Skip to main content
Log in

Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes—a case study at JK Paper mill, Rayagada, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present investigation aims to assess the phytoremediation potential of six aquatic macrophytes, viz. Eichhornia crassipes, Hydrilla verticillata, Jussiaea repens, Lemna minor, Pistia stratiotes and Trapa natans grown in paper mill effluent of JK Paper mill of Rayagada, Orissa, for remediation of heavy metals. The experiment was designed in pot culture experiments. Assessment of physico-chemical parameters of paper mill effluent showed significant decrease in pH, conductivity, total dissolved solids, total suspended solids, chlorine, sulphur, biological and chemical oxygen demand after growth of macrophytes for 20 days. Phytoremediation ability of these aquatic macrophytic species for copper (Cu) and mercury (Hg) was indicated by assessing the decrease in the levels of heavy metals from effluent water. Maximum reduction (66.5 %) in Hg content of untreated paper mill effluent was observed using L. minor followed by T. natans (64.8 %). L. minor showed highest reduction (71.4 %) of Cu content from effluent water followed by E. crassipes (63.6 %). Phytoextraction potential of L. minor was remarkable for Hg and Cu, and bioaccumulation was evident from bioconcentration factor values, i.e. 0.59 and 0.70, respectively. The present phytoremediation approach was considered more effective than conventional chemical treatment method for removing toxic contaminants from paper mill effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler, T. (1996). Botanical cleanup crews—using plants to tackle polluted water and soil. Science News, 150, 42–43.

    Article  Google Scholar 

  • Ali, Z., & Rahman, M. (2008). Physico-chemical characteristics of pulp and paper mill effluent. Research and Environmental Life Science, 1(2), 59–60.

    Google Scholar 

  • APHA (American Public Health Association). (2005). Standard methods for the examination of water and wastewater (21st ed., p. 1368). Washington, DC: American Public Health Association.

    Google Scholar 

  • Arthur, L. S., Kelly, L. H., Jae, M. L., & Butcher, D. J. (2003). Phytoremediation of arsenic and lead in contaminated soils using chinesh brake ferns (Pteris vitata). International Journal of Phytoremediation, 5(2), 89–103.

    Article  Google Scholar 

  • Bajpai, P., & Bajpai, P. K. (1997). Reduction of organochlorine compounds in bleach plant effluent. Advanced Biochemical Engineering and Biotechnology, 57, 213.

    CAS  Google Scholar 

  • BIS. (1981). Tolerance limits for industrial effluents prescribed by Indian Standards Institution, IS 2490 (Part I). New Delhi: BIS

  • Bonet, A., Poschenrieder, C., & Barcelo, J. (1991). Chromium III–iron interaction in Fe-deficient and Fe-sufficient bean plants. I. Growth and nutrient content. Journal of Plant Nutrition, 14(4), 403–414.

    Article  CAS  Google Scholar 

  • Chopra, A. K., Srivastava, S., & Kumar, V. (2011). Comparative study on agropotentiality of paper mill effluent and synthetic nutrient (DAP) on Vigna unguiculata L. (Walp) Cowpea. Journal of Chemical and Pharmaceutical Research, 3(5), 151–165.

    CAS  Google Scholar 

  • Comerford, N. B. (2005). Soil factors affecting nutrient bioavailability. In: H. BassiriRad (Ed.), Nutrient acquistion by plants: an ecological perspective (pp. 1–11). Heidelberg: Springer.

  • Dellarossa, V., Cespedes, J., & Zaror, C. (2001). Eichhornia crassipes based tertiary treatment of Kraft pulp mill effluents in Chilean Central Region. Hydrobiologia, 443, 187–191.

    Article  CAS  Google Scholar 

  • Dietz, A. C., & Schooner, J. L. (2001). Advances in phytoremediation. Environmental Health Perspective, 109(1), 163–168.

    Article  CAS  Google Scholar 

  • Dirilgen, N. (2011). Mercury and lead: assessing the toxic effects on growth and metal accumulation by Lemna minor. Ecotoxicology and Environmental Safety, 74, 48–54.

    Article  CAS  Google Scholar 

  • Drost, W., Matzke, M., & Backhaus, T. (2007). Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and recovery after exposure. Chemosphere, 67, 36–43.

    Article  CAS  Google Scholar 

  • Dubey, P. K., Mishra, R. R., & Singh, J. P. (2007). Physico-chemical analysis of the effluents of Yash paper mill Darshan nagar, Faizabad. Science and Technology, 2, 31–34.

    CAS  Google Scholar 

  • Egbert, S. R. A. (2000). Studies of waste water treatment by Lemna minor. Environmental Biology, 21(1), 43–47.

