656:634–644

    Article  CAS  Google Scholar 

  • Allison SD, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Chang Biol 14:2898–2909

    Article  Google Scholar 

  • Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944

    Article  CAS  Google Scholar 

  • Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2011) Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In: Shukla G, Varma A (eds) Soil Enzymology. Springer, Berlin Heidelberg, pp 229–243

    Google Scholar 

  • Ameen F, Al-Homaidan AA (2021) Compost inoculated with fungi from a mangrove habitat improved the growth and disease defense of vegetable plants. Sustainability 13:124

    Article  CAS  Google Scholar 

  • Angelovičová L, Lodenius M, Tulisalo E, Fazekašová D (2014) Effect of heavy metals on soil enzyme activity at different field conditions in Middle Spis mining area (Slovakia). Bull Environ Contam Toxicol 93:670–675

    Article  Google Scholar 

  • Baazaoui N, Sghaier-Hammami B, Hammami SBM, Khefacha R, Chaari S, Elleuch L et al (2021) A handbook guide to better use of nanoparticles in plants. Commun Soil Sci Plant Anal 52:287–321

    Article  CAS  Google Scholar 

  • Baldi E, Toselli M, Marangoni B (2010) Nutrient partitioning in potted peach (Prunus persica L.) trees supplied with mineral and organic fertilizers. J Plant Nutr 33:2050–2061

    Article  CAS  Google Scholar 

  • Baležentienė L (2012) Hydrolases related to C and N. Cycles and soil fertility amendment: responses to different management styles of agro-ecosystems. Pol J Environ Stud 21:1153–1159

    Google Scholar 

  • Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479

    Article  CAS  Google Scholar 

  • Belyaeva ON, Haynes RJ, Birukova OA (2005) Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biol Fertil Soils 41:85–94

    Article  CAS  Google Scholar 

  • Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81:387–393

    Article  CAS  Google Scholar 

  • Blankinship JC, Becerra CA, Schaeffer SM, Schimel JP (2014) Separating cellular metabolism from exoenzyme activity in soil organic matter decomposition. Soil Biol Biochem 71:68–75

    Article  CAS  Google Scholar 

  • Blum WEH (1989) Soil pollution by heavy metals: causes, processes, impacts and need for future actions. Proceedings of the 3rd meeting. Steering Committe for the conservation and management of the environment and naturals habitats (CDPE), Strasbourg

    Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    Article  CAS  Google Scholar 

  • Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K et al (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11

    Article  Google Scholar 

  • Bravo K, Toselli M, Baldi E, Marcolini G, Sorrenti G, Quartieri M et al (2012) Effect of organic fertilization on carbon assimilation and partitioning in bearing nectarine trees. Sci Hortic 137:100–106

    Article  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  Google Scholar 

  • Bungau S, Bungau C, Tit DM (2015) Studies on the last stage of product lifecycle management for a pharmaceutical product. J Environ Prot Ecol 16:56–62

    Google Scholar 

  • Bungau S, Tit DM, Fodor K, Cioca G, Agop M, Iovan C et al (2018) Aspects regarding the pharmaceutical waste management in Romania. Sustainability 10:2788

    Article  Google Scholar 

  • Burns RG (1978) Soil enzymes. Academic Press, London

    Google Scholar 

  • Cavalheiro TR, Alcoforado RD, Silva VS, Coimbra PP, Mendes ND, Cavalcanti ED et al (2021) The impact of organic fertilizer produced with vegetable residues in lettuce (Lactuca sativa L.) cultivation and antioxidant activity. Sustainability 13:128

    Article  CAS  Google Scholar 

  • Ceccanti B, Pezzarossa B, Gallardo-Lancho FJ, Masciandaro G (1993) Biotests as markers of soil utilization and fertility. Geomicrobiol J 11:309–316

    Article  CAS  Google Scholar 

  • Chang KH, Wu RY, Chuang KC, Hsieh TF, Chung RS (2010) Effects of chemical and organic fertilizers on the growth, flower quality and nutrient uptake of Anthurium andreanum, cultivated for cut flower production. Sci Hortic 125:434–441

    Article  CAS  Google Scholar 

  • Chen J, Wei X. (2018) Controlled-release fertilizers as a means to reduce nitrogen leaching and runoff in container-grown plant production. itrogen in agriculture - updates. IntechOpen, pp. 33-52.

  • Chen M, Sun Y, Liang J, Zeng G, Li Z, Tang L et al (2019) Understanding the influence of carbon nanomaterials on microbial communities. Environ Int 126:690–698

    Article  CAS  Google Scholar 

  • Chen W, Liu W, Pan N, Jiao W, Wang M (2013) Oxytetracycline on functions and structure of soil microbial community. J Soil Sci Plant Nutr 13:967–975

    Google Scholar 

  • Chen Y, Liu J, Liu S (2018) Effect of long-term mineral fertilizer application on soil enzyme activities and bacterial community composition. Plant Soil Environ 64:571–577

    Article  CAS  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22

    Article  CAS  Google Scholar 

  • Chodak M, Pietrzykowski M, Niklińska M (2009) Development of microbial properties in a chronosequence of sandy mine soils. Appl Soil Ecol 41:259–268

    Article  Google Scholar 

  • Claassens S, Jansen van Rensburg P, Liebenberg D, van Rensburg L (2012) A comparison of microbial community function and structure in rehabilitated asbestos and coal discard sites. Water Air Soil Pollut 223:1091–1100

