Skip to main content

Advertisement

Log in

A review on current techniques used in India for rice mill wastewater treatment and emerging techniques with valuable by-products

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

This article has been updated

Abstract

Parboiling rice mills produce a large amount of wastewater. The effluent from the rice mill contains high concentration of organic and inorganic compounds. Continuous discharge of this wastewater from rice mills could be a major cause of eutrophication of the water bodies, leading to a robust and undesirable growth of vegetation and algal bloom. Eutrophication leads to deoxygenation of water bodies, resulting in the mortality of aquatic flora and fauna. It is therefore very important to treat wastewater and ensure safe disposal. There are various types of processes already in existence, but the most important thing is to select a cost-effective technique. Phytoremediation technique has shown promising results for low-income countries like India. It is useful for the small-scale industrial and domestic wastewater treatment. It is a slow process, requiring a large area of land. It is an eco-friendly approach and ideal for rural areas where there is ample land availability. This paper addresses the techniques used by various researchers for rice mill wastewater treatment and also focuses on reusing and recycling of waste from rice mills. The performance of every technique is discussed in detail with its specific advantages and disadvantages. This paper also focuses on the advanced techniques of water treatment with valuable by-products such as silica, activated adsorbent, electricity and methane gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Change history

  • 23 January 2021

    Layout correction

Abbreviations

% :

percentage

°C :

degree centigrade

A:

ampere

cm :

centimetre

d:

day

DC:

direct current

EC:

electric conductivity

ETP:

effluent treatment plant

Fe:

iron

g :

gramme

g/l :

grammes per litre

Hg:

mercury

KJ/mol:

kilojoules per mole

mg/g :

milligrammes per gramme

mg/l :

milligramme per litre

ml :

millilitre

pH:

potential of hydrogen

References

  • Abinandan S, Bhattacharya R, Shanthakumar S (2015) Efficacy of Chlorella pyrenoidosa and Scenedesmus abundans for nutrient removal in rice mill effluent (paddy soaked water). Int J Phytoremediat 17(4):377–381

    Article  CAS  Google Scholar 

  • Abu Bakar AF, Yusoff I, Fatt NT, Othman F, Ashraf MA (2013) Arsenic, zinc, and aluminium removal from gold mine wastewater effluents and accumulation by submerged aquatic plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata). Biomed Res Int 2013:890803

    Article  CAS  Google Scholar 

  • Ahmaruzzaman M, Sharma DK (2005) Adsorption of phenols from wastewater. J Colloid Interface Sci 287:14–24

    Article  CAS  Google Scholar 

  • Ajayi TO, Ogunbayio AO (2012) Achieving Environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (Eichhornia Crassipes). J Sustain Dev 5(7):80–90

    Article  Google Scholar 

  • Amin MN, Kaneco S, Kitagawa T, Begum A, Katsumata H, Suzuki T, Ohta K (2006) Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Ind Eng J 45(24):8105–8110

  • Asati SR (2013) Treatment of waste water from parboiled rice mill unit by coagulation/flocculation. Int J Life Sci Biotechnol Pharm Res 2:264–277

    Google Scholar 

  • Axtell NR, Sternberg SPK, Claussen K (2003) Lead and nickel removal using Microspora and Lemna minor. Bioresour Technol 89(1):41–48

    Article  CAS  Google Scholar 

  • Aydın YA, Aksoy ND (2009) Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics. Chem Eng J 151(1–3):188–194

    Article  CAS  Google Scholar 

  • Azeez NM, Sabbar AA (2012) Efficiency of duckweed (Lemna minor L.) in phytotreatment of wastewater pollutants from Basrah oil refinery. J Appl Phytotechnol Environ Sanit 1(4):163–172

    CAS  Google Scholar 

  • Azizullah A, Khattak MNK, Richter P, Häder D-P (2011) Water pollution in Pakistan and its impact on public health—a review. Environ Int 37(2):479–497

    Article  CAS  Google Scholar 

  • Bastos RG, Bonini MA, Zepka LQ, Jacob-Lopes E, Queiroz MI (2015) Treatment of rice parboiling wastewater by cyanobacterium Aphanothece microscopica Nägeli with potential for biomass products. Desalination Water Treat 56(3):608–614

  • Batt CA (2016) Food Safety, Defense, and Microbiology. Elsevier, Amsterdam

  • Bayramoglu M, Kobya M, Can OT, Sozbir M (2004) Operating cost analysis of electrocoagulation of textile dye wastewater. Sep Purif Technol 37(2):117–125