    Google Scholar 

  • Elkheir, W. A., Ismail, G., El-Nour, F. A., Tawfik, T., & Hammad, D. (2007). Assessment of the efficiency of duckweed (Lemna gibba) in waste water treatment. International Journal of Agricultural Biology, 9(5), 681–687.

    Google Scholar 

  • Ernst, W. H. O. (1996). Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry, 11, 163–167.

    Article  CAS  Google Scholar 

  • Fonkou, T., Agendia, P., Kengne, I., Akoa, A., Nya, J. (2002). Potentials of water lettuce in domestic sewage treatment with macrophytic lagoon system in Cameroon. Proceedings of International Symposium on Pollution and Waste Management, 709–714

  • Fortin, N., Fulthorpe, R. R., Allen, D. G., & Gree, C. W. (1998). Molecular analysis of bacterial insolates and total community DNA from Kraf Pulp Mill effluent treatment system. Canadian Journal of Microbiology, 44, 537–546.

    Article  CAS  Google Scholar 

  • Fox, M. E. (1977). Persistence of dissolved organic compound in craft pulp and paper mill effluent. Journal of Canadian Fish Research Board, 34, 398–408.

    Google Scholar 

  • Frick, H. (1985). Micronutrient tolerance and accumulation in the duckweed (Lemna). Journal of Plant Nutrition, 8, 1131–1154.

    Article  CAS  Google Scholar 

  • Gaete, H., Larrain, A., Bay-Schmith, E., Baeza, J., & Rodriguez, J. (2000). Ecotoxicological assessment of two pulp mill effluents, Biobio river basin Chile. Bulletin of Environmental Contamination and Toxicology, 65, 183–189.

    Article  CAS  Google Scholar 

  • Garg, A., Narayana, V. V. V. S. S., Chaudhary, P., & Chand, S. (2004). Treatment of pulp and paper mill effluent. Journal of Scientific and Industrial Research, 63, 667–671.

    CAS  Google Scholar 

  • Garg, A., Narayana, V. V. V. S. S., Choudhury, P., & Chand, S. (2004). Treatment of pulp and paper mill effluent. J Sct. Ind. Res., 63, 667–671.

    CAS  Google Scholar 

  • Greongerg, A. E., Connors, J. E., Jinkins, D., & Fransons, M. A. (1995). Standard methods for the examination of water and waste water (15th ed., pp. 199–209). Washington DC: American Public Health Association, APHA.

    Google Scholar 

  • Hartman, M. C., & Eldowney, W. (1993). Pollution: ecology and biotechnology (pp. 174–189). New York: Wiley.

    Google Scholar 

  • Indian Standards Institution. (1982). IS 2296. Indian standard tolerance limit for inland surface water subject to pollution. 2nd revision. New Delhi: Indian Standards Institution.

    Google Scholar 

  • Jadia, C. D., & Fulekar, M. H. (2009). Phytoremediation of heavy metals: recent techniques. African Journal of Biotechnology, 8(6), 921–928.

    CAS  Google Scholar 

  • Kay, S. H., Haller, W. T., & Garrard, L. A. (1984). Effect of heavy metals on water hyacinth. Aquatic Toxicology, 5, 117–128.

    Article  CAS  Google Scholar 

  • Khellaf, N., & Zeradaoui, M. (2009). Growth response of the duckweed Lemna minor to heavy metal pollution. Iran Journal of Enviroment and Health Science Engineering, 6(3), 161–166.

    CAS  Google Scholar 

  • Khellaf, N., & Zeradaoui, M. (2010). Growth response of the duckweed to copper and nickel phytoaccumulation. Environment International, 36, 1025–1031.

    Google Scholar 

  • Khellaf, N., Zeradaoui, M., Faure, O., & Leclerc, J. C. (2008). Tolerance to heavy metal in the duckweed, Lemna minor. Environment International, 34, 1022–1026.

    Google Scholar 

  • Kousar, H., & Puttaiah, E. T. (2009). Application of Trapa bipinosa for the treatment of pulp and paper industry effluent. Journal of Environmental Biology, 30(5), 659–661.

    CAS  Google Scholar 

  • Kulkarni, B. V., Ranade, S. V., & Wasif, A. I. (2007). Phytoremediation of textile process effluent by using water hyacinth—a polishing treatment. Journal of Industrial Pollution Control, 23(1), 97–101.

    CAS  Google Scholar 

  • Kumar, V., Chopra, A. K., Pathak, C., & Pathak, S. (2010). Agro-potentiality of paper mill effluent on the characteristics of Trigonella foenum-graecum L. (Fenugreek). New York Science Jouranal, 3(5), 68–77.

