Skip to main content
Log in

Modification of microcrystalline cellulose with acrylamide under microwave irradiation and its application as flocculant

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Grafting polyacrylamide (PAM) chains onto microparticles may combine the advantages of the flocculation property of the former and the fast sedimentation of the later to realize better flocculation performance. In this work, inexpensive microcrystalline cellulose (MCC) microparticles, and monomer of acrylamide (AM) were mixed, and then irradiated under microwave. The obtained material was characterized by Fourier transform infrared spectroscopy and X-ray diffraction, and the results demonstrated successful modification of MCC with AM on the particle surface. The modification procedure has been carefully investigated to obtain an optimum preparation condition. Kaolin suspension was selected as a model to evaluate the flocculation properties of the obtained AM-MCC. Our results indicate that the AM-MCC with the highest grafting ratio of 95.5% exhibits the best flocculation performance, which is even better than that of PAM, and the turbidity can be decreased to 1.4% of the naked kaolin suspension within 2.5 min. Therefore, this work provides a low cost strategy to prepare biodegradable AM-MCC, which may have promising potential application in the water treatment and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  Google Scholar 

  • Antunes E, Garcia FAP, Ferreira P, Blanco A, Negro C, Rasteiro MG (2008) Use of new branched cationic polyacrylamides to improve retention and drainage in papermaking. Ind Eng Chem Res 47(23):9370–9375

    Article  CAS  Google Scholar 

  • Antunes E, Garcia FAP, Ferreira P, Blanco A, Negro C, Rasteiro MG (2010) Modelling PCC flocculation by bridging mechanism using population balances: effect of polymer characteristics on flocculation. Chem Eng Sci 65(12):3798–9807

    Article  CAS  Google Scholar 

  • Bai CZ, Huang XJ, Xie F, Xiong XP (2018) Microcrystalline cellulose surface-modified with acrylamide for reinforcement of hydrogels. ACS Sustain Chem Eng 6:12320–12327

    Article  CAS  Google Scholar 

  • Balea A, Monte MC, de la Fuente E, Negro C, Blanco A (2017) Application of cellulose nanofibers to remove water-based flexographic inks from wastewaters. Environ Sci Pollut Res 24:5049–5059

    Article  CAS  Google Scholar 

  • Blanco A, Negro C, Fuente E, Tijero J (2005) Effect of shearing forces and flocculant overdose on filler flocculation mechanisms and floc properties. Ind Eng Chem Res 44:9105–9112

    Article  CAS  Google Scholar 

  • Blanco A, Monte MC, Campano C, Balea A, Merayo N, Negro C (2018) Chapter 5 Nanocellulose for industrial use: cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC). In: Hussain CM (ed) Handbook of Nanomaterials for industrial applications. Elsevier, Amsterdam, pp 74–126

    Chapter  Google Scholar 

  • Cadotte M, Tellier ME, Blanco A, Fuente E, van de Ven TGM, Paris J (2007) Flocculation, retention and drainage in papermaking: a comparative study of polymeric additives. Can J Chem Eng 85(2):240–248

    Article  CAS  Google Scholar 

  • Cai T, Li HJ, Yang R, Wang YW, Li RH, Yang H, Li AM, Cheng RS (2015) Efficient flocculation of an anionic dye from aqueous solutions using a cellulose-based flocculant. Cellulose 22:1439–1449

    Article  CAS  Google Scholar 

  • Campano C, Lopez-Exposito P, Blanco A, Negro C, van de Ven TGM (2019) Hairy cationic nanocrystalline cellulose as a novel flocculant of clay. J Colloid Interface Sci 545:153–161

    Article  CAS  Google Scholar 

  • Cao Z, Chen Y, Zhang C, Cheng J, Wu D, Ma W, Liu C, Fu Z (2019) Preparation of near-infrared laser responsive hydrogels with enhanced laser marking performance. Soft Matter 15:2950–2959

    Article  CAS  Google Scholar 

  • Chen LH, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843

    Article  CAS  Google Scholar 

  • Das R, Ghorai S, Pal S (2013) Flocculation characteristics of polyacrylamide grafted hydroxypropyl methyl cellulose: an efficient biodegradable flocculant. Chem Eng J 229:144–152

    Article  CAS  Google Scholar 

  • Djibrine BZ, Zheng H, Wang M, Liu S, Tang X, Khan S, Jimenez AN, Feng L (2018) An effective flocculation method to the kaolin wastewater treatment by a cationic polyacrylamide (CPAM): preparation, characterization, and flocculation performance. Int J Polym Sci Article ID 5294251