    Article  CAS  Google Scholar 

  • Bayramoglu M, Eyvaz M, Kobya M (2007) Treatment of the textile wastewater by electrocoagulation: economical evaluation. Chem Eng J 128(2-3):155–161

    Article  CAS  Google Scholar 

  • Behera M, Jana PS, More TT, Ghangrekar MM (2010) Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry 79:228–233

    Article  CAS  Google Scholar 

  • Business Standard (2015) Rice Mills: HC refuses to extend deadline for getting pollution. Press Trust India, Chennai, . https://www.business-standard.com/article/pti-stories/rice-mills-hc-refuses-to-extend-deadline-for-getting-pollution-115030800776_1.html (Accessed 26 March 2020)

  • Chakraborty I, Das S, Dubey BK, Ghangrekar MM (2020) Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells. Mater Chem Phys 239:122025

  • Chatterjee S, Woo SH (2009) The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J Hazard Mater 164(2–3):1012–1018

    Article  CAS  Google Scholar 

  • Choudhary M, Majumder S, Neogi S (2015) Studies on the treatment of rice mill effluent by electrocoagulation. Sep Sci Technol 50(4):505–511

  • Cornwell DA, Zoltek Jr J, Patrinely CD, Furman TD, Kim JI (2019) Nutrient removal by water hyacinths. Journal (Water Pollution Control Federation) 49(1):57–65

  • CPCB (2008) Central pollution control board comprehensive industry documents on pulse, wheat, rice mills. Ministry of Environment and Forest. Govt. of India Report No, New Delhi, p 76 https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvTmV3SXRlbV8xMzJfY29pbmQtcHVsc2V3aGVhdHJpY2VtaWxscy5wZGY=. Accessed 18 March 2020

  • CPCB. (2012) Effluent Standards Quidelines. Central Pollution Control Board, New Delhi. https://cpcb.nic.in/displaypdf.php?id=SW5kdXN0cnktU3BlY2lmaWMtU3RhbmRhcmRzL0VmZmx1ZW50LzQ1OC0xLnBkZg. Accessed 26 March 2020

  • Dadrasnia A, Usman MM, Lim KT, Velappan RD, Shahsavari N, Vejan P, Ismail S (2017) Microbial aspects in wastewater treatment–A technical review. Environmental Pollution and Protection 2(2):75–84

  • Dambies L, Vincent T, Guibal E (2002) Treatment of arsenic-containing solutions using chitosan derivatives : uptake mechanism and sorption performances. Water Res 36:3699–3710

    Article  CAS  Google Scholar 

  • Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26(1):13–28

    Article  CAS  Google Scholar 

  • Daud SM, Kim BH, Ghasemi M, Daud WRW (2015) Separators used in microbial electrochemical technologies: current status and future prospects. Bioresour Technol 195:170–179

    Article  CAS  Google Scholar 

  • Daud MK, Ali S, Abbas Z, Zaheer IE, Riaz MA, Malik A, Hussain A, Rizwan M, Zia-ur-Rehman M, Zhu SJ (2018) Potential of duckweed (Lemna minor) for the phytoremediation of landfill leachate. J Chem 2018:1–9

  • Della VP, Kühn I, Hotza D (2002) Rice husk ash as an alternate source for sactive silica production. Mater Lett 57(4):818–821

    Article  CAS  Google Scholar 

  • Fangzhou D, Zhenglong L, Shaoqiang Y, Beizhen X, Hong L (2011) Electricity generation directly using human feces wastewater for life support system. Acta Astronaut 68(9–10):1537–1547

    Article  CAS  Google Scholar 

  • Favas PJC, Pratas J (2013) Uptake of uranium by native aquatic plants: potential for bioindication and phytoremediation. E3S Web Conf 1:2–4

    Article  Google Scholar 

  • Gale PM, Redely KR, Graetz DA (1993) Nitrogen removal from reclaimed water applied to constructed and natural wetland microcosms. Water Environ Res 65(2):162–168

    Article  CAS  Google Scholar 

  • Gerber MD, Junior ASV, Caldas JS, Corcini CD, Lucia T Jr, Corrêa LB, Corrêa ÉK (2016) Toxicity evaluation of parboiled rice effluent using sperm quality of zebrafish as bioindicator. Ecol Indic 61:214–218

