Skip to main content
Log in

The effects of silver nanoparticles on the microbial nitrogen cycle: a review of the known risks

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The nitrogen cycle is an integral biogeochemical function for maintaining healthy environments. Nitrogen is a key nutrient that must be continuously replenished through recycling mechanisms to sustain ecosystems, disruption to which can result in compromised ecosystem functioning. Certain stages in the microbial conversion of nitrogen compounds are performed by a limited range of micro-organisms making these key functional species in ecosystems. The growing industrial use of silver nanoparticles (AgNPs) potentially poses significant risks for microbial nitrogen cycling species. AgNPs possess potent antimicrobial properties and are expected to reach a range of natural environments through several routes of exposure. Certain functional nitrogen cycling microbes have been shown to be highly susceptible to AgNP toxicity. The current literature indicates that AgNPs can negatively affect certain nitrogen fixing, nitrifying and denitrifying microbes in vitro. In vivo studies investigating the effect of AgNPs on nitrogen cycling microbial communities and nitrogen transformation rates in soil, sediment and sludge environments have also indicated disruption of these functional processes. This review provides a comprehensive description of the current state of knowledge regarding the toxicity of AgNPs to nitrogen cycling communities. The aim of the review is to highlight the most susceptible stages in the nitrogen cycle and the implications for the affected ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abramenko NB, Demidova TB, Abkhalimov EV, Ershov BG, Krysanov EY, Kustov LM (2018) Ecotoxicity of different-shaped silver nanoparticles: case of zebrafish embryos. J Hazard Mater 347:89–94

    CAS  Google Scholar 

  • Arnaout CL, Gunsch CK (2012) Impacts of silver nanoparticle coating on the nitrification potential of Nitrosomonas europaea. Environ Toxicol Chem 46(10):5387–5395

    CAS  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641

    CAS  Google Scholar 

  • Beddow J, Stolpe B, Cole P, Lead JR, Sapp M, Lyons BP, Colbeck I, Whitby C (2014) Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. Environ Microbiol Rep 6(5):448–458

    CAS  Google Scholar 

  • Beddow J, Stolpe B, Cole PA, Lead JR, Sapp M, Lyons BP, Colbeck I, & Whitby C (2016) Nanosilver inhibits nitrification and reduces ammonia‐oxidising bacterial but not archaeal amoA gene abundance in estuarine sediments. Environ Microbiol 19(2):500–510

  • Beddow J, Stolpe B, Cole PA, Lead JR, Sapp M, Lyons BP, Colbeck I, Whitby C (2017) Nanosilver inhibits nitrification and reduces ammonia-oxidising bacterial but not archaeal amoA gene abundance in estuarine sediments. Environ Microbiol 19(2):500–510

    CAS  Google Scholar 

  • Behrendt A, de Beer D, Stief P (2013) Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments. Biogeosci Discuss 10:8065–8101

    Google Scholar 

  • Bellenger JP, Xu Y, Zhang X, Morel FMM, Kraepiel AML (2014) Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacteria in soils. Soil Biol Biochem 69:413–420

    CAS  Google Scholar 

  • Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG (2017) Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain Mater Technol 13:18–23

    CAS  Google Scholar 

  • Boatman TG, Lawson T, Geider RJ (2017) A key marine diazotroph in a changing ocean: the interacting effects of temperature, CO2 and light on the growth of Trichodesmium erythraeum IMS101. PLoS One 12(1):e0168796

    Google Scholar 

  • Bombar D, Paerl RW, Riemann L (2016) Marine non-cyanobacterial diazotrophs: moving beyond molecular detection. Trends Microbiol 24(11):916–927

    CAS  Google Scholar 

  • Cabello P, Roldan DM, Moreno-Vivian C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150:3527–3546

    CAS  Google Scholar 

  • Casciotti KL, Buchwald C (2012) Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification. Front Microbiol 3:356

    CAS  Google Scholar 

  • Clark IM, Buchkina N, Jhurreea D, Goulding KWT, Hirsch PR (2012) Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk wheat experiment. Philos Trans R Soc Lond B Biol Sci 367:1235–1244