    Article  CAS  Google Scholar 

  • Claassens S, Jansen van Rensburg PJ, Maboeta MS, van Rensburg L (2011) An application of space-for-time substitution in two post-mining chronosequences under rehabilitation. S Afr J Plant Soil 28:151–165

    Google Scholar 

  • Clarholm M, Rosengren-Brinck U (1995) Phosphorus and nitrogen fertilization of a Norway spruce forest-effects on needle concentrations and acid phosphatase activity in the humus layer. Plant Soil 175:239–249

    Article  CAS  Google Scholar 

  • Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE et al (2011) Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Glob Chang Biol 17:3392–3404

    Article  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995

    Article  Google Scholar 

  • Cycoń M, Borymski S, Żołnierczyk B, Piotrowska-Seget Z (2016) Variable effects of non-steroidal anti-inflammatory drugs (NSAIDs) on selected biochemical processes mediated by soil microorganisms. Front Microbiol 7:1969

    Article  Google Scholar 

  • Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P et al (2020) Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 12:1397

    Article  CAS  Google Scholar 

  • Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Chang Biol 4:217–227

    Article  Google Scholar 

  • De La Mora-Orozco C, Flores-Garnica JG, Vega-Ramírez LM, González-Acuña IJ, Nápoles-Armenta J, Martínez-Orozco E (2021) Total organic carbon assessment in soils cultivated with agave tequilana weber in Jalisco, Mexico. Sustainability 13:208

    Article  Google Scholar 

  • Deng SP, Tabatabai MA (1994) Cellulase activity of soils. Soil Biol Biochem 26:1347–1354

    Article  CAS  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    Article  CAS  Google Scholar 

  • Dick RP. (1994) Soil enzyme activities as indicators of soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA, editors. Defining Soil Quality for a Sustainable Environment. 35. SSSA Special Publications, pp. 107-124.

  • Dick RP, Breakwell DP, Turco RF. (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ, editors. Methods for Assessing Soil Quality. 49. Soil Science Society of America, pp. 247-271.

  • Dick RP, Rasmussen PE, Kerle EA (1988) Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biol Fertil Soils 6:159–164

    Article  CAS  Google Scholar 

  • Dick RP, Sandor JA, Eash NS (1994) Soil enzyme activities after 1500 years of terrace agriculture in the Colca Valley, Peru. Agric Ecosyst Environ 50:123–131

    Article  CAS  Google Scholar 

  • Dimitriu PA, Prescott CE, Quideau SA, Grayston SJ (2010) Impact of reclamation of surface-mined boreal forest soils on microbial community composition and function. Soil Biol Biochem 42:2289–2297

    Article  CAS  Google Scholar 

  • Dindar E, Şağban FO, Başkaya HS (2015) Evaluation-of soil enzyme activities as soil quality indicators in sludge-amended soils. J Environ Biol 36:919–926

    CAS  Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173-174:19–27

    Article  CAS  Google Scholar 

  • Ditta A, Arshad M (2016) Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol Rev 5:209–229

    Article  CAS  Google Scholar 

  • Dong WY, Zhang XY, Dai XQ, Fu XL, Yang FT, Liu X-Y et al (2014) Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Appl Soil Ecol 84:140–147

    Article  Google Scholar 

  • Ebbs S, Bradfield S, Kumar P, White J, Musante C, Ma X (2016) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environ Sci Nano 3:114–126

    Article  CAS  Google Scholar 

  • Eivazi F, Bayan MR, Schmidt K (2003) Select soil enzyme activities in the historic sanborn field as affected by long-term cropping systems. Commun Soil Sci Plant Anal 34:2259–2275

    Article  CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol Biochem 9:167–172

    Article  CAS  Google Scholar 

  • Ekenler M, Tabatabai MA (2003) Effects of liming and tillage systems on microbial biomass and glycosidases in soils. Biol Fertil Soils 39:51–61

    Article  CAS  Google Scholar 

  • Ekschmitt K, Liu M, Vetter S, Fox O, Wolters V (2005) Strategies used by soil biota to overcome soil organic matter stability — why is dead organic matter left over in the soil? Geoderma 128:167–176

    Article  Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Elmahrouk M, Bayoumi Y et al (2018) Plant nano-nutrition: perspectives and challenges. In: Gothandam KM, Ranjan S, Dasgupta N, Ramalingam C, Lichtfouse E (eds) Nanotechnology. Food Security and Water Treatment. Springer International Publishing, Cham, pp 129–161

    Google Scholar 

  • El-Shakweer MHA, El-Sayad EA, Ewees MSA (1998) Soil and plant analysis as a guide for interpretation of the improvement efficiency of organic conditioners added to different soils in Egypt. Commun Soil Sci Plant Anal 29:2067–2088

    Article  CAS  Google Scholar 

  • Evon P, Labonne L, Padoan E, Vaca-Garcia C, Montoneri E, Boero V et al (2021) A new composite biomaterial made from sunflower proteins, urea, and soluble polymers obtained from industrial and municipal biowastes to perform as slow release fertiliser. Coatings 11:43

    Article  CAS  Google Scholar 

  • Ezeokoli OT, Bezuidenhout CC, Maboeta MS, Khasa DP, Adeleke RA (2020) Structural and functional differentiation of bacterial communities in post-coal mining reclamation soils of South Africa: bioindicators of soil ecosystem restoration. Sci Rep 10:1759

    Article  CAS  Google Scholar 

  • Fan S. (2016) Ending hunger and undernutrition by 2025: the role of horticultural value chains. XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp. 9-20.