    Article  CAS  Google Scholar 

  • Gil de los Santos D, Gil Turnes C, Rochedo Conceição F (2012) Bioremediation of parboiled rice effluent supplemented with biodiesel-derived glycerol using Pichia pastoris X-33. Sci World J 2012:1–5

    Article  CAS  Google Scholar 

  • Giri DR, Singh E, Satyanarayan S (2016) Comparative study on toxicity evaluation of anaerobically treated parboiled rice manufacturing wastewater through fish bioassay. Water Sci Technol 73(8):1825–1831

    Article  CAS  Google Scholar 

  • González LE, Cañizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60(3):259–262

    Article  Google Scholar 

  • Goyal SK, Jogdand SV, Agrawal AK (2014) Energy use pattern in rice milling industries—a critical appraisal. J Food Sci Technol 51(11):2907–2916

    Article  CAS  Google Scholar 

  • Guo F, Fu G, Zhang Z (2015) Performance of mixed-species biocathode microbial fuel cells using saline mustard tuber wastewater as self-buffered catholyte. Bioresour Technol 180:137–143

    Article  CAS  Google Scholar 

  • Hakizimana JN, Gourich B, Chafi M, Stiriba Y, Vial C, Drogui P, Naja J (2017) Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination 404:1–21

    Article  CAS  Google Scholar 

  • Hammer MJ, Hammer MJ Jr (2008) Water and wastewater technology. Pearson, New Jersey

    Google Scholar 

  • He L, Du P, Chen Y, Lu H, Cheng X, Chang B, Wang Z (2017) Advances in microbial fuel cells for wastewater treatment. Renew Sust Energ Rev 71:388–403

    Article  Google Scholar 

  • Hongyang S, Yalei Z, Chunmin Z, Xuefei Z, Jinpeng L (2011) Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour Technol 102(21):9884–9890

    Article  CAS  Google Scholar 

  • Jha IN, Iyengar L, Rao AVSP (1988) Removal of cadmium using chitosan. J Environ Eng 114(4):962–974

    Article  CAS  Google Scholar 

  • Johansen MN (ed) (2012) Microalgae: biotechnology, microbiology, and energy. Nova Science, New York

  • Karichappan T, Venkatachalam S, Jeganathan PM, Sengodan K (2013) Treatment of rice mill wastewater using continuous electrocoagulation technique: optimization and modelling. J Korean Chem Soc 57(6):761–768

  • Karul C, Soyupak S, Çilesiz AF, Akbay N, Germen E (2000) Case studies on the use of neural networks in eutrophication modeling. Ecol Model 134(2–3):145–152

    Article  CAS  Google Scholar 

  • Karunaratne HWGI. (2010). Removal of pollutants in parboiled paddy wastewater [master’s thesis].  University of Moratuwa, Sri Lanka. https://www.lib.mrt.ac.lk

  • Kim J, Lingaraju BP, Rheaume R, Lee J, Siddiqui KF (2010) Removal of ammonia from wastewater effluent by Chlorella Vulgaris *. Tsinghua Sci Technol 15(4):391–396

    Article  CAS  Google Scholar 

  • Kotay SM, Das D (2008) Biohydrogen as a renewable energy resource—prospects and potentials. Int J Hydrog Energy 33(1):258–263

    Article  CAS  Google Scholar 

  • Kumar S, Deswal S (2020a) Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce, and duckweed to reduce phosphorus in rice mill wastewater. Int J Phytoremediation 26:1–3

  • Kumar S, Deswal S (2020b) Estimation of phosphorus reduction from wastewater by artificial neural network, random forest and M5P model tree approaches. Pollution 6(2):427–438

    Google Scholar 

  • Kumar A, Singha S, Dasgupta D, Datta S, Mandal T (2015) Simultaneous recovery of silica and treatment of rice mill wastewater using rice husk ash : An economic approach. Ecol Eng 84:29–37

    Article  Google Scholar 

  • Kumar A, Priyadarshinee R, Roy A, Dasgupta D, Mandal T (2016a) Current techniques in rice mill ef fl uent treatment : emerging opportunities for waste reuse and waste-to-energy conversion. Chemosphere 164:404–412

    Article  CAS  Google Scholar 

  • Kumar A, Priyadarshinee R, Singha S, Dasgupta D, Mandal T (2016b) Rice husk ash-based silica-supported iron catalyst coupled with Fenton-like process for the abatement of rice mill wastewater. Clean Techn Environ Policy 18(8):2565–2577