    CAS  Google Scholar 

  • Daims H, Lucker S, Wagner M (2016) A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol 24(9):699–712

    CAS  Google Scholar 

  • Dale AL, Casman EA, Lowry GV, Lead JR, Viparelli E, Baalousha M (2015) Modeling nanomaterial environmental fate in aquatic systems. Environ Sci Technol 49:2587–2593

    CAS  Google Scholar 

  • Decleyre H, Heylen K, Bjorn Y, Willems A (2016) Highly diverse nirK genes comprise two major clades that harbour ammonium-producing denitrifiers. BMC Genomics 17:155

    Google Scholar 

  • Denk TRA, Mohn J, Decock C, Lewicka-Szczebak D, Harris E, Butterbach-Bahl K, Kiese R, Wolf B (2017) The nitrogen cycle: a review of isotope effects and isotope modelling approaches. Soil Biol Biochem 105:121–137

    CAS  Google Scholar 

  • Deshmukhab SP, Patilac SM, Mullania SB, Delekar SD (2019) Silver nanoparticles as an effective disinfectant: a review. Mater Sci Eng C 97:954–965

    Google Scholar 

  • Doolette CL, Gupta VVSR, Lu Y, Payne JL, Batstone DJ, Kirby JK, Navarro DA, McLaughlin MJ (2016) Quantifying the sensitivity of soil microbial communities to silver sulfide nanoparticles using metagenome sequencing. PLoS One 11(8):e0161979

    Google Scholar 

  • Echavarri-Bravo V, Paterson L, Aspray TJ, Porter JS, Winson MK, Hart MGJ (2017) Natural marine bacteria as model organisms for the hazard-assessment of consumer products containing silver nanoparticles. Mar Environ Res 130:293–302

    CAS  Google Scholar 

  • Elzey S, Grassian VH (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 12:1945–1958

    CAS  Google Scholar 

  • Fernandes SO, Javanaud C, Aigle A, Michotey VD, Guasco S, Deborde J, Deflandre B, Anschutz P, Bonin PC (2015) Anaerobic nitrification–denitrification mediated by Mn-oxides in meso-tidal sediments: implications for N2 and N2O production. J Mar Syst 144:1–8

    Google Scholar 

  • Francis CA, Beman JM, Kuypers MMM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. The ISME Journal 1(1):19–27

    CAS  Google Scholar 

  • Gaby JC, Buckley DH (2013) A global census of nitrogenase diversity. Environ Microbiol 13:1790–1799

    Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5:382–386

    CAS  Google Scholar 

  • Giblin AE, Tobias CR, Song B, Weston N, Banta GT, Rivera-Monroy VH (2013) The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography 26(3):124–131

    Google Scholar 

  • Grun AL, Emmerling C (2018) Long-term effects of environmentally relevant concentrations of silver nanoparticles on major soil bacterial phyla of a loamy soil. Environ Sci Eur 30:31

    Google Scholar 

  • Grun AL, Straskraba S, Schulz S, Schloter M, Emmerling C (2018) Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamy soil. J Environ Sci 30(1):12–22

    Google Scholar 

  • Guo Z, Zeng G, Cui K, Chen A (2019) Toxicity of environmental nanosilver: mechanism and assessment. Environ Chem Lett 17:319–333

    CAS  Google Scholar 

  • Gwin CA, Lefevre E, Alito CL, Grunsch CK (2018) Microbial community response to silver nanoparticles and Ag+ in nitrifying activated sludge revealed by ion semiconductor sequencing. Sci Total Environ 616-617:1014–1021

    CAS  Google Scholar 

  • Hirsch MD, Long ZT, Song B (2011) Anammox bacterial diversity in various aquatic ecosystems based on the detection of hydrazine oxidase genes (hzoA/hzoB). Microb Ecol 61(2):264–276

    CAS  Google Scholar 

  • Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9(7):e102108

    Google Scholar 

  • Judy JD, Kirby JK, McLaughlin MJ, McNear D Jr, Bertsch PM (2016) Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials. Environ Pollut 214:731–736

    CAS  Google Scholar 

  • Kim MJ, Ko D, Ko K, Kim D, Lee JY, Woo SM, Kim W, Chung H (2018) Effects of silver-graphene oxide nanocomposites on soil microbial communities. J Hazard Mater 346:93–102