    Google Scholar 

  • Liao, S. W., & Chang, W. L. (2004). Heavy metal phytoremediation by water hyacinth at constructed wet lands in Taiwan. Journal of Aquatic Plant Management, 42, 60–68.

    Google Scholar 

  • Mahajan, S. P. (1985). Pollution control in pulp and paper industries. In: Pollution control in process industries (pp. 235–254). New Delhi: Tata McGraw Hill.

  • Mahmood, Q., Zheng, P., Islam, E., Hayat, Y., Hassan, M. J., Jilani, G., et al. (2005). Lab scale studies on water hyacinth (Eichhornia crassipes Marts Solms) for biotreatment of textile waste water. Caspian Journal of Environmental Science, 3, 83–88.

    Google Scholar 

  • Malaviya, P., & Rathore, V. S. (2011). Seasonal variations in different physico-chemical parameters of the effluents of Century Pulp and Paper Mill, Lal Kuan, Uttarakhand. Journal of Environmental Biology, 28(2), 219–224.

    Google Scholar 

  • Medhi, U. J., Talukdar, A. K., & Deka, S. (2011). Impact of paper mill effluent on growth and development of certain agricultural crops. Environmental Biology, 32, 185–188.

    CAS  Google Scholar 

  • Megateli, S., Semsari, S., & Couderchet, M. (2009). Toxicity and removal of heavy metals (cadmium, copper and zinc) by Lemna gibba. Ecotoxicology and Environmental Safety, 72(6), 1774–1780.

    Article  CAS  Google Scholar 

  • Mishra, V. K., & Tripathy, B. D. (2008). Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology, 99, 7091–7097.

    Article  CAS  Google Scholar 

  • Mishra, R. R., Pandey, R. N., Singh, N. K., & Tiwari, D. D. (2007). Characterization of paper mill effluent and its possible treatment at Faizabad (U.P.). Journal of Natcon, 19, 175–178.

    Google Scholar 

  • Mohanty, M., & Patra, H. K. (2011). Attenuation of Chromium toxicity in mine waste water using water hyacinth. Journal of Stress Physiology and Biochemistry., 7(4), 335–346.

    Google Scholar 

  • Mohanty, M., Pattanaik, M. M., Misra, A. K., & Patra, H. K. (2011). Chromium bioaccumulation in rice grown in contaminated soil and irrigated mine waste water—a case study At South Kaliapani Chromite Mine Area, Orissa, India. International Journal of Phytoremediation, 13, 397–409.

    Article  CAS  Google Scholar 

  • Mohanty, M., Pattanaik, M. M., Misra, A. K., & Patra, H. K. (2012). Bioconcentration of chromium—an in situ phytoremediation study at south kaliapani chromite mining area of Orissa, India. Environmental Monitoring and Assessment, 184(2), 1015–1024.

    Article  CAS  Google Scholar 

  • Murugesan, A. G., & Sukumaran, N. (1997). Perspectives of utilizing aquatic macrophytes for waste water treatment. Ind. J Environ. Protect, 17, 502–507.

    CAS  Google Scholar 

  • Ndimele, P. E., & Jimoh, A. A. (2011). Water hyacinth (Eichhornia crassipes (Mart.) Solms.) in phytoremediation of heavy metal polluted water of Ologe lagoon, Lagos, Nigeria. Research Journal of Environmental Science, 5(5), 424–433.

    Article  CAS  Google Scholar 

  • Nikhileshwar, S. (1992). Paper mill effluent and its biological treatment. Indian Journal of Environmental Protection, 12, 89–93.

    Google Scholar 

  • Oron, G., & Willers, H. (1989). Effect of wastes quality on treatment efficiency with duckweed. Water Science and Technology, 21, 639–643.

    CAS  Google Scholar 

  • Pandey, R. N., Upadhyaya, S., Pandey, V. K., Tiwari, D. D., & Pandey, Y. N. (2005). Characterization of sugar distillery and fertilizer industry effluents for their bioremediation. Acta Ecologia, 27, 11–16.

    CAS  Google Scholar 

  • PPAH. (1998). Pollution prevention and abatement handbook. World Bank Group, pp. 395–400.

  • Prasad, M. N. V. (2003). Phytoremediation of metal polluted ecosystems: hope for commercialization. Russian Journal of Plant Physiology, 50, 64–780.

    Article  Google Scholar 

  • Prasad, M. N. V., Malec, P., Waloszek, A., Bojko, M., & Strzalka, K. (2001). Physiological responses of Lemna trisulka L. (duckweed) to cadmium and copper bioaccumulation. Plant Science, 161, 881–889.