  • Fanin N, Bertrand I (2016) Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient. Soil Biol Biochem 94:48–60

    Article  CAS  Google Scholar 

  • Feregrino-Perez AA, Magaña-López E, Guzmán C, Esquivel K (2018) A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Sci Hortic 238:126–137

    Article  Google Scholar 

  • Fleischer A, O'Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838

    Article  CAS  Google Scholar 

  • Francioli D, Schulz E, Lentendu G, Wubet T, Buscot F, Reitz T (2016) Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front Microbiol 7:1446

    Article  Google Scholar 

  • Frankenberger WT Jr, Dick WA (1983) Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci Soc Am J 47:945–951

    Article  CAS  Google Scholar 

  • Frankenberger WT, Johanson JB (1983) Factors affecting invertase activity in soils. Plant Soil 74:313–323

    Article  CAS  Google Scholar 

  • Gaidajis G, Kakanis I (2021) Life cycle assessment of nitrate and compound fertilizers production—a case study. Sustainability 13:148

    Article  CAS  Google Scholar 

  • Gałązka A, Grzęda E, Jończyk K (2019) Changes of microbial diversity in rhizosphere soils of new quality varieties of winter wheat cultivation in organic farming. Sustainability 11:4057

    Article  Google Scholar 

  • Ganta PB, Kühn O, Ahmed AA (2020) Ab initio molecular dynamics simulations of the interaction between organic phosphates and goethite. Molecules 26:160

    Article  Google Scholar 

  • Gao Y, Zhou P, Mao L, Zhi Y, Shi W (2010) Assessment of effects of heavy metals combined pollution on soil enzyme activities and microbial community structure: modified ecological dose–response model and PCR-RAPD. Environ Earth Sci 60:603–612

    Article  CAS  Google Scholar 

  • García-Ruiz R, Ochoa V, Hinojosa MB, Carreira JA (2008) Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biol Biochem 40:2137–2145

    Article  Google Scholar 

  • Gareeb RY, Elnouby MS, Hasan MA, Ticu S, Popa A, Bungau S et al (2019) New Trend for Using the Reduced Graphene Oxide as Effective and Eco-friendly Nematicide. Mater Plastice 56:59–64

    Article  Google Scholar 

  • Ge Y, Zhang J, Zhang L, Yang M, He J (2008) Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China. J Soils Sediments 8:43–50

    Article  CAS  Google Scholar 

  • Giacometti C, Demyan MS, Cavani L, Marzadori C, Ciavatta C, Kandeler E (2013) Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems. Appl Soil Ecol 64:32–48

    Article  Google Scholar 

  • Gianfreda L, Antonietta Rao M, Piotrowska A, Palumbo G, Colombo C (2005) Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Sci Total Environ 341:265–279

    Article  CAS  Google Scholar 

  • Gianfreda L, Ruggiero P (2006) Enzyme Activities in Soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Berlin Heidelberg, pp 257–311

    Chapter  Google Scholar 

  • Gil-Sotres F, Trasar-Cepeda C, Leirós MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    Article  CAS  Google Scholar 

  • Gitea MA, Gitea D, Tit DM, Purza L, Samuel AD, Bungau S et al (2019) Orchard management under the effects of climate change: implications for apple, plum, and almond growing. Environ Sci Pollut Res 26:9908–9915

    Article  CAS  Google Scholar 

  • Giusquiani PL, Pagliai M, Gigliotti G, Businelli D, Benetti A (1995) Urban waste compost: effects on physical, chemical, and biochemical soil properties. J Environ Qual 24:175–182

    Article  CAS  Google Scholar 

  • Gómez EJ, Delgado JA, González JM (2020) Persistence of microbial extracellular enzymes in soils under different temperatures and water availabilities. Ecol Evol 10:10167–10176

    Article  Google Scholar 

  • Gu C, Zhang S, Han P, Hu X, Xie L, Li Y et al (2019) Soil enzyme activity in soils subjected to flooding and the effect on nitrogen and phosphorus uptake by oilseed rape. Front Plant Sci 10:368

    Article  Google Scholar 

  • Hammesfahr U, Bierl R, Thiele-Bruhn S (2011) Combined effects of the antibiotic sulfadiazine and liquid manure on the soil microbial-community structure and functions. J Plant Nutr Soil Sci 174:614–623

    Article  CAS  Google Scholar 

  • Hayano K, Tubaki K (1985) Origin and properties of β-glucosidase activity of tomato-field soil. Soil Biol Biochem 17:553–557

    Article  CAS  Google Scholar 

  • Hojati S, Nourbakhsh F (2009) Distribution of β-glucosidase activity within aggregates of a soil amended with organic fertilizers. Am J Agric Biol Sci 4:179–186

    Article  Google Scholar 

  • Holik L, Hlisnikovsky L, Honzik R, Trogl J, Burdova H, Popelka J (2019) Soil microbial communities and enzyme activities after long-term application of inorganic and organic fertilizers at different depths of the soil profile. Sustainability 11

  • Hong J, Peralta-Videa JR, Rico C, Sahi S, Viveros MN, Bartonjo J et al (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376–4385

    Article  CAS  Google Scholar 

  • Irha N, Slet J, Petersell V (2003) Effect of heavy metals and PAH on soil assessed via dehydrogenase assay. Environ Int 28:779–782

    Article  CAS  Google Scholar 

  • Jakšić S, Ninkov J, Milić S, Vasin J, Banjac D, Jakšić D et al (2021) The state of soil organic carbon in vineyards as affected by soil types and fertilization strategies (Tri Morave Region, Serbia). Agronomy 11:9