    CAS  Google Scholar 

  • Koch H, van Kessel MAHJ, Lücker S (2019) Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl Microbiol Biotechnol 103:177–189

    CAS  Google Scholar 

  • Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190:816–822

    CAS  Google Scholar 

  • Kumar N, Palmer GR, Shah V, Walker VK (2014) The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages. PLoS One 9(6):e99953

    Google Scholar 

  • Leigh JA (2000) Nitrogen fixation in methanogens: the archaeal perspective. Current Issues in Microbiology 2(4):125–131

    CAS  Google Scholar 

  • Lekamge, S., Miranda, A.F., Abraham, A., Li, V., Shukla, R., Bansal, V. & Nugegoda, D., (2019). The toxicity of silver nanoparticles (AgNPs) to three freshwater invertebrates with different life strategies: Hydra vulgaris, Daphnia carinata, and Paratya australiensis. Frontiers in Environmental Science, https://doi.org/10.3389/fenvs.2018.00152

  • León-Silva S, Fernández-Luqueño F, López-Valdez F (2016) Silver nanoparticles (AgNP) in the environment: a review of potential risks on human and environmental health. Water Air Soil Pollut 227:306

    Google Scholar 

  • Li Y, Zhao R, Wang L, Niu L, Wang C, Hu J, Wu H, Zhang W, Wang P (2018) Silver nanoparticles and Fe(III) co-regulate microbial community and N2O emission in river sediments. Sci Total Environ 706:135712

    Google Scholar 

  • Li H, Chi Z, Yan B (2019a) Long-term impacts of graphene oxide and Ag nanoparticles on anammox process: performance, microbial community and toxic mechanism. J Environ Sci 79:239–247

  • Li GF, Huang BC, Zhang ZZ, Cheng YF, Fan NS, Jin RC (2019b) Recent advances regarding the impacts of engineered nanomaterials on the anaerobic ammonium oxidation process: performances and mechanisms. Environmental Science Nanotechnology 6(12):3501–3512

  • Liang Z, Das A, Hu Z (2010) Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Res 44:5432–5438

    CAS  Google Scholar 

  • Liu S, Wang C, Hou J, Wang P, Miao L, Fan X, You G, Xu Y (2018) Effects of Ag and Ag2S nanoparticles on denitrification in sediments. Water Res 137:28–36

    CAS  Google Scholar 

  • Liu X, Yanga X, Hu X, He Q, Zhai J, Chena Y, Xiong Q, Vymazal J (2019) Comprehensive metagenomic analysis reveals the effects of silver nanoparticles on nitrogen transformation in constructed wetlands. Chem Eng J 358:1552–1560

    CAS  Google Scholar 

  • Luvizotto DM, Araujo JE, Silva MDCP, Dias ACF, Kraft B, Tegetmeye H, Strous M, Andreote FD (2019) The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils. Annals of the Brazilian Academy of Sciences 91:e20180373

    CAS  Google Scholar 

  • Marchant HK, Ahmerkamp S, Lavik G, Tegetmeyer HE, Graf J, Klatt JM, Holtappels M, Walpersdorf E, Kuypers MMM (2017) Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. The ISME Journal 11:1799–1812

    CAS  Google Scholar 

  • Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, Grumezescu AM (2015) Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem 15(16):1596–1604

    CAS  Google Scholar 

  • Masrahi A, VandeVoort AR, Arai Y (2018) Effects of silver nanoparticle on soil-nitrification processes. Arch Environ Contam Toxicol 66(4):504–513

    Google Scholar 

  • McGee CF, Storey S, Clipson N, Doyle E (2017a) Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology 26(3):449–458

  • McGee CF, Byrne H, Irvine A, Wilson J (2017b) Diversity and dynamics of the DNA and cDNA-derived bacterial compost communities throughout the Agaricus bisporus mushroom cropping process. Ann Microbiol 67(11):751–761

  • McGee CF, Storey S, Clipson N, Doyle E (2018) Concentration dependent responses of soil bacterial, fungal and nitrifying communities to silver nano and micron particles. Environ Sci Pollut R 25(19):18693–18704