    Article  CAS  Google Scholar 

  • Kumar A, Singha S, Sengupta B, Dasgupta D, Datta S, Mandal T (2016c) Intensive insight into the enhanced utilization of rice husk ash: abatement of rice mill wastewater and recovery of silica as a value added product. Ecol Eng 91:270–281

    Article  Google Scholar 

  • Kutty SRM, Ngatenah SNI, Isa MH, Malakahmad A (2009) Nutrients removal from municipal wastewater treatment plant effluent using eichhornia crassipes. World Acad Sci Eng Technol 60:826–831

    Google Scholar 

  • Kyzas GZ, Lazaridis NK, Kostoglou M (2014) Adsorption/desorption of a dye by a chitosan derivative: experiments and phenomenological modeling. Chem Eng J 248:327–336

    Article  CAS  Google Scholar 

  • Laliberte G, Lessard P, De La Noüe J, Sylvestre S (1997) Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresour Technol 59(2–3):227–233

    Article  CAS  Google Scholar 

  • Li J-M, Meng X-G, Hu C-W, Du J (2009) Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan. Bioresour Technol 100(3):1168–1173

    Article  CAS  Google Scholar 

  • Li Y, Williams I, Xu Z, Li B, Li B (2016) Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs). Appl Energy 163:352–360

    Article  CAS  Google Scholar 

  • Liu Q, Chen W, Zhang X, Yu L, Zhou J, Xu Y, Qian G (2015) Phosphate enhancing fermentative hydrogen production from substrate with municipal solid waste composting leachate as a nutrient. Bioresour Technol 190:431–437

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518

    Article  CAS  Google Scholar 

  • Lopes LF, Koetz PR, Santos MS (2001) Denitrification on the top of UASB reactors of rice wastewaters. Water Sci Technol 44(4):79–82

  • Manogari R, Daniel D, Krastanov A (2008) Biodegradation of rice mill effluent by immobilised Pseudomonas sp. cells. Ecol Eng Environ Protect 1:30–35

    Google Scholar 

  • Mardanpour MM, Esfahany MN, Behzad T, Sedaqatvand R (2012) Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment. Biosens Bioelectron 38(1):264–269

    Article  CAS  Google Scholar 

  • Mckay G, Blair HS (1989) Equilibrium studies for the sorption of metal ions onto chitosan. Ind J Chem A 28:356–360

  • Merzouk B, Gourich B, Madani K, Vial C, Sekki A (2011) Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. A comparative study. Desalination 272(1–3):246–253

    Article  CAS  Google Scholar 

  • Milhome MAL, de Keukeleire D, Ribeiro JP, Nascimento RF, Carvalho TV, Queiroz DC (2009) Removal of phenol and conventional pollutants from aqueous effluent by chitosan and chitin. Quim Nova 32(8):2122–2127

    Article  CAS  Google Scholar 

  • Miran W, Nawaz M, Jang J, Lee DS (2016) Sustainable electricity generation by biodegradation of low-cost lemon peel biomass in a dual chamber microbial fuel cell. Int. Biodeterior. Biodegradation 106:75–79

    Article  CAS  Google Scholar 

  • Mishra S, Mohanty M, Pradhan C, Patra HK, Das R, Sahoo S (2013) Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes - A case study at JK Paper mill, Rayagada, India. Environ Monit Assess 185(5):4347–4359

    Article  CAS  Google Scholar 

  • Moosa AA, Ridha AM, Kadim NA (2016) Use of biopolymer adsorbent in the removal of phenol from aqueous solution. Am J Mater Sci 6(4):95–104

    Google Scholar 

  • Moret A, Rubio J (2003) Sulphate and molybdate ions uptake by chitin-based shrimp shells. Miner Eng 16(8):715–722

    Article  CAS  Google Scholar 

  • Mukherjee B, Majumdar M, Gangopadhyay A, Chakraborty S, Chaterjee D (2015) Phytoremediation of parboiled rice mill wastewater using water lettuce (Pistia Stratiotes). Int J Phytoremediat 17(7):651–656

    Article  CAS  Google Scholar 

  • Oncel MS, Muhcu A, Demirbas E, Kobya M (2013) A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater. J Environ Chem Eng 1(4):989–995

    Article  CAS  Google Scholar 

  • Ortigueira J, Alves L, Gouveia L, Moura P (2015) Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel 153:128–134