    Article  Google Scholar 

  • Janbandhu A, Fulekar MH (2011) Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. J Hazard Mater 187:333–340

    Article  CAS  Google Scholar 

  • Jośko I, Oleszczuk P, Dobrzyńska J, Futa B, Joniec J, Dobrowolski R (2019) Long-term effect of ZnO and CuO nanoparticles on soil microbial community in different types of soil. Geoderma 352:204–212

    Article  Google Scholar 

  • Kaczyńska G, Borowik A, Wyszkowska J (2015) Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water Air Soil Pollut 226:372

    Article  Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684

    Article  CAS  Google Scholar 

  • Kakabouki I, Folina A, Efthimiadou A, Karydogianni S, Zisi C, Kouneli V et al (2021) Evaluation of processing tomato pomace after composting on soil properties, yield, and quality of processing tomato in Greece. Agronomy 11:88

    Article  CAS  Google Scholar 

  • Kandeler E, Murer E (1993) Aggregate stability and soil microbial processes in a soil with different cultivation. Geoderma 56:503–513

    Article  Google Scholar 

  • Khan AU, Ullah F, Khan N, Mehmood S, Fahad S, Datta R et al (2021) Production of organic fertilizers from rocket seed (Eruca Sativa L.), chicken peat and Moringa oleifera leaves for growing linseed under water deficit stress. Sustainability 13:59

    Article  CAS  Google Scholar 

  • Kızılkaya R, Aşkın T, Bayraklı B, Sağlam M (2004) Microbiological characteristics of soils contaminated with heavy metals. Eur J Soil Biol 40:95–102

    Article  Google Scholar 

  • Kottegoda N, Munaweera I, Adassooriya N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78

    CAS  Google Scholar 

  • Kwak JH, Chang SX, Naeth MA, Schaaf W (2015) Coarse woody debris increases microbial community functional diversity but not enzyme activities in reclaimed oil sands soils. PLoS One 10:e0143857

    Article  Google Scholar 

  • Kyriacou MC, Rouphael Y (2018) Towards a new definition of quality for fresh fruits and vegetables. Sci Hortic 234:463–469

    Article  Google Scholar 

  • Lakhdar A, Scelza R, Scotti R, Rao MA, Jedidi N, Gianfreda L et al (2010) The effect of compost and sewage sludge on soil biologic activities in salt affected soil. J Soil Sci Plant Nutr 10:40–47

    Google Scholar 

  • Langer U, Günther T (2001) Effects of alkaline dust deposits from phosphate fertilizer production on microbial biomass and enzyme activities in grassland soils. Environ Pollut 112:321–327

    Article  CAS  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V et al (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106

    Article  CAS  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68

    Article  CAS  Google Scholar 

  • Lemke RL, VandenBygaart AJ, Campbell CA, Lafond GP, Grant B (2010) Crop residue removal and fertilizer N: effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agric Ecosyst Environ 135:42–51

    Article  CAS  Google Scholar 

  • León-Silva S, Arrieta-Cortes R, Fernández-Luqueño F, López-Valdez F (2018) Design and production of nanofertilizers. In: López-Valdez F, Fernández-Luqueño F (eds) Agricultural Nanobiotechnology: Modern Agriculture for a Sustainable Future. Springer International Publishing, Cham, pp 17–31

    Google Scholar 

  • Liang C, Schimel JP, Jastrow JD (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:17105

    Article  CAS  Google Scholar 

  • Liang Q, Chen H, Gong Y, Yang H, Fan M, Kuzyakov Y (2014) Effects of 15 years of manure and mineral fertilizers on enzyme activities in particle-size fractions in a North China Plain soil. Eur J Soil Biol 60:112–119

    Article  CAS  Google Scholar 

  • Liang Y, Si J, Nikolic M, Peng Y, Chen W, Jiang Y (2005) Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol Biochem 37:1185–1195

    Article  CAS  Google Scholar 

  • Liang Y, Yang Y, Yang C, Shen Q, Zhou J, Yang L (2003) Soil enzymatic activity and growth of rice and barley as influenced by organic manure in an anthropogenic soil. Geoderma 115:149–160

    Article  CAS  Google Scholar 

  • Liu B, Li Y, Zhang X, Wang J, Gao M (2015) Effects of chlortetracycline on soil microbial communities: comparisons of enzyme activities to the functional diversity via Biolog EcoPlates™. Eur J Soil Biol 68:69–76

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Liu Z, Rong Q, Zhou W, Liang G (2017) Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. PLoS One 12:e0172767

    Article  Google Scholar 

  • Lloret L, Eibes G, Lú-Chau TA, Moreira MT, Feijoo G, Lema JM (2010) Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochem Eng J 51:124–131

    Article  CAS  Google Scholar 

  • Loomis RS, Connor DJ (1992) Crop ecology: productivity and management in agricultural systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • López-Bellido RJ, Lal R, Danneberger TK, Street JR (2010) Plant growth regulator and nitrogen fertilizer effects on soil organic carbon sequestration in creeping bentgrass fairway turf. Plant Soil 332:247–255

    Article  Google Scholar 

  • López-Valdez F, Miranda-Arámbula M, Ríos-Cortés AM, Fernández-Luqueño F, de-la Luz V (2018) Nanofertilizers and their controlled delivery of nutrients. In: López-Valdez F, Fernández-Luqueño F (eds) Agricultural Nanobiotechnology: Modern Agriculture for a Sustainable Future. Springer International Publishing, Cham, pp 35–48