    CAS  Google Scholar 

  • McGee CF, Clipson N, Doyle E (2020) Exploring the influence of raising soil pH on the Ecotoxicological effects of silver nanoparticles and Micron particles on soil microbial communities. Water Air Soil Pollut 231. https://doi.org/10.1007/s11270-020-04540-y

  • Mirza BS, Rodrigues JLM (2012) Development of a direct isolation procedure for free-living diazotrophs under controlled hypoxic conditions. Appl Environ Microbiol 78(16):5542–5549

    CAS  Google Scholar 

  • Mitrano DM, Ranville JF, Bednar A, Kazor K, Hering AS, Higgins CP (2014) Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS). Environmental Science Nanotechnology 1(3):248–259

    CAS  Google Scholar 

  • Nelson MB, Martiny AC, Martiny JBH (2016) Global biogeography of microbial nitrogen-cycling traits in soil. PNAS 113(29):8033–8040

    CAS  Google Scholar 

  • Norman JS, Friesen ML (2017) Complex N acquisition by soil diazotrophs: how the ability to release exoenzymes affects N fixation by terrestrial free-living diazotrophs. The ISME Journal 11:315–326

    CAS  Google Scholar 

  • Pachapur VL, Larios AD, Cledón M, Brar SK, Verma M, Surampalli RY (2016) Behavior and characterization of titanium dioxide and silver nanoparticles in soils. Sci Total Environ 563–564:933–943

    Google Scholar 

  • Pajares S, Bohannan BJM (2016) Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045

    Google Scholar 

  • Palacin-Lizarbe C, Camarero L, Hallin S, Jones CM, Cáliz J, Casamayor EO, Catalan J (2019) The DNRA-Denitrification dichotomy differentiates nitrogen transformation pathways in mountain Lake benthic habitats. Front Microbiol 10:1229

    Google Scholar 

  • Petica A, Gavriliu S, Lungu M, Buruntea N, Panzaru C (2008) Colloidal silver solutions with antimicrobial properties. Materials Science and Engineering B 152:22–27

    CAS  Google Scholar 

  • Pinto AJ, Marcus DN, Ijaz UZ, Bautista de lose Santos QMB, Dick GJ, Raskin L (2016) Metagenomic evidence for the presence of Comammox Nitrospira-like Bacteria in a drinking water system. MSphere 1(1):e00054–e00015

    Google Scholar 

  • Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel MAHJ, Daebeler A, Steinberger M, Jetten MSM, Lücker S, Wagner M, Daims H (2017) AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front Microbiol 8:150B

    Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10(11):2931–2941

    CAS  Google Scholar 

  • Pulit-Prociak J, Banach M (2016) Silver nanoparticles – a material of the future…? Open Chemistry 14(1):76–91

    CAS  Google Scholar 

  • Regan K, Stempfhuber B, Schloter M, Rasche F, Prati D, Philippot L, Boeddinghaus RS, Kandeler E, Marhan S (2017) Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil. Soil Biol Biochem 109:214–226

    CAS  Google Scholar 

  • Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6(6):2295–2350

    CAS  Google Scholar 

  • Royce SG, Mukherjee D, Cai T, Xu SS, Alexander JA, Mi Z, Calderon L, Mainelis G, Lee KB, Lioy PJ, Tetley TD, Chung KF, Zhang J, Georgopoulos PG (2014) Modeling population exposures to silver nanoparticles present in consumer products. J Nanopart Res 16(11):2724

    Google Scholar 

  • Rutting T, Boeckx P, Muller C, Klemedtsson L (2011) Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8:1779–1791

    Google Scholar 

  • Schlich K, Klawonn T, Terytze K, Hund-Rinke K (2013) Hazard assessment of a silver nanoparticle in soil applied via sewage sludge. Environ Sci Eur 25:17

    Google Scholar 

  • Seitzinger S, Harrison JA, Bohlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Drecht GV (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090

    CAS  Google Scholar 

  • Shah V, Collins D, Walker VK, Shah S (2014) The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett 9(2):024001