    Article  CAS  Google Scholar 

  • Oswald WJ, Gotaas HB, Golueke CG, Kellen WR, Gloyna EF, Hermann ER (1957) Algae in waste treatment [with discussion]. Sewage Ind Waste 29(4):437–457

    Google Scholar 

  • Pani SC (1986) Aspects of ecological studies on tropical earthworms in irrigated agricultural system of Orissa, India. PhD Thesis, Sambalpur Univ 232

  • Patel AK, Debroy A, Sharma S, Saini R, Mathur A, Gupta R, Tuli DK (2015) Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3. Bioresour Technol 175:291–297

    Article  CAS  Google Scholar 

  • Paul J, Abhijith D, Vr AR, Joy J, Latheef S (2015) Environmental impact of rice mills on groundwater and surface water. Int J Civ Struct Eng Res 3(1):11–15

    Google Scholar 

  • Pavlineri N, Skoulikidis NT, Tsihrintzis VA (2017) Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis. Chem Eng J 308:1120–1132

    Article  CAS  Google Scholar 

  • Pradhan A, Sahu SK (2004) Process details and effluent characteristics of a rice mill in the Sambalpur district of Orissa. I Control Pollut 20(1)

  • Padhan A, Sahu SK (2011) Effect of rice mill waste water on population, biomass, rate of reproduction and secondary production of Drawida willsi (oligochaeta) in rice field agroecosystem. International Journal of Research & Reviews in Applied Sciences 6(2):138–146

  • Queiroz MI, Lopes EJ, Zepka LQ, Bastos RG, Goldbeck R (2007) The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor. Bioresour Technol 98(11):2163–2169

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83(5):633–646

    Article  CAS  Google Scholar 

  • Rajaram T, Das A (2008) Water pollution by industrial effluents in India: discharge scenarios and case for participatory ecosystem specific local regulation. Futures 40(1):56–69

    Article  Google Scholar 

  • Rajesh G, Bandyopadhyay M, Das D (1999) Some studies on UASB bioreactors for the stabilization of low strength industrial effluents. Bioprocess Eng 21(2):113–116

    Article  CAS  Google Scholar 

  • Ramprakash B, Muthukumar K (2014) ScienceDirect comparative study on the production of biohydrogen from rice mill wastewater. Int J Hydrog Energy 39(27):14613–14621

    Article  CAS  Google Scholar 

  • Ramprakash B, Muthukumar K (2015) Comparative study on the performance of various pretreatment and hydrolysis methods for the production of biohydrogen using Enterobacter aerogenes RM 08 from rice mill wastewater. Int J Hydrog Energy 40(30):9106–9112

  • Ramprakash B, Muthukumar K (2016) Biohydrogen production from rice mill wastewater using mutated Enterobacter aerogenes. Eng Agric Environ Food 9(1):109–115

    Article  Google Scholar 

  • Raychaudhuri A, Behera M (2020) Comparative evaluation of methanogenesis suppression methods in microbial fuel cell during rice mill wastewater treatment. Environ Technol Innov 17:100509

    Article  Google Scholar 

  • Reddy SSG, Raju AJS, Kumar BM (2015) Phytoremediation of sugar industrial water effluent using various hydrophytes. Int J Environ Sci 5(6):1147

    CAS  Google Scholar 

  • Saha P, Shinde O, Sarkar S (2017) Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytoremediat 19(1):87–96

    Article  CAS  Google Scholar 

  • Saini JK, Saini A, Lohchab RK (2016) Rice mill wastewater treatment by upflow anaerobic sludge blanket reactor. Int J Plant, Anim Environ Sci 6(3):128–134

    CAS  Google Scholar 

  • Sawayama S, Minowa T, Dote Y, Yokoyama S (1992) Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl Microbiol Biotechnol 38(1):135–138

    Article  CAS  Google Scholar 

  • Sciarria TP, Tenca A, D’Epifanio A, Mecheri B, Merlino G, Barbato M, Borin S, Licoccia S, Garavaglia V, Adani F (2013) Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell. Bioresour Technol 147:246–253

    Article  CAS  Google Scholar 

  • Seelert T, Ghosh D, Yargeau V (2015) Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles. Appl Microbiol Biotechnol 99(9):4107–4116

    Article  CAS  Google Scholar 

  • Shantaram A, Beyenal H, Veluchamy RRA, Lewandowski Z (2005) Wireless sensors powered by microbial fuel cells. Environ Sci Technol 39(13):5037–5042