    Google Scholar 

  • Luan H, Gao W, Huang S, Tang J, Li M, Zhang H et al (2020) Substitution of manure for chemical fertilizer affects soil microbial community diversity, structure and function in greenhouse vegetable production systems. PLoS One 15:e0214041

    Article  CAS  Google Scholar 

  • Mack MC, Schuur EA, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    Article  CAS  Google Scholar 

  • Malik A, Mor VS, Tokas J, Punia H, Malik S, Malik K et al (2021) Biostimulant-treated seedlings under sustainable agriculture: a global perspective facing climate change. Agronomy 11:14

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach B, Smreczak B (2003) Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ Int 28:719–728

    Article  CAS  Google Scholar 

  • Mandal A, Patra AK, Singh D, Swarup A, Ebhin MR (2007) Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour Technol 98:3585–3592

    Article  CAS  Google Scholar 

  • Masciandaro G, Ceccanti B, Benedicto S, Lee HC, Cook HF (2004) Enzyme activity and C and N pools in soil following application of mulches. Can J Soil Sci 84:19–30

    Article  CAS  Google Scholar 

  • Mijangos I, Pérez R, Albizu I, Garbisu C (2006) Effects of fertilization and tillage on soil biological parameters. Enzym Microb Technol 40:100–106

    Article  CAS  Google Scholar 

  • Mohanty M, Painuli DK, Misra AK, Ghosh PK (2007) Soil quality effects of tillage and residue under rice–wheat cropping on a Vertisol in India. Soil Tillage Res 92:243–250

    Article  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • Muntean V, Crisan R, Paşca D, Kiss S, Drăgan-Bularda M (1996) Enzymological classification of salt lakes in Romania. Int J Salt Lake Res 5:35–44

    Article  Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2005) Nanofertilizers and their role in sustainable agriculture. Int J Agric Crop Sci 5:2229–2232

    Google Scholar 

  • Noreen S, Fatima Z, Ahmad S, Athar HR, Ashraf M (2018) Foliar application of micronutrients in mitigating abiotic stress in crop plants. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (eds) Plant Nutrients and Abiotic Stress Tolerance. Springer Singapore, Singapore, pp 95–117

    Chapter  Google Scholar 

  • Nowak J, Smolik B, Zakrzewska H (2005) Relations between fluorine content in soil and inhibition of soil enzymes activity. Electron J Pol Agric Univ 8

  • Nuzzo A, Madonna E, Mazzei P, Spaccini R, Piccolo A (2016) In situ photo-polymerization of soil organic matter by heterogeneous nano-TiO2 and biomimetic metal-porphyrin catalysts. Biol Fertil Soils 52:585–593

    Article  CAS  Google Scholar 

  • Nze Memiaghe JD, Cambouris AN, Ziadi N, Karam A, Perron I (2021) Spatial variability of soil phosphorus indices under two contrasting grassland fields in Eastern Canada. Agronomy 11:24

    Article  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  • Odzak N, Kistler D, Behra R, Sigg L (2015) Dissolution of metal and metal oxide nanoparticles under natural freshwater conditions. Environ Chem 12:138–148

    Article  CAS  Google Scholar 

  • Oliveira RC, da Silva JR, Lana RM, de Azevedo Pereira AI, Castoldi R, de Camargo R et al (2021) Fertilizer application levels in potato crops and the diagnosis and recommendation integrated system (DRIS). Agronomy 11:51

    Article  CAS  Google Scholar 

  • Ozimek E, Hanaka A (2021) Mortierella species as the plant growth-promoting fungi present in the agricultural soils. Agriculture 11:7

    Article  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C et al (2020) Advances in the application, toxicity and degradation of carbon nanomaterials in environment: a review. Environ Int 134:105298

    Article  CAS  Google Scholar 

  • Picariello E, Pucci L, Carotenuto M, Libralato G, Lofrano G, Baldantoni D (2021) Compost and sewage sludge for the improvement of soil chemical and biological quality of Mediterranean agroecosystems. Sustainability 13:26

    Article  CAS  Google Scholar 

  • Pinna MV, Castaldi P, Deiana P, Pusino A, Garau G (2012) Sorption behavior of sulfamethazine on unamended and manure-amended soils and short-term impact on soil microbial community. Ecotoxicol Environ Saf 84:234–242

    Article  Google Scholar 

  • Piotrowska-Dlugosz A, Wilczewski E (2014) Soil phosphatase activity and phosphorus content as influenced by catch crops cultivated as green manure. Pol J Environ Stud 23:157–165

    CAS  Google Scholar 

  • Pradhan S, Mailapalli DR (2017) Interaction of engineered nanoparticles with the agri-environment. J Agric Food Chem 65:8279–8294

    Article  CAS  Google Scholar 

  • Rahmatpour S, Shirvani M, Mosaddeghi MR, Nourbakhsh F, Bazarganipour M (2017) Dose–response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils. Geoderma 285:313–322

    Article  CAS  Google Scholar 

  • Rajput V, Minkina T, Sushkova S, Behal A, Maksimov A, Blicharska E et al (2020) ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environ Geochem Health 42:147–158

    Article  CAS  Google Scholar 

  • Raliya R, Saharan V, Dimkpa C, Biswas P (2018) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66:6487–6503

    Article  CAS  Google Scholar 

  • Rao DLN, Pathak H (1996) Ameliorative influence of organic matter on biological activity of salt-affected soils. Arid Soil Res Rehabil 10:311–319