    Google Scholar 

  • Shahrokh S, Hosseinkhani B, Emtiazi G (2014) The impact of silver nanoparticles on bacterial aerobic nitrate reduction process. Journal of Bioprocessing & Biotechniques 4(3):152

    Google Scholar 

  • Shin YJ, Kwak JI, An YJ (2012) Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88(4):524–529

    CAS  Google Scholar 

  • Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44(14):5649–5654

    CAS  Google Scholar 

  • Speth DR, Russ L, Kartal B, op den Camp HJM, Dutilh BE, Jetten MSM (2015) Draft genome sequence of anammox bacterium “Candidatus Scalindua brodae,” obtained using differential coverage binning of sequencing data from two reactor enrichments. Genome Announcements 3(1):e01415–e01414

    Google Scholar 

  • Tomaszewski M, Cema G, Ziembińska-Buczyńska Al (2017) Influence of temperature and pH on the anammox process: a review and meta-analysis. Chemosphere 182:203–214

    CAS  Google Scholar 

  • Tran QH, Nguyen VQ, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4(3):033001

    Google Scholar 

  • Van Niftrik L, Jetten MSM (2012) Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol Mol Biol Rev 76(3):585–596

    Google Scholar 

  • Van Teeseling MCF, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, VanNieuwenhze MS, Kartal B, van Niftrik L (2015) Anammox Planctomycetes have a peptidoglycan cell wall. Nat Commun 6:6878

    Google Scholar 

  • VandeVoort AR, Arai Y (2012) Effect of silver nanoparticles on soil denitrification kinetics. Ind Biotechnol 8(6):358–364

    CAS  Google Scholar 

  • VandeVoort AR, Skipper H, Arai Y (2014) Macroscopic assessment of nanosilver toxicity to soil denitrification kinetics. J Environ Qual 43(4):1424–1430

    Google Scholar 

  • Wang J, Shu K, Zhang L, Si Y (2017) Effects of silver nanoparticles on soil microbial communities and bacterial nitrification in suburban vegetable soils. Pedosphere 27(3):482–490

    Google Scholar 

  • Wu L, Zhu G, Zhang X, Si Y (2020) Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri. Sci Total Environ 706:135711

    CAS  Google Scholar 

  • Xi D, Bai R, Zhang L, Fang Y (2016) Contribution of anammox to nitrogen removal in two temperate forest soils. Appl Environ Microbiol 82(15):4602–4612

    CAS  Google Scholar 

  • Yang Y, Wang J, Xiu Z, Alvarez PJ (2013) Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ Toxicol Chem 32(7):1488–1494

    CAS  Google Scholar 

  • Yang Y, Quensen J, Mathieu J, Wang Q, Wang J, Li M, Tiedje JM, Alvarez PJ (2014) Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Res 48:317–325

    CAS  Google Scholar 

  • Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    CAS  Google Scholar 

  • Zhang ZZ, Xu JJ, Shi ZJ, Cheng YF, Ji ZQ, Deng R, Jin RC (2017) Short-term impacts of cu, CuO, ZnO and Ag nanoparticles (NPs) on anammox sludge: CuNPs make a difference. Bioresour Technol 235:281–291

    CAS  Google Scholar 

  • Zhang ZZ, Cheng YF, Xu LZJ, Bai YH, Jin RC (2018) Anammox granules show strong resistance to engineered silver nanoparticles during long-term exposure. Bioresour Technol 259:10–17

    CAS  Google Scholar 

  • Zheng Y, Hou L, Liu M, Newell SE, Yin G, Yu C, Zhang H, Li X, Gao D, Gao J, Wang R, Liu C (2017) Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments. Sci Adv 3:e1603229

    Google Scholar 

  • Zheng X, Wang J, Chen Y, Wei Y (2018) Comprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrification. J Hazard Mater 344:291–298

    CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Evelyn Doyle for her thoughtful advice throughout his career researching nanomaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conor Francis McGee.

Additional information

Responsible Editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGee, C.F. The effects of silver nanoparticles on the microbial nitrogen cycle: a review of the known risks. Environ Sci Pollut Res 27, 31061–31073 (2020). https://doi.org/10.1007/s11356-020-09548-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09548-9

Keywords

Navigation