  • Ebeling JM, Rishel KL, Sibrell PL (2005) Screening and evaluation of polymers as flocculation aids for the treatment of aquacultural effluents. Aquacult Eng 33:235–249

    Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Girma KB, Lorenz V, Blaurock S, Edelmann FT (2005) Coordination chemistry of acrylamide. Coordin Chem Rev 249:1283–1293

    Article  CAS  Google Scholar 

  • Guezennec AG, Michel C, Bru K, Touze S, Desroche N, Mnif I, Motelica-Heino M (2015) Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: a review. Environ Sci Pollut Res 22:6390–6406

    Article  CAS  Google Scholar 

  • Hasan A, Fatehi P (2018) Stability of kaolin dispersion in the presence of lignin-acrylamide polymer. Appl Clay Sci 158:72–82

    Article  CAS  Google Scholar 

  • Huang XJ, Xie F, Xiong XP (2018) Surface-modified microcrystalline cellulose for reinforcement of chitosan film. Carbohydr Polym 201:367–373

    Article  CAS  Google Scholar 

  • Kan HMK, Li J, Wijesekera K, Cranston ED (2013) Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Biomacromolecules 14:3130–3139

    Article  CAS  Google Scholar 

  • Kang HL, Liu R, Huang Y (2015) Graft modification of cellulose: methods, properties and applications. Polymer 70:A1–A16

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kopperud HM, Hansen FK, Nystrom B (1998) Effect of surfactant and temperature on the rheological properties of aqueous solutions of unmodified and hydrophobically modified polyacrylamide. Macromol Chem Phys 199:2385–2394

    Article  CAS  Google Scholar 

  • Lee CS, Robinson J, Chong MF (2014) A review on application of flocculants in wastewater treatment. Process Saf Environ 92:489–508

    Article  CAS  Google Scholar 

  • Lewandowska K (2006) Comparative studies of rheological properties of polyacrylamide and partially hydrolyzed polyacrylamide solutions. J Appl Polym Sci 103:2235–2241

    Article  CAS  Google Scholar 

  • Liu DH, Luo W, Lin CX, Du CY, Liu MH (2015a) Preparation of cellulose graft copolymer based on the combination of ionic liquids and microwave heating. Mater Res Innov 19:566–569

    Google Scholar 

  • Liu L, Gao ZY, Su XP, Chen X, Jiang L, Yao JM (2015b) Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain Chem Eng 3:432–442

    Article  CAS  Google Scholar 

  • Liu T, Xue F, Ding EY (2016) Cellulose nanocrystals grafted with polyacrylamide assisted by macromolecular RAFT agents. Cellulose 23:3717–3735

    Article  CAS  Google Scholar 

  • Ma JY, Shi J, Ding HC, Zhu GC, Fu K, Fu X (2017) Synthesis of cationic polyacrylamide by low-pressure UV initiation for turbidity water flocculation. Chem Eng J 312:20–29

    Article  CAS  Google Scholar 

  • Machida S, Narita H, Katsura T (1971) Flocculation properties of cellulose- acrylamide graft copolymers. Angew Makromol Chem 20(1):47–56

    Article  CAS  Google Scholar 

  • Mohammed N, Grishkewich N, Tam KC (2018) Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ Sci: Nano 5:623–658

    CAS  Google Scholar 

  • Negro C, Blanco A, Fuente E, Sánchez LM, Tijero J (2005) Influence of flocculant molecular weight and anionic charge on flocculation behaviour and on the manufacture of fibre cement composites by the Hatschek process. Cement Concrete Res 35(11):2095–2103

    Article  CAS  Google Scholar 

  • Negro C, Blanco A, Pío IS, Tijero J (2006) Methodology for flocculant selection in fibre–cement manufacture. Cement Concrete Comp 28:90–96

    Article  CAS  Google Scholar 

  • Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci 29:46–56

    Article  CAS  Google Scholar 

  • Raj P, Blanco A, de la Fuente E, Batchelor W, Negro C, Garnier G (2017) Microfibrilated cellulose as a model for soft colloid flocculation with polyelectrolytes. Colloids Surf A: Physicochem Eng Aspects 516:325–335