    Article  CAS  Google Scholar 

  • Rashid MI, Shahzad T, Shahid M, Imran M, Dhavamani J, Ismail IM et al (2017a) Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil. Sci Rep 7:41965

    Article  CAS  Google Scholar 

  • Rashid MI, Shahzad T, Shahid M, Ismail IM, Shah GM, Almeelbi T (2017b) Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil. J Hazard Mater 324:298–305

    Article  CAS  Google Scholar 

  • Reichel R, Radl V, Rosendahl I, Albert A, Amelung W, Schloter M et al (2014) Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes. Appl Microbiol Biotechnol 98:6487–6495

    Article  CAS  Google Scholar 

  • Riggs CE, Hobbie SE (2016) Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biol Biochem 99:54–65

    Article  CAS  Google Scholar 

  • Rodríguez-Kábana R (1986) Organic and inorganic nitrogen amendments to soil as nematode suppressants. J Nematol 18:129–134

    Google Scholar 

  • Rogers JE, Li SW (1985) Effect of metals and other inorganic ions on soil microbial activity: soil dehydrogenase assay as a simple toxicity test. Bull Environ Contam Toxicol 34:858–865

    Article  CAS  Google Scholar 

  • Rossel D, Tarradellas J, Bitton G, Morel JL. (1996) Use of enzymes in soil ecotoxicology : a case for dehydrogenase and hydrolytic enzymes. In: Tarradellas J, Bitton G, Rossel D, editors. Soil ecotoxicology. CRC Press, pp. 179-206.

  • Roussos PA, Gasparatos D, Kechrologou K, Katsenos P, Bouchagier P (2017) Impact of organic fertilization on soil properties, plant physiology and yield in two newly planted olive (Olea europaea L.) cultivars under Mediterranean conditions. Sci Hortic 220:11–19

    Article  Google Scholar 

  • Saha S, Prakash V, Kundu S, Kumar N, Mina BL (2008) Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean–wheat system in N-W Himalaya. Eur J Soil Biol 44:309–315

    Article  CAS  Google Scholar 

  • Samuel AD, Brejea R, Domuta C, Bungau S, Cenusa N, Tit DM (2017a) Enzymatic indicators of soil quality. J Environ Prot Ecol 18:871–878

    CAS  Google Scholar 

  • Samuel AD, Bungau S, Fodor IK, Tit DM, Blidar CF, David AT et al (2019) Effects of liming and fertilization on the dehydrogenase and catalase activities. Rev Chim 70:3464–3468

    Article  CAS  Google Scholar 

  • Samuel AD, Bungau S, Tit DM, Melinte Frunzulica CE, Purza L, Badea GE (2018) Effects of long term application of organic and mineral fertilizers on soil enzymes. Rev Chim 69:2608–2612

    Article  CAS  Google Scholar 

  • Samuel AD, Ciobanu C (2018) Enzyme activities in a preluvosoil as affected by crop rotation and fertilization systems. Rom Agric Res 35:183–191

    Google Scholar 

  • Samuel AD, Domuta C, Ciobanu C, Sandor M (2008) Field management effects on soil enzyme activities. Rom Agric Res 25:61–68

    Google Scholar 

  • Samuel AD, Domuta C, Sandor M, Vuscan A, Brejea R (2011) Long term effects of agricultural systems on soil phosphatase activities. Rom Agric Res 28:157–163

    Google Scholar 

  • Samuel AD, Tit DM, Melinte CE, Iovan C, Purza L, Gitea M et al (2017b) Enzymological and physicochemical evaluation of the effects of soil management practices. Rev Chim 68:2243–2247

    Article  CAS  Google Scholar 

  • Sayara T, Sarrà M, Sánchez A (2010) Effects of compost stability and contaminant concentration on the bioremediation of PAHs-contaminated soil through composting. J Hazard Mater 179:999–1006

    Article  CAS  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schimel JP, Gulledge JAY (1998) Microbial community structure and global trace gases. Glob Chang Biol 4:745–758

    Article  Google Scholar 

  • SchjØNning P, Christensen BT, Carstensen B (1994) Physical and chemical properties of a sandy loam receiving animal manure, mineral fertilizer or no fertilizer for 90 years. Eur J Soil Sci 45:257–268

    Article  Google Scholar 

  • Schlich K, Hund-Rinke K (2015) Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321–330

    Article  CAS  Google Scholar 

  • Seleiman MF, Almutairi KF, Alotaibi M, Shami A, Alhammad BA, Battaglia ML (2021) Nano-fertilization as an emerging fertilization technique: why can modern agriculture benefit from its use? Plants-Basel 10(1):2

    Article  CAS  Google Scholar 

  • Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112:269–283

    Article  CAS  Google Scholar 

  • Semrany S, Favier L, Djelal H, Taha S, Amrane A (2012) Bioaugmentation: possible solution in the treatment of bio-refractory organic compounds (Bio-ROCs). Biochem Eng J 69:75–86

    Article  CAS  Google Scholar 

  • Sharonova NL, Yapparov AK, Khisamutdinov NS, Ezhkova AM, Yapparov IA, Ezhkov VO et al (2015) Nanostructured water-phosphorite suspension is a new promising fertilizer. Nanotechnol Russ 10:651–661

    Article  CAS  Google Scholar 

  • Siddique MNEA, de Bruyn Lobry L, Guppy CN, Osanai Y (2021) Temporal variations of soil organic carbon and pH at landscape scale and the implications for cropping intensity in rice-based cropping systems. Agronomy 11:59