    Article  CAS  Google Scholar 

  • Rahman, M. A. A., & Hasegawa, H. (2011). Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere, 83, 633–646.

    Article  CAS  Google Scholar 

  • Rai, U. N., Sinha, R., Tripathy, D., & Chandra, P. (1995). Waste water treatability potential of some aquatic macrophytes: removal of heavy metals. Ecological Engineering, 5, 5–12.

    Article  Google Scholar 

  • Raj, A., Chandra, R., & Patel, D. K. (2005). Physico-chemical characterisation of pulp and paper mill effluent and toxicity assessment by a tubificid worm, Tubifex tubifex. Toxicology International, 12(2), 109–118.

    CAS  Google Scholar 

  • Reeves, R. D., & Baker, A. J. M. (2000). Metal accumulating plants. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals using plants to clean up the environment. NewYork: Wiley.

    Google Scholar 

  • Rout, D. C. (2008). Managing the water resource at J.K. paper mill. Ecovision, 2, 28–30.

    Google Scholar 

  • Samecka-Cymerman, A., & Kempers, A. (2004). Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry. Ecotoxicology and Environmental Safety, 59, 64–69.

    Article  CAS  Google Scholar 

  • Selvarathi, P., & Ramasubramanian, V. J. (2010). Phytoremedial effect of Datura metel L. on paper mill effluent and its impact on Physicochemical characteristics of Lycopersicon esculentum Mill. Bioscience Research, 1(2), 94–100.

    Google Scholar 

  • Singh, B. P., & Tondon, P. K. (2009). Effect of water pollution on Pistia stratiotes stratiotes in river Suheli of Dudhwa National park and river Gomti of Lucknow city. Research and Environmental Life science, 2(3), 173–178.

    Google Scholar 

  • Singh, S., Eapan, S., & D’souza, S. F. (2006). Cadmium accumulation and antioxidative system in an aquatic plant, Bacopa monnieri. Chemosphere, 64, 233–246.

    Article  Google Scholar 

  • Singhal, M., Bhasin, S. K., & Aggarwal, V. (2009). Phytoremediation model of E. crassipes for pulp and paper mill effluent. Indian Journal of Environmental Protection, 26(6), 514–519.

    Google Scholar 

  • Stout, L., & Nüsslein, K. (2010). Biotechnological potential of aquatic plant–microbe interactions. Current Opinion in Biotechnology, 21, 339–345.

    Article  CAS  Google Scholar 

  • Suriyanarayanan, S., Mailappa, A. S., Jayakumar, D., Nanthakumar, K., Karthikeyan, K., & Balasubramanian, S. (2010). Studies on the characterization and possibilities of reutilization of solid wastes from a waste paper based paper industry. Global Journal of Environmental Research, 4(1), 18–22.

    CAS  Google Scholar 

  • Tewari, P. K., Batra, V. S., & Balakrishnan, M. (2009). Efficient water use in industries: cases from the Indian agrobased pulp and paper mills. Journal of Environment Management, 90, 265–273.

    Article  CAS  Google Scholar 

  • Thompson, G., Swain, J., Kay, M., & Forster, C. F. (2001). The treatment of pulp and paper-mill effluent: a review. Bioresource Technology, 77(3), 275–286.

    Article  CAS  Google Scholar 

  • Verma, Y. (2007). Toxicity assessment of industrial effluents using duckweed bioassay. Indian Journal of Environment Protection, 27(3), 260–263.

    Google Scholar 

  • Verma, V. K., Gupta, R. K., & Rai, J. P. N. (2005). Biosorption of Pb and Zn from pulp and paper industry effluent by water hyacinth. Journal of Scientific and Industrial Research, 64, 778–781.

    CAS  Google Scholar 

  • Zhu, D., Yang, T., Zhou, W., Hamilton, D., Zhang, L., & Hu, C. (2003). Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart). Environmental Contamination and Toxicology, 61, 88–97.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Environment Director and Environment Manager, JK Paper mill, Rayagada, Orissa, India for providing adequate laboratory facilities during the research work. The authors are also very much thankful to Dr. Surajit Das, Assistant Professor, National Institute of Technology, Rourkela, India for statistical analysis (principal component analysis) of the data using SPSS 16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mohanty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Mohanty, M., Pradhan, C. et al. Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes—a case study at JK Paper mill, Rayagada, India. Environ Monit Assess 185, 4347–4359 (2013). https://doi.org/10.1007/s10661-012-2873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2873-9

Keywords

Navigation