    Article  CAS  Google Scholar 

  • Rasteiro MG, Garcia FAP, Ferreira P, Blanco A, Negro C, Antunes E (2008) Evaluation of flocs resistance and reflocculation capacity using the LDS technique. Powder Technol 183:231–238

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) ChemInform abstract: Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  Google Scholar 

  • Sarika R, Kalogerakis N, Mantzavinos D (2005) Treatment of olive mill effluents Part II. Complete removal of solids by direct flocculation with poly-electrolytes. Environ Int 31:297–304

    Article  CAS  Google Scholar 

  • Shaikh SMR, Nasser MS, Hussein I, Benamor A, Onaizi SA, Qiblawey H (2017) Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals: a comprehensive review. Sep Purif Technol 187:137–161

    Article  CAS  Google Scholar 

  • Singh V, Tiwari A, Tripathi DN, Sanghi R (2006) Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer 47:254–260

    Article  CAS  Google Scholar 

  • Song YB, Gan WP, Li Q, Guo Y, Zhou JP, Zhang L (2011) Alkaline hydrolysis and flocculation properties of acrylamide-modified cellulose polyelectrolytes. Carbohydr Polym 86:171–176

    Article  CAS  Google Scholar 

  • Swerin A, Risinger G, Odberg L (1997) Flocculation in suspensions of microcrystalline cellulose by microparticle retention aid systems. J Pulp Pap Sci 23:J374–J381

    CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828

    Article  CAS  Google Scholar 

  • Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MRN, Taiwo OFA, Hassan TM, Haafiz MKM (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application-a review. Int J Biol Macromol 93:789–804

    Article  CAS  Google Scholar 

  • Tran VV, Duckshin P, Lee YC (2018) Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ Sci Pollut Res 25:24569–24599

    Article  CAS  Google Scholar 

  • Wang JP, Chen YZ, Wang Y, Yuan SJ, Sheng GP, Yu HQ (2012) A novel efficient cationic flocculant prepared through grafting two monomers onto chitosan induced by gamma radiation. RSC Adv 2:494–500

    Article  CAS  Google Scholar 

  • Wang JP, Yuan SJ, Wang Y, Yu HQ (2013) Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties. Water Res 47:2643–2648

    Article  CAS  Google Scholar 

  • Wei H, Gao BQ, Ren J, Li A, Yang H (2018) Coagulation/flocculation in dewatering of sludge: a review. Water Res 143:608–631

    Article  CAS  Google Scholar 

  • Wong SS, Teng TT, Ahmad AL, Zuhairi A, Najafpour G (2006) Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation. J Hazard Mater 135:378–388

    Article  CAS  Google Scholar 

  • Wu H, Liu ZZ, Li A, Yang H (2017) Evaluation of starch-based flocculants for the flocculation of dissolved organic matter from textile dyeing secondary wastewater. Chemosphere 174:200–207

    Article  CAS  Google Scholar 

  • Xiong XP, Duan JJ (2012) Chapter 6 Dissolution and application of cellulose in NaOH/urea aqueous solution. In Xie HB, Gathergood N (eds) The role of green chemistry in biomass processing and conversion. John Wiley & Sons, Inc, Wheim, pp 205–240

  • Xiong B, Loss RD, Shields D, Pawlik T, Hochreiter R, Zydney A, Kumar M (2018) Polyacrylamide degradation and its implications in environmental systems. NPJ Clean Water 1:17

    Article  Google Scholar 

  • Yang Z, Yuan B, Huang X, Zhou JY, Cai J, Yang H, Li A, Cheng R (2012) Evaluation of the flocculation performance of carboxymethyl chitosan-graft- polyacrylamide, a novel amphoteric chemically bonded composite flocculant. Water Res 46:107–114

    Article  CAS  Google Scholar 

  • Zhu GC, Liu JF, Yin J, Li ZW, Ren BZ, Sun YJ, Wan P, Liu YS (2016) Functionalized polyacrylamide by xanthate for Cr (VI) removal from aqueous solution. Chem Eng J 288:390–398

    Article  CAS  Google Scholar 

Download references

Funding

This work received financial supports from the Natural Science Foundation of China (51273166) and the Fundamental Research Funds for Xiamen University (20720172007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Xiong.

Additional information

Responsible editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Huang, X., Bai, C. et al. Modification of microcrystalline cellulose with acrylamide under microwave irradiation and its application as flocculant. Environ Sci Pollut Res 26, 32859–32865 (2019). https://doi.org/10.1007/s11356-019-06317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06317-1

Keywords

Navigation