    Article  CAS  Google Scholar 

  • Simonin M, Guyonnet JP, Martins JM, Ginot M, Richaume A (2015) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–535

    Article  CAS  Google Scholar 

  • Sinclair DCR, Smith GM, Bruce A, Staines HJ (1997) Soil dehydrogenase activity adjacent to remedially treated timber, weathered in a physical field model. Int Biodeterior Biodegradation 39:207–216

    Article  CAS  Google Scholar 

  • Singh G, Rattanpal H (2014) Use of nanotechnology in horticulture: a review. Int J Agric Sc Vet Med 2:34–42

    Google Scholar 

  • Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C et al (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264

    Article  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in Food and Agriculture. Springer International Publishing, Cham, pp 81–101

    Chapter  Google Scholar 

  • Souza EC, Vessoni-Penna TC, de Souza Oliveira RP (2014) Biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Biodeterior Biodegradation 89:88–94

    Article  CAS  Google Scholar 

  • Souza RC, Solly EF, Dawes MA, Graf F, Hagedorn F, Egli S et al (2017) Responses of soil extracellular enzyme activities to experimental warming and CO2 enrichment at the alpine treeline. Plant Soil 416:527–537

    Article  CAS  Google Scholar 

  • Srivastava AK, Malhotra SK (2017) Nutrient use efficiency in perennial fruit crops—a review. J Plant Nutr 40:1928–1953

    Article  CAS  Google Scholar 

  • Stankovic S, Stankovic RA (2003) Bioindicators of toxic metals. In: Lichtfouse E (ed) Environmental chemistry for a sustainable world. Springer, Berlin, pp 151–228

    Google Scholar 

  • Stefanic G, Eliade G, Chirnogeanu I (1984) Researches concerning a biological index of soil fertility. In: Nemeş MP, Kiss S, Papacostea P, Ştefanic G, Rusan M (eds) Fifth symposium on soil biology. Romanian National Society of Soil Science, Bucharest

    Google Scholar 

  • Stege PW, Messina GA, Bianchi G, Olsina RA, Raba J (2010) Determination of beta-glucosidase activity in soils with a bioanalytical sensor modified with multiwalled carbon nanotubes. Anal Bioanal Chem 397:1347–1353

    Article  CAS  Google Scholar 

  • Steinweg JM, Dukes JS, Paul EA, Wallenstein MD (2013) Microbial responses to multi-factor climate change: effects on soil enzymes. Front Microbiol 4:146

    Article  Google Scholar 

  • Stenberg B (1999) Monitoring soil quality of arable land: microbiological indicators. Acta Agric Scand Sect B Soil Plant Sci 49:1–24

    Google Scholar 

  • Strulak-Wójcikiewicz R, Lemke J (2019) Concept of a simulation model for assessing the sustainable development of urban transport. Transp Res Proc 39:502–513

    Google Scholar 

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5:463–474

    Article  CAS  Google Scholar 

  • Sychev VG, Naliukhin AN, Shevtsova LK, Rukhovich OV, Belichenko MV (2020) Influence of fertilizer systems on soil organic carbon content and crop yield: results of long-term field experiments at the geographical network of research stations in Russia. Eurasian Soil Sci 53:1794–1808

    Article  CAS  Google Scholar 

  • Szostek R, Ciećko Z, Walczak M, Swiontek-Brzezinska M (2015) Microbiological and enzymatic activity of soil after pollution with fluorine. Pol J Environ Stud 24:2641–2646

    Article  CAS  Google Scholar 

  • Tabatabai MA, A. (2002) DW. Enzymes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. CRC Press, New York, pp 567–595

    Google Scholar 

  • Tan X, Xie B, Wang J, He W, Wang X, Wei G (2014) County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment. ScientificWorldJournal 2014:535768

    Article  Google Scholar 

  • Tang X, Hashmi MZ, Long D, Chen L, Khan MI, Shen C (2014) Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop. Int J Environ Res Public Health 11:3118–3131

    Article  CAS  Google Scholar 

  • Tedeschi A, De Marco A, Polimeno F, Di Tommasi P, Maglione G, Ottaiano L et al (2021) Effects of the fertilizer added with DMPP on soil nitrous oxide emissions and microbial functional diversity. Agriculture 11:12

    Article  Google Scholar 

  • Tejada M, Garcia C, Gonzalez JL, Hernandez MT (2006) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol Biochem 38:1413–1421

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465

    Article  CAS  Google Scholar 

  • Tirol-Padre A, Ladha JK, Regmi AP, Bhandari AL, Inubushi K (2007) Organic amendments affect soil parameters in two long-term rice-wheat experiments. Soil Sci Soc Am J 71:442–452

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotech 2:295–300

    Article  CAS  Google Scholar 

  • Trasar-Cepeda C, Camina F, Leiros MC, Gil-Sotres F (1999) An improved method to measure catalase activity in soils. Soil Biol Biochem 31:483–485

    Article  CAS  Google Scholar 

  • Trasar-Cepeda C, Gil-Sotres F, Leirós MC (2007) Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain. Soil Biol Biochem 39:311–319

    Article  CAS  Google Scholar 

  • Tscherko D, Kandeler E (1997) Ecotoxicological effects of fluorine deposits on microbial biomass and enzyme activity in grassland. Eur J Soil Sci 48:329–335