    Article  CAS  Google Scholar 

  • Shao L, Xu ZX, Jin W, Yin HL (2009) Rice Husk as Carbon Source and Biofilm Carrier for Water Denitrification. Pol J Environ Stud 18(4):693–699

  • Shrivastava PV, Soni AB (2011) Treatment of rice mill effluent for pollution control by electrocoagulation. J Chem Biol Phys Sci 2(1):480–483

    Google Scholar 

  • Shwetha MK, Mahajanashetti SB, Kerur NM (2011) Economics of paddy processing: a comparative analysis of conventional and modern rice mills. Karnataka J Agric Sci 24(3):331–335

    Google Scholar 

  • Singh D, Gupta R, Tiwari A (2012) Potential of Duckweed ( Lemna minor ) for removal of lead from wastewater by phytoremediation. J Pharm Res 5(3):1578–1582

    Google Scholar 

  • Song T-S, Wang D-B, Wang H, Li X, Liang Y, Xie J (2015) Cobalt oxide/nanocarbon hybrid materials as alternative cathode catalyst for oxygen reduction in microbial fuel cell. Int J Hydrog Energy 40(10):3868–3874

    Article  CAS  Google Scholar 

  • Sridhar R (2013) Studies on electrocoagulation technique for treatment of industrial effluents. http://hdl.handle.net/10603/24239. Accessed 12 April 2020

  • Sun L, Gong K (2001) Silicon-based materials from rice husks and their applications. Ind Eng Chem Res 40(25):5861–5877

    Article  CAS  Google Scholar 

  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R (2007) Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere 68(2):323–329

    Article  CAS  Google Scholar 

  • Tantijaroonroj A, Lauprasert P, Phornpimolthape C (2009) The Fluoride removal in water by egg shell, activated carbon, and rice husk ash. J Public Health Res 2:56

  • Verbych S, Bryk M, Chornokur G, Fuhr B (2005) Removal of copper (II) from aqueous solutions by chitosan adsorption. Sep Sci Technol 40(8):1749–1759

    Article  CAS  Google Scholar 

  • Wang Y-P, Zhang H-L, Li W-W, Liu X-W, Sheng G-P, Yu H-Q (2014) Improving electricity generation and substrate removal of a MFC–SBR system through optimization of COD loading distribution. Biochem Eng J 85:15–20

    Article  CAS  Google Scholar 

  • Wetser K, Sudirjo E, Buisman CJN, Strik DP (2015) Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Appl Energy 137:151–157

    Article  CAS  Google Scholar 

  • Wimberly JE (1983) Technical handbook for the paddy rice postharvest industry in developing countries. International Rice Research Institute, Laguna

    Google Scholar 

  • Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC (2018) Production of bio-hydrogen from dairy wastewater using pretreated landfill leachate sludge as an inoculum. J Biosci Bioeng 127(2):150–159

  • Wu F-C, Tseng R-L, Juang R-S (2010) A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J Environ Manag 91(4):798–806

    Article  CAS  Google Scholar 

  • Xie Y, Li S, Wang F, Liu G (2010) Removal of perchlorate from aqueous solution using protonated cross-linked chitosan. Chem Eng J 156(1):56–63

    Article  CAS  Google Scholar 

  • Yao R, Meng F, Zhang L, Ma D, Wang M (2009) Defluoridation of water using neodymium-modified chitosan. J Hazard Mater 165(1–3):454–460

    Article  CAS  Google Scholar 

  • Zhou L-C, Meng X-G, Fu J-W, Yang Y-C, Yang P, Mi C (2014) Highly efficient adsorption of chlorophenols onto chemically modified chitosan. Appl Surf Sci 292:735–741

    Article  CAS  Google Scholar 

  • Zou Y, Yang T (2019) Rice husk, Rice husk ash and their applications. In Rice Bran and Rice Bran Oil. AOCS Press 207–246

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Author 1: Suresh Kumar

Collected the data.

Wrote the paper.

Author 2: Surinder Deswal

Wrote the paper.

Proofread the paper.

Corresponding author

Correspondence to Suresh Kumar.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent to publish

Authors are reusing Figure 2 from Environmental Technology & Innovation, with permission from Elsevier. License Number 4913140139594.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Deswal, S. A review on current techniques used in India for rice mill wastewater treatment and emerging techniques with valuable by-products. Environ Sci Pollut Res 28, 7652–7668 (2021). https://doi.org/10.1007/s11356-020-11898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11898-3

Keywords

Navigation