    Article  CAS  Google Scholar 

  • Tsuji K (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18:137–147

    Article  CAS  Google Scholar 

  • Tyler G (1976) Heavy metal pollution, phosphatase activity, and mineralization of organic phosphorus in forest soils. Soil Biol Biochem 8:327–332

    Article  CAS  Google Scholar 

  • Unger IM, Goyne KW, Kennedy AC, Kremer RJ, McLain JET, Williams CF (2013) Antibiotic effects on microbial community characteristics in soils under conservation management practices. Soil Sci Soc Am J 77:100–112

    Article  CAS  Google Scholar 

  • Utobo EB, Tewari L (2015) Soil enzymes as bioindicators of soil ecosystem status. Appl Ecol Environ Res 13:147–169

    Google Scholar 

  • Vasbieva MT (2021) Changes in the agrochemical properties of soddy-podzolic soil under the impact of long-term application of fertilizers. Eurasian Soil Sci 54:108–116

    Article  CAS  Google Scholar 

  • Wallenstein MD, Haddix ML, Lee DD, Conant RT, Paul EA (2012) A litter-slurry technique elucidates the key role of enzyme production and microbial dynamics in temperature sensitivity of organic matter decomposition. Soil Biol Biochem 47:18–26

    Article  CAS  Google Scholar 

  • Wallenstein MD, McMahon SK, Schimel JP (2009) Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Glob Chang Biol 15:1631–1639

    Article  Google Scholar 

  • Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol Biochem 40:2098–2106

    Article  CAS  Google Scholar 

  • Wang L, Yang F, Yaoyao E, Yuan J, Raza W, Huang Q et al (2016) Long-term application of bioorganic fertilizers improved soil biochemical properties and microbial communities of an apple orchard soil. Front Microbiol 7:1893

    Article  Google Scholar 

  • Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67:75–81

    Article  CAS  Google Scholar 

  • Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12:2221–2228

    Article  CAS  Google Scholar 

  • Welp G (1999) Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biol Fertil Soils 30:132–139

    Article  CAS  Google Scholar 

  • Wyszkowska J, Borowik A, Kucharski J, Baćmaga M, Tomkiel M, Boros-Lajszner E (2013) The effect of organic fertilizers on the biochemical properties of soil contaminated with zinc. Plant Soil Environ 59:500–504

    Article  Google Scholar 

  • Xia WX, Xia Y, Li JC, Zhang DF, Zhou Q, Wang XP (2015) Studies on crude oil removal from pebbles by the application of biodiesel. Mar Pollut Bull 91:288–294

    Article  CAS  Google Scholar 

  • Yang CM, Yang LZ, Yan TM (2005) Chemical and microbiological parameters of paddy soil quality as affected by different nutrient and water regimes. Pedosphere 15:369–378

    CAS  Google Scholar 

  • Yeung CW, Law BA, Milligan TG, Lee K, Whyte LG, Greer CW (2011) Analysis of bacterial diversity and metals in produced water, seawater and sediments from an offshore oil and gas production platform. Mar Pollut Bull 62:2095–2105

    Article  CAS  Google Scholar 

  • Yokoyama D, Imai N, Kitayama K (2017) Effects of nitrogen and phosphorus fertilization on the activities of four different classes of fine-root and soil phosphatases in Bornean tropical rain forests. Plant Soil 416:463–476

    Article  CAS  Google Scholar 

  • Yu WT, Bi ML, Xu YG, Zhou H, Ma Q, Jiang CM (2013) Microbial biomass and community composition in a Luvisol soil as influenced by long-term land use and fertilization. Catena 107:89–95

    Article  CAS  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  CAS  Google Scholar 

  • Zhang L, Chen W, Burger M, Yang L, Gong P, Wu Z (2015a) Changes in soil carbon and enzyme activity as a result of different long-term fertilization regimes in a greenhouse field. PLoS One 10:e0118371

    Article  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015b) Managing nitrogen for sustainable development. Nature 528:51–59

    Article  CAS  Google Scholar 

  • Zhang Y, Cui D, Yang H, Kasim N (2020) Differences of soil enzyme activities and its influencing factors under different flooding conditions in Ili Valley, Xinjiang. PeerJ 8:e8531

    Article  Google Scholar 

  • Zhang Y, Li T, Wu H, Bei S, Zhang J, Li X (2019) Effect of different fertilization practices on soil microbial community in a wheat–maize rotation system. Sustainability 11:4088

    Article  CAS  Google Scholar 

  • Zhao S, Su X, Wang Y, Yang X, Bi M, He Q et al (2020a) Copper oxide nanoparticles inhibited denitrifying enzymes and electron transport system activities to influence soil denitrification and N2O emission. Chemosphere 245:125394

    Article  CAS  Google Scholar 

  • Zhao Z, Zhang C, Li F, Gao S, Zhang J (2020b) Effect of compost and inorganic fertilizer on organic carbon and activities of carbon cycle enzymes in aggregates of an intensively cultivated Vertisol. PLoS One 15:e0229644

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this paper. SB, TB, LA, PB, BA-S, LP, AA, and ADS: conceptualization, methodology, writing-original draft, writing—review and editing. SB: software, visualization. LA and TB: formal analysis, investigation. SB, AA, ADS: data curation, supervision, draft reviewing. SB, TB, LA: supervision, resources, project coordination. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Simona Bungau.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bungau, S., Behl, T., Aleya, L. et al. Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. Environ Sci Pollut Res 28, 30528–30550 (2021). https://doi.org/10.1007/s11356-021-14127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14127-7

Keywords

